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Preface

This volume contains the lecture notes from the Gran Combin Summer
School, held in Saint Oyen, Aosta, Italy, in the second half of June 2000. The
lectures, loosely connected through the broad heading of “Geomorphologi-
cal Fluid Mechanics,” explored a variety of topics involving the fluid flows
encountered in geomorphology and in related geological problems. Specific
topics included lava and mud flows, ice dynamics, snow avalanches, river and
coastal morphodynamics, and landscape formation. The aim of the school
was to unite these topics using their common mathematical and physical
language. The lecture notes have four parts, each with a particular theme:
Fundamentals, Hot, Cold and Dirty. In these parts, we include chapters of
a more basic nature (Fundamentals), chapters relevant to magma and lava
(Hot), to ice flow (Cold), and to fluids in which the transport of suspended
particles is critical (Dirty). Each division has its own opening chapter that
gives a brief introduction to each theme.

The directors of the course “Geomorphological Fluid Mechanics,”were
Neil J. Balmforth (University of California, Santa Cruz, USA) and Antonello
Provenzale (Istituto di Cosmogeofisica, CNR, Torino, Italy), who also acted as
scientific editors for these lecture notes. Jost von Hardenberg (Istituto di Cos-
mogeofisica, CNR, Torino, Italy) was the scientific secretary and Laura Roma
was the administrative assistant of the school. Costanza Piccolo was our in-
dustrious technical editor who collected together all the notes and painstak-
ingly edited them; without her assistance, the chapters may never have seen
the light of day.

The main lecturers of the school were Ross Griffiths (Australian Na-
tional University), Kolumban Hutter (University of Darmstadt), Chiang C.
Mei (Massachusetts Institute of Technology), Gary Parker (University of
Minnesota), Giovanni Seminara (University of Genova), Terence R. Smith
(University of California at Santa Barbara), Jack Whitehead (Woods Hole
Oceanographic Institution) and Andy Woods (University of Cambridge). Spe-
cial lectures were also given by Christophe Ancey (CNRS, Grenoble), Augusto
Biancotti (University of Torino), Richard Craster (Imperial College, London),
Andrew Fowler (University of Oxford), Stuart B. Savage (McGill University,
Montreal), and John Wettlaufer (University of Washington).



VI

The Gran Combin Summer School is a joint enterprise of the French
CNRS and Italian CNR, whose general theme is “Fundamental Problems
in Geophysical and Astrophysical Fluid Dynamics.”Local organization and
funding each year is provided by the “Istituto di Cosmogeofisica”(CNR,
Torino, Italy), by the Groupement de Recherche “Mécanique Fondamen-
tale des Fluides Géophysiques et Astrophysiques”(CNRS, France) and by
the Laboratoire de Meteorologie Dynamique, ENS-CNRS, Paris. Support for
the summer school also comes from the APT Gran St. Bernard, Valle d’Aosta
(Italy), the Regional Government of Valle d’Aosta, and the Comunitá Mon-
tana “Grand Combin.”

Woods Hole, Neil J. Balmforth
August 2001 Antonello Provenzale
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1 The Language of Pattern and Form

N.J. Balmforth1, A. Provenzale2, and J.A. Whitehead3

1 Department of Applied Mathematics and Statistics, School of Engineering,
University of California at Santa Cruz, CA 95064, USA

2 Istituto di Cosmogeofisica, Corso Fiume 4, 10133 Torino, Italy; and
ISI Foundation, V.le Settimio Severo 65, 10133 Torino, Italy

3 Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA

1.1 Introduction

Geology and geomorphology deal with some of the most striking patterns of Na-
ture. From mountain ranges and mid-ocean ridges, to river networks and sand
dunes, there is a whole family of forms, structures, and shapes that demand ra-
tionalization as well as mathematical description. In the various chapters of this
volume, many of these patterns will be explored and discussed, and attempts will
be made to both unravel the mathematical reasons for their very existence and
to describe their dynamics in quantitative terms. In this introductory chapter,
we discuss some of the methods that can be adopted in the study of patterns,
and use the specific examples of convection – an evergreen classic in nonlinear
fluid dynamics – and of the formation of aeolian ripples – another phenomenon
that strikes the imagination of anybody who has been travelling in a sand desert.

The first observation is that, in many instances, patterns form because of
a simple linear instability. In the first example we treat in this chapter, a fluid
layer heated from below, the instability is one in which a heated fluid parcel rises
upwards and displaces the ambient fluid downwards. In response to geometrical
constraints and detailed physical effects, the simple instability often chooses
its own structure, or spatial pattern – certain motions are “easiest” or most
favourable, leading to a preferred pattern. For convection, fluid motions can
create an aesthetic network of rolls, squares or hexagons, which has partly lead
to its frequent portrayal in works on pattern formation. In other situations,
however, there can be several patterns that are roughly equally preferred, and
the system is “frustrated” in its passage to a final state. This is also what one
sees in convection, where there can be a pronounced competition between, for
example, a planform of hexagons and one of rolls. Some of the goals of “pattern
theory” are to understand how the system sorts itself out in these situations.
Other goals are to predict the precise pattern itself, which must be an attracting
solution of the governing equations, and not all that easy to construct.

The wide spectrum of different patterns and systems in which they arise
makes a theoretical exploration appear to be both complicated and very spe-
cific to each situation. Indeed, each pattern has its own unique elements, and
is studied by employing specific methodologies that reflect both the tradition of
the disciplines involved and the idiosyncracies of the explorers. However, from
the mathematical perspective there are usually common, connecting threads:

N.J. Balmforth and A. Provenzale (Eds.): LNP 582, pp. 3–33, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



4 N.J. Balmforth, A. Provenzale, and J.A. Whitehead

First, linear instability theory is a general approach that invariably follows the
same lines (the decomposition of a disturbance of infinitesimal amplitude into a
set of normal modes and the subsequent computation of their growth or decay
rates) whatever the problem. Further, the onset of an instability is a “bifurca-
tion,” and we may usefully think of the transition using ideas from dynamical
systems theory. In fact, mathematically, the most common bifurcations aways
occur in certain standard ways. According to dynamical systems theory, each
of the standards has a specific underlying mathematical description – an “am-
plitude equation,” or a set of them, for the unstable normal modes. The main
challenge, then, is to determine which of the standard bifurcations takes place,
and to reduce the governing equations to the relevant set of amplitude equations.

Practically, this goal is achieved by positioning oneself at the point of bi-
furcation, and performing some asymptotic expansion; we give an example for
convection below. In doing so, the details of the particular problem all become
subsumed into the specific values of a set of constants (the coefficients or param-
eters of the amplitude equations). This is why, but for those special parameter
values, quite different patterns can be described by the same mathematics. Of
course, to visualize the emerging pattern we must reconstruct the entire solu-
tion from the mode amplitudes, and this is where all the details of the particular
problem matter. Nevertheless, the underlying mathematical description provides
a tool to understand pattern formation in general situations, which is why this
approach has become so popular in recent years and spawned a generation of
roving nonlinear dynamicists in search of problems to apply their technology.

There is one severe limitation with the reductive idea: the derivation and
validity of the amplitude equations is restricted to conditions near the brink of
instability – the patterns must be just able to form. What this signifies is that
the growth of the instability, the creation of the pattern, is a slow process, and
all of the other complicating processes that could occur in the system do so
and subside beforehand. Mathematically, we filter these complications out, leav-
ing a relatively simple description of the slow pattern formation. Unfortunately,
these conditions do not last once we move away from the onset of instability,
and the filtered complications invariably return to thwart the reduction scheme.
The further from the initial bifurcation, the more complicated the dynamics
usually becomes, producing rich spatio-temporal dynamics and even turbulence.
Describing those situations is a far harder problem. In fact, out of these very
complicated states, other kinds of patterns can emerge, such as the coherent
structures of turbulent fluids (the most notable, perhaps, being Jupiter’s Great
Red Spot). Because we no longer have a simple equilibrium state, the coher-
ent structures that punctuate a turbulent background have an origin that is
much less clear than that of the patterns at the onset of the instability, and
the mathematics is correspondingly more complicated (and much remains to be
understood).

As it turns out, even the theory of patterns close to the bifurcation point is
often not very simple. It is simpler than what we started with, but, often, also
requires a great deal of labour to understand (in “spatially extended” systems,
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pattern equations can be partial differential equations with complicated chaotic
solutions). This aspect, coupled with the need to go beyond the small window
near onset, typically means that the reductive style of approach – the detection
of a mildly unstable pattern, and the reduction of the governing equations to an
amplitude equation – is not always helpful. Worse still, for many problems in
geology and geomorphology, the governing equations themselves are either prac-
tically intractable, or not even known; our example of the sand ripples provides
an illustration.

All this dirty washing highlights how the usual geophysical problem is far
more complicated than we would truly like to admit when we embark on a
mathematical description of the forming patterns. Our mathematical tools are
largely fashioned for a physical situation that is more like a controlled laboratory
experiment; our description of the convection problem follows largely such lines.
To advance further we need to make more and more less refined approximations,
or simply resort to big numerical simulations. The former pathway eventually
leads into the realm of crude phenomenological models, which our consideration
of viscous conduits and sand ripples also illustrates. The approach of full-scale
numerical simulation has an important place in the exploration of many prob-
lems, but this introduction is meant to offer some technology for mathematical
modelling, and so we have little more to say about simulation, other than it can
be done and is important.

1.2 Convection

Convection is a classic problem in geophysical fluid mechanics. In its incarna-
tion as the Rayleigh–Bénard problem, it models the thermal convection of a
differentially heated fluid layer, and can be studied from both the theoretical
and experimental perspectives. In its simplest form, convection occurs when the
fluid is contained between two plates maintained at different temperatures and
the lower plate is heated sufficiently so that small horizontal inhomogeneities
in the fluid density induce the warm fluid near the bottom to float up buoy-
antly and displace the denser fluid above. Nevertheless, convection can occur in
different geometries (like a sphere), over extensive regions (such as the Earth’s
mantle), and when there are other competing physical effects (embedded mag-
netic fields, internal heat sources, suspended or sedimenting particles, and so
on). Consequently, this problem has many applications in geophysics. Moreover,
it is a paradigm of a system that develops patterns and turbulent fluid motions.
Several reviews of theory and experiment are available [1,2,3,4,5,6].

A key physical variable for convection is the degree of differential heating.
A convenient, dimensionless measure of this quantity is the so-called Rayleigh
number,

R=
gαD3(T2 − T1)

νκ
, (1.1)

defined in terms of the temperature difference between the two plates, (T2−T1),
the fluid depth, D, the gravitational acceleration, g, the coefficient of thermal
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expansion, α, the kinematic viscosity of the fluid, ν, and l its thermal conduc-
tivity, κ. The Rayleigh number is one of the single most important quantities
in convection theory because it provides a crude yardstick for what we expect
the fluid to do in any given situation. For example, in the laboratory, for small
R, heat is transferred between the plates purely by conduction and there is no
motion in the fluid. But when the Rayleigh number exceeds a critical value, the
fluid begins to overturn and steady convection patterns occur that take the form
of a network of convection cells. The shape of the cells varies depending on the
fluid properties and lateral shape of the fluid layer, but cells with the form of
hexagons or rolls are common (see Fig. 1.1 – in the second panel rolls are gradu-
ally replacing hexagons from one side). With a further increase of R the cellular
pattern changes and becomes progressively more complex (see Figs. 1.2 and 1.3).
Eventually, the cells become time-dependent, and when R is sufficiently large,
the convective pattern degrades and the fluid can become turbulent.

Fig. 1.1. Shadowgraphs (plan view) of hexagonal/polygonal planforms. These are
slowly being replaced by rolls. In these and subsequent figures, white lines or spots
indicate cold, dense material while dark lines or spots indicate warm, buoyant material

In the turbulent regime in the laboratory, no regular patterns are evident.
However, large-scale flows can still persist, and sweep fluid around over the
scale of the container. Moreover, much of the temperature variation becomes
confined to boundary layers adjacent to the plates. The reduction in scale over
these boundary layers enhances the dissipative effects of thermal conduction and
viscosity, with the results that motion in these regions is more laminar than in
the interior of the fluid. However, these layers are themselves in an unsteady
balance: The natural tendency of the boundary layers to thicken by thermal
diffusion is held in check by the eruption of localized plumes from them that
become swept and mixed into the turbulent interior.

Besides turbulent convection in the laboratory, there are many geophysical
flows in which the Rayleigh number is even higher (such as convection in the
Earth’s core). In these systems, the popular conception is that the driving of the
fluid by the differential heating is so high that the motion is turbulent even inside
any boundary layers. The molecular values of the conductivity and viscosity are
then claimed to become irrelevant in determining the amount of heat transported
by convection. This leads to a characteristic asymptotic scaling of the degree of
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Fig. 1.2. Experimental observations of the breakdown of convection rolls. On the left
is a zig-zag instability. In the middle is a cross-roll instability. On the right is a pinch

Fig. 1.3. More shadowgraphs showing “bimodal flow,” which is roughly a combination
of rolls with different orientation

heat transfer with Rayleigh number (the infamous R1/2 scaling), which is based
essentially on dimensional analysis [2].

As described in the chapters to come, a specific case relevant to landscapes
is convection in the Earth’s mantle. In this instance, the Rayleigh number is
not especially high (compared to the core, for example) and fluid motions are
somewhat less vigorous. However, one key difference with many other instances
of convection, is that the fluid (magma) has a very high viscosity relative to the
conductivity. It is usual to measure the relative importance of heat conduction
and viscosity using the Prandtl number, σ = ν/κ. In the Earth’s mantle, σ � 1,
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and the resulting “high Prandtl number” convection can differ significantly in
its form from that encountered in fluids like air and water for which σ is much
smaller [3]. In particular, a common vision is that the high viscosity impedes
fluid motion so much that the fluid interior contains only a relatively weak flow.
Instead, because heat flows out from the underlying Earth’s core and is produced
internally in the lower mantle by radioactive decay, temperature gradients build
up high enough at the base of the mantle to create large-scale plumes that rise
up from the lower boundary and ascend through the entire fluid layer. These
plumes subsequently collide with the Earth’s crust, spread laterally, and then,
after cooling, descend as “subducting” slabs.

What we describe next is a far cry from this image of upwelling plumes,
and subducting slabs. Indeed, we retire from the high Rayleigh number problem
completely, and think only of the inception of convection itself in an idealized
problem (a plane fluid layer between two plates held at different temperatures).
The reason is partly because we aim to be pedagogical, but there is also a deeper
theme – as implied by our introductory discussion, the inception of convection
is the only physical regime in which we can operate by mathematical reduction
of the governing equations and truly believe the results. This is not to say we
cannot proceed further, simply that greater and greater doubts enter as we try
to advance beyond this point.

1.2.1 Mathematical Formulation

To deal with convection problems, we often make use of the “Boussinesq approx-
imation.” This is basically an assumption about scale separation that simplifies
the equations (specifically the buoyancy force and equation of state) and is suit-
able for systems in which the fluid layer is relatively shallow (much less than
the natural scale height). We follow such a route also in this chapter, and so we
begin not from the full Navier–Stokes equations for a fluid, but from a slightly
abridged version of them:

∂u
∂t

+ (u · ∇)u = −1
ρ
∇p+ ν∇2u + gαT (1.2)

and
∇ · u = 0 , (1.3)

where u is velocity, p is pressure, T is the temperature and ρ is density. We also
need a heat equation,

∂T

∂t
+ (u · ∇)T = κ∇2T . (1.4)

In the following, we also make the assumption of two-dimensionality. That is,
we take the fluid flow to be uniform along one of the horizontal directions, which
we call y. The other horizontal direction is x, while z points vertically upwards,
perpendicularly to the two bounding plates located at z = 0 and z = D. The
divergence-free condition in (1.3) can be automatically taken into account on
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defining a streamfunction: u = −∂ψ/∂z and w = ∂ψ/∂x. The pressure can then
be eliminated from the momentum equation to give the vorticity equation,

∇2ψt + [ψ,∇2ψ] = ν∇4ψ + gαTx , (1.5)

where [f, g] ≡ fxgz − fzgx is the two-dimensional Jacobian operator (and sub-
scripts indicate partial derivatives).

For boundary conditions, we follow the normal practice of adopting ψ =
∇2ψ = 0 on z = 0 and D, T = T1 on z = 0 and T = T2 on z = D. These
conditions imply there is no flow through the boundary vertical plates which are
stress free and held at the temperatures T1 and T2. In the state of no motion (ψ =
0), the temperature field has the conduction solution, T (z) = T1 +(T2−T1)z/D.

The equations derived above can be nondimensionalized to pave the way for
subsequent analysis. We choose

(x, z) = D(x̃, z̃) , t =
D2

κ
t̃ , ψ = κψ̃ , T = T1 +(T2−T1)

( z
D

+ θ
)
,

and then rewrite the equations in terms of the dimensionless variables:

1
σ
∇2ψt +

1
σ

[ψ,∇2ψ] = ∇4ψ +Rθx (1.6)

and
θt + [ψ, θ]− ψx = ∇2θ , (1.7)

where, as defined above, σ is the Prandtl number and R is the Rayleigh number,
and we have dropped the tilde decoration.

As a final preparation, we move to the large Prandtl number limit relevant
to convection in magma in the Earth’s interior. The terms on the left-hand side
of (1.6) can then be dropped leaving the simpler system,

∇4ψ = −Rθx and θt + [ψ, θ]− ψx = ∇2θ , (1.8)

that we explore next.

1.2.2 Convective Instability

To determine the linear stability of the basic, motionless state, we assume the
dependence, ψx, θ ∝ sin(nπz) eikx+λt, with n denoting the order of the vertical
“overtone,” k denoting the horizontal wavenumber, and drop all nonlinear terms.
Then, (1.8) reduce to:

(k2 + n2π2)2ψx = k2Rθ and (λ+ k2 + n2π2)θ = ψx , (1.9)

which imply that

λ =
k2R− (k2 + n2π2)3

(k2 + n2π2)2
. (1.10)
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Provided (k2 + n2π2)3 > k2R, small-amplitude perturbations decay, reflecting
how thermal conduction damps motion sufficiently to stabilize the fluid layer.
But when (k2 +n2π2)3 < k2R, buoyancy forces overcome the damping and there
is an unstable linear mode. Thus, there is a special Rayleigh number,

R = R0(k) =
(n2π2 + k2)3

k2 , (1.11)

beyond which convective rolls with wavenumber k and vertical order n will over-
turn. The critical Rayleigh number Rcrit is the minimum value of R0(k) over
all possible wavenumbers k and order n, and is the Rayleigh number at which
overturning first begins. Clearly, the most important vertical overtone is that
with n = 1. Then, if all horizontal wavenumbers are permitted (when the layer
is infinite), a simple calculation shows that

Rcrit =
27π4

4
, (1.12)

and the marginal wavenumber (that is, the wavenumber of the first roll to over-
turn) is k = kcrit = π/

√
2. The critical Rayleigh number can be different if the

values of the horizontal wavenumber are restricted (when the layer has finite
horizontal size). Different boundary conditions on the horizontal plates (such as
no-slip conditions) lead to different values of Rcrit and kcrit, but the overall ideas
are the same.

1.2.3 Weakly Nonlinear Convective Rolls

Consider now a finite fluid layer in which the first convective roll to overturn has
n = 1 and wavenumber k (so implicitly, we assume that the horizontal boundary
conditions are periodic). Just beyond the threshold of instability, R = R0(k),
there is a slightly unstable convective roll with wavenumber k. At these temper-
ature differences, the convective roll develops slowly because the instability is
weak. Moreover, in overturning, the roll convects heat and slightly depresses the
destabilizing temperature gradient. As a result, the overturning suppresses the
instability. That is, the convective instability saturates. We may mathematically
formulate this saturation process in terms of weakly nonlinear theory [7].

This theory is basically an asymptotic development of the problem which is
valid in a physical regime surrounding the stability threshold R = R0(k). We
introduce a small parameter ε to measure the range of this validity, and organize
the asymptotic expansion using ε:

ψ = εψ1 + ε2ψ2 + ... θ = εθ1 + ε2θ2 + ... T = ε2t R = R0 + ε2R2 .
(1.13)

The scaling of the amplitude of the convective roll ensures weakly nonlinear
motions. The rescaling of time reflects that the temporal development is slow.
The parameter, R2, can be taken to have either sign so that we may explore both
sides of the stability boundary (but is otherwise not necessary since ε estimates
the proximity to the stability boundary).
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We introduce the sequences into the governing equations, and gather together
all terms of order ε, then ε2 and so forth. Next we solve each set of equations
separately. At leading order (O(ε)), we find

∇4ψ1x +R0θ1xx = 0 and ψ1x +∇2θ1 = 0 . (1.14)

We solve these equations by choosing(
ψ1x

θ1

)
= [A(T )eikx + c.c.]

(
1

(k2 + π2)−1

)
sin z , (1.15)

where A(T ) is the amplitude of the neutrally stable mode which is not yet known,
and c.c. denotes complex conjugate.

At second order (O(ε2)), we have

∇4ψ2x +R0θ2xx = 0 and ψ2x +∇2θ2 =
2π

(k2 + π2)
|A|2 sin 2πz . (1.16)

We solve these equations by taking

ψ2 = 0 θ2 = − |A|2
2π(k2 + π2)

sin 2πz . (1.17)

Physically, this solution represents the modification to the mean temperature
gradient caused by the average effect of the convective rolls; this feedback is
crucial to the nonlinear saturation.

Finally, at third order, we obtain

∇4ψ3x +R0θ3xx = −R2θ1xx and ψ3x +∇2θ3 = θ1T + ψ1xθ2z . (1.18)

Or,

∇6θ3 −R0θ3xx = (k2 + π2)
(
AT −

k2R2A

(k2 + π2)2
+

1
2
|A|2A

)
eikx sinπz

− (k2 + 9π2)2

2(k2 + π2)
|A|2A sin 3πz + c.c. (1.19)

The various inhomogeneous terms in this equation indicate that there should
be a number of particular solutions for θ3. The inhomogeneous term with de-
pendence eikx sin 3πz (or its complex conjugate) generates a particular solution
with the same spatial structure and can be found straightforwardly; this term is
not especially important. However, the other inhomogeneous terms with depen-
dence e±ikx sinπz are problematic: we cannot find particular solutions with the
same spatial structure by simply substituting into the equation. In fact, standard
techniques for solving equations of this form would actually produce solutions
with dependences of, say, xeikx sinπz or zeikx sinπz, which violate the boundary
conditions. This problem arises, of course, because the difficult inhomogeneous
terms have the same structure as the original linear mode – that is, there is a
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“resonance” because these inhomogeneous terms have the form of homogeneous
solutions. To surmount the problem, our only option is to impose a condition on
the amplitude, A(T ), that ensures that the problematic inhomogeneous terms in
(1.19) all cancel. This “solvability condition” assures that we find a consistent
solution at this order of the asymptotic expansion, a procedure also called “tak-
ing the Fredholm Alternative.”1 When we adopt the procedure here, we find the
amplitude equation,

AT =
k2R2

(k2 + π2)2
A− 1

2
|A|2A . (1.20)

Equation (1.20) is known as a Landau equation. Here the equation has real
coefficients. This means that we can simplify the equation by setting A(T ) =
a(T )eiφ where φ is a constant phase, and write

aT =
k2R2

(k2 + π2)2
a− 1

2
a3 . (1.21)

This equation has fixed points, where aT = 0, given by a = a0 with

a0

[
k2R2

(k2 + π2)2
− 1

2
a2
0

]
= 0 . (1.22)

That is, a0 = 0, or

a0 = ±
√

2k2R2

(k2 + π2)
. (1.23)

The first solution, a0 = 0, represents the state of no motion. The other two fixed
points only exist provided R2 > 0; that is, if the system is linearly unstable.
In that circumstance, the solutions (1.23) represent states of finite-amplitude
convection. It is not difficult to solve (1.21) explicitly and show that the system,
if unstable, always converges to one of these finite-amplitude states (that is, they
are the two attractors of the system). The bifurcation that occurs as R2 passes
through zero is a “supercritical pitchfork” bifurcation, in which two new stable
equilibrium states appear by emerging from the original one, that itself becomes
unstable for R2 > 0. The two different finite-amplitude states correspond to rolls
with the two possible senses of rotation (clockwise and anti-clockwise).

At this point, a short detour into bifurcation theory is appropriate. A bifur-
cation is in general found at a critical value of one of the control parameters
of the system (in the above example, the Rayleigh number). At this critical
parameter value, new things happen and the system changes its qualitative be-
havior. For example, a new equilibrium appears, or disappears, or an equilibrium
point changes its stability. The bifurcation relevant to our convection problem
is illustrated in Fig. 1.4.
1 In general, to take the Fredholm alternative, we take an inner product of the equation

with the adjoint of the resonant homogeneous solution, which is not necessarily the
same as forcing the problematic inhomogeneous terms to cancel exactly. This signifies
that the general solvability condition contains a bunch of integrals involving the
various homogeneous solutions (the eigenmodes) and their adjoints.
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Rayleigh number

Convection

Conduction
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Convection
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Hopf bifurcation

Saddle-node bifurcation

Transcritical bifurcation

Fig. 1.4. (a) Bifurcation diagram for the onset of convection. At the critical Rayleigh
number, there is a pitchfork bifurcation in which two new solutions appear; these
are convective rolls with opposite senses of rotation. Panel (b) shows a sketch of the
saddle-node, transcritical and Hopf bifurcations – some of the other commonly encoun-
tered bifurcations. Solid lines show stable solutions; unstable equilibria are indicated
by dashed lines

The pitchfork is one of the more common bifurcations we encounter, and it
is called supercritical when the two new states are stable. The other possibility –
that the new equilibria are unstable – is called a subcritical pitchfork, and arises
when the nonlinear term in the Landau equation has the opposite sign. The
subcritical case harbours many problems for weakly nonlinear theory because
the equation in that case has no bounded solutions – the amplitude of an unsta-
ble mode simply grows without saturation. Worse still, if the mode is stable (so
we are below the threshold of instability), a big enough kick sends the system
again onto a diverging solution. In other words, the stable system is unstable
to finite-amplitude perturbations even when the equilibrium point is linearly
stable. Of course, this is a feature of the asymptotic amplitude equation, and
not necessarily the behaviour of the original equations. In fact, one would hope
fervently that it is not, and solutions to the governing equations remain bounded
and physically plausible. The lesson is that in the subcritical case, there is some
physics missing from the weakly nonlinear theory, namely a saturation mecha-
nism that limits the mode amplitude at a level beyond the scale accounted for
in the asymptotic scheme. In other words, the transition in system behaviour is
harder than expected. Fortunately, for the convection problem considered here,
the bifurcation is supercritical and all is well.

Other standard bifurcations are the saddle-node, transcritical and Hopf bi-
furcations (Fig. 1.4). In the first, a stable equilbrium collides with an unstable
equilibrium, and both disappear; what happens beyond is determined by what
other attractors exist in the system. For the transcritical bifurcation, two equi-
libria cross and exchange stability. In the Hopf bifurcation, a stable equilibrium
becomes unstable because an oscillating solution – a limit cycle – is born. In this
type of bifurcation, the system changes its longterm behavior from a stationary
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state to oscillations (there is some historical precedence for calling this kind of
transition the onset of “overstability,” see e.g. [1]). Hopf bifurcations can again
be supercritical or subcritical (leading to saturated, low-amplitude oscillations,
or to an oscillatory growth out of the asymptotic regime).

There are many other types of bifurcations. Here we just note that all this
talk about bifurcations and criticality comes from dynamical systems theory,
which one could regard as the theory creating the necessary tools to uncover
and categorize the underlying mathematical description of emerging patterns.
The Landau equation is by far the most commonly encountered descriptor of
this kind, and has come up in many different contexts such as for bar formation
in rivers – see [8]. This reflects the universality of this equation and the partic-
ular type of transition to instability associated with it, namely a supercritical
pitchfork bifurcation. Thus, one should not be surprised by the appearance of
the Landau equation in the study of many types of weakly nonlinear patterns.

1.2.4 Extended Systems

To return to convection, the theory we have just described applies only to simple,
periodic roll solutions, and so we are unable to describe any richer dynamics,
such as the competing patterns shown in Figs. 1.1–1.3. These require the third
spatial dimension, which allows more unstable linear modes. When we add these
extra modes to the weakly nonlinear analysis, we get more amplitude equations
and the idea (hope) is that there are various different kinds of fixed points that
correspond to rolls, hexagons or squares, and the evolution in phase space of
the amplitude equations allows us to decide which are preferred. Much work has
been done in this direction for Rayleigh–Bénard convection, and many of the
details and dynamics of convective patterns have been understood in this way.

Another limitation of the theory presented above is that we assumed the
fluid layer to be periodic. What happens when all wavenumbers are allowed?
In this case, there can be effects of spatial propagation, which allows travelling,
nonlinear structures to form (as in the invading rolls shown in Fig. 1.1 – more
generally, there can be solitary waves, shocks, fronts, pulses and so on). These
objects are one of the most interesting and commonly encountered entities in
extended nonlinear systems, and so we spend some time exploring how one fits
these into a weakly nonlinear description.

To allow the solution to develop horizontally we must look for an amplitude
equation that describes both a temporal growth and a spatial variation. But we
cannot allow the original kind of spatial variations in x, since then we would
be unable to simplify the governing equations. The way forward is to recognise
that, near the onset of convection, rolls develop both on long timescales and also
on large lengthscales. Consider again the growth rate λ for an infinite layer:

λ =
k2[R−R0(k)]

(k2 + π2)2
→ 2

9π2

[
R− 27π4

4
− 36π2

(
k − π√

2

)2
]
, (1.24)

near onset and the critical wavenumber (onset occurs at R = 27π4/4 and k =
π/
√

2 with n = 1). The origin of the scaling of the long timescale T is evident
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from this relation: we require λ ∝ (R − R0) = ε2R2, and so λt ∝ ε2t = T . On
allowing for spatial variations, we see there is also a wavenumber dependence
near criticality. Evidently, to preserve the asymptotic scalings, we should set
(k − π/

√
2) = εK, a small wavenumber corresponding to a long lengthscale,

X = εx. We modify the asymptotic scheme accordingly:

ψ = εψ1 + ... θ = εθ1 + ... R = R0 + ε2R2 ∂t → ε2∂T ∂x → ∂x + ε∂X .
(1.25)

Note that we must still allow for the order unity spatial dependence (the original
x) because we still need to capture the shape of the rolls. This is now the scheme
of Newell and Whitehead [9] and Segel [10] for weakly nonlinear, finite band-
width convection.

We now proceed as before; we omit the details except for the important
differences. At leading order we find the linear mode solution, with unknown
amplitude A. This time we take this amplitude to have both slow time and long
space dependence: A = A(X,T ). No changes arise at second order, but there
are some new inhomogeneous terms in the equations at order ε3. To eliminate
the problematic terms (take the Fredholm alternative; enforce a solvability con-
dition), we set

AT =
2R2

9π2 A−
1
2
|A|2A+ 8AXX . (1.26)

This amplitude equation is commonly called the the Ginzburg–Landau equation.
In the problem at hand, the coefficients of the equation are all real (giving the
“real GL” equation – an equation that has been extensively studied in problems
of phase separation in condensed matter physics). For other systems (such as
thermohaline convection [11], or bar instability in river flow [12]) the coefficients
can be complex, in which case the system is refered to as the “complex GL”
equation.

For the real GL equation, only the amplitude of A matters, and after suitable
rescalings (|A| = a(2/3π)

√
R2, X → 6πX/

√
R2 and T → (9π2/2R2)T , assuming

R2 is positive) we then have

aT = a− a3 + aXX . (1.27)

The equation has the spatially homogeneous solutions, a = 0 and a = ±1. The
equilibrium a = 0 is unstable, but the finite amplitude states are stable. One
of the most distinctive features of the real Ginzburg–Landau equation is how
its solutions develop from low-amplitude initial conditions near the unstable
homogeneous phase. One such example is shown in Fig. 1.5.

Initially, the system diverges exponentially quickly from the low-amplitude
initial condition because of the linear instability. In other words, the system tries
to form rolls everywhere. However, a problem soon appears in this headlong rush
to the steady state: depending on the precise details of the initial condition, the
system attempts to form rolls that rotate one way in some places, and rolls with
the opposite sense of rotation elsewhere. The regions of different rolls then jam
up against one another and sharp gradients develop in the amplitude a(X,T ) in
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Fig. 1.6. Heteroclinic orbits of the oscillator equation (1.27). Panel (a) shows the
orbits as phase portaits on the (a, aX)−plane. Panel (b) shows the structure of the
stationary front (c = 0), and a travelling front (c = 50). In both cases, the dotted lines
show the actual structure of the reconstructed temperature field

the oscillator in (1.28), which are also the homogeneous states. This is why the
front solutions correspond to separatrices or heteroclinic orbits.

The fronts of (1.29) are not the only types of localized solutions to the real
Ginzburg–Landau equation. In fact, there is an entire family of moving fronts
for which a = a(X − cT ), where c is a travelling wave speed. These fronts are
solutions to the damped oscillator equation,

aξξ + caξ + a(1− a2) = 0 , (1.30)

where ξ = X − cT is a travelling-wave coordinate. The fronts connect the stable
homogeneous phases, a = ±1 to the unstable phase a = 0, as shown in Fig.
1.6, and describe the rapid evaporation of the unstable phase through the prop-
agation of fronts into it. In the convective problem, these fronts describe the
invasion of convection cells into motionless conducting regions.

For arbitrary complex coefficients, the Ginzburg–Landau system can generate
chaotic solutions, which has attracted many researchers to explore the equation
as an analogue model for turbulence. However, the equation is one-dimensional
and not quantitatively similar to real turbulence, so it is largely a metaphor.
Actually, even this metaphor is pretty complicated and difficult to understand,
which epitomizes how we fall severely short of developing a true analogue model
for turbulent systems.

Another important limit of the complex Ginzburg–Landau equation is when
the coefficients are purely imaginary. In this case, the equation reduces to the
cubic Schrödinger equation:

iAT = AXX + 2|A|2A . (1.31)
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This equation has the solitary-wave solution,

A = ike−i(Φ−Φ0)sechk(X − V T ) , (1.32)

where

Φ =
1
2
V X −

(
1
4
V 2 − k2

)
T , (1.33)

and k, V and Φ0 are constants. One such solution is shown in Fig. 1.7; it describes
a localized packet or pulse of travelling waves. As a phase portrait on the (A,AX)
plane, this is a “homoclinic” orbit connecting the state A = 0 to itself (see panel
(b)).
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Fig. 1.7. Soliton structure in the cubic Shrödinger equation. Panel (a) shows the soliton
shape; the dotted lines show the wave packet of travelling convective rolls that the
soliton approximates. In panel (b) we use the transformation A = ka(ξ) exp(−iΦ),
with ξ = X − V T , to write an oscillator equation for a, aξξ = k2a(1 − a2), and then
draw the soliton solution on the phase plane (the homoclinic orbit connecting a = 0 to
itself)

The cubic Schrödinger equation is an example of an integrable system and
its solutions can be studied using inverse scattering techniques [13]. In fact, the
solution in (1.32) is a soliton. The Inverse Scattering Transform is unusually
powerful in that it allows us to generate multiple solitary-wave equilibria and
consider soliton dynamics within the framework of an exact theory. In most
situations we are not this fortunate, but these integrable systems offer us a
glimpse of some of the properties of nonlinear systems.

1.3 Asymptotics, Galerkin Approximation
and Conceptual Models

The weakly nonlinear amplitude expansion derives an equation for the behaviour
of the fluid just beyond the bifurcation to instability. The applicability of the
theory is limited to the narrow region surrounding the stability boundary, which



1 The Language of Pattern and Form 19

also means that the dynamics captured by the amplitude equation is very re-
stricted. Importantly, the Landau and Ginzburg–Landau equations describe the
onset of steady convective rolls, and nothing more. To try to capture the richer
dynamics of the fluid we must go beyond the weakly nonlinear description de-
scribed above, but how may we do this? One option is the Galerkin procedure,
which we now sketch out. The procedure is far less mathematically rigorous than
the weakly nonlinear theory, so we will be correspondingly more woolly.

The key effect uncovered by the weakly nonlinear theory is the suppression
of the background temperature gradient created by the convective heat flux
associated with an overturning roll. We can build a theory including both the
linear mode and the suppression of the mean temperature gradient by assuming
that

ψ =
2Rk2a(t)
(k2 + π2)3

sinπz cos kx (1.34)

and

θ =
2a(t)
k2 + π2 sinπz cos kx+

b(t)
2π(k2 + π2)

sin 2πz , (1.35)

where a(t) and b(t) are unknown (real) amplitudes to be determined. The precise
form of this ansatz is guided by the theory above. The ansatz is, of course, not
a solution to the equations. For example, it is easy to see that the nonlinear
terms in the equations, if the solution is given by this form, create terms with
dependences of cos kx sin 3πz, which will never cancel exactly to zero. Instead,
we must assume that these terms are always small and can be neglected (one
can mathematically formulate these statement a little better, and this is what
“Galerkin projection” is all about). Proceeding in this way – by introducing the
ansatz (1.35) into the governing equations and dropping “unnecessary” terms –
we derive the system:

ȧ = λa+
Rk2

2(k2 + π2)3
ab and ḃ = −4π2b− 2Rk2

(k2 + π2)3
a2 , (1.36)

where λ is given by (1.10).
This is a truncated model system that captures the physics we put into it via

the ansatz. It is truncated because we dropped lots of nonlinear terms without
any real justification. However, there are some pleasing virtues in the reduced
model. First, if we drop the nonlinear terms, we find ȧ = λa and ḃ = −4π2b. The
first of these is our old friend, the linear mode. The other is another linear mode,
this time a decaying thermal diffusion mode (it is a second vertical overtone with
n = 2 and zero horizontal wavenumber). In other words, we recover aspects of
the linear problem.

Second, consider the case relevant to the weakly nonlinear problem: Rk2 ≈
(k2 + π2)3 or λ small. In this instance, we expect the system to evolve slowly.
However, the diffusion mode is strongly damped (the damping rate, 4π2, is order
one and therefore relatively large). Thus we anticipate that this mode rushes to



20 N.J. Balmforth, A. Provenzale, and J.A. Whitehead

a local equilibrium in which ḃ ≈ 0, or

4π2b ≈ 2Rk2

(k2 + π2)3
a2 . (1.37)

If we substitute this approximation into the equation for a, and approximate R,
we recover the weakly nonlinear theory.

We illustrate the evolution of the truncated system in Fig. 1.8. As one might
have expected, when unstable, the system always evolves to a state of steady
convection from an arbitrary initial condition. Moreover, when λ is small, the
evolution proceeds through two distinct steps. First there is a relaxation of the
thermal mode onto the rough equilibrium (1.37), and then a more gradual growth
and saturation of the unstable mode. The curve denoting the rough equilibrium
is a “slow manifold” for the reduced system, since when it gets there, evolu-
tion proceeds relatively slowly. The dynamics that is captured by the model is
therefore little different from the Landau description obtained earlier. However,
we can add more variables and structure into the Galerkin ansatz to enrich the
dynamics, as is often done to arrive at the celebrated Lorenz equations with
chaotic solutions.
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Fig. 1.8. Sample phase portrait of the Galerkin truncation. The dotted lines show a
set of trajectories of the system; the solid curve shows the slow manifold along which
b is slaved to a, so b = b(a). The circles show the stable equilibria

The relaxation to the local equilibrium in Fig. 1.8 illustrates nicely why
weakly nonlinear theory works. This theory filters out the fast relaxation and
leaves only the more gradual modal growth. In fact, it filters all the other stable
linear modes, not just our thermal mode b(t). The resulting amplitude equation is
essentially a projection onto the slower manifold. In the language of dynamical
systems theory, this geometrical structure is the “centre manifold,” and the
procedure of weakly nonlinear theory is called “centre-manifold reduction,” when
the mathematics is made formal and rigorous.

The more adaptable Galerkin procedure has no rigorous foundation in dy-
namical systems theory. It is based more on physical arguments of plausibility.
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One must assume that the solution takes a certain form. The power in the proce-
dure is in the simpler reduced model that it furnishes, but one should always be
cautious about its accuracy since the approximations involved in the Galerkin
projection are uncontrolled. Although these statements seem rather out of place
in this book on geomorpholgical fluid mechanics, we make them because they are
actually very relevant. The reason is that, as we shall see in many of the upcom-
ing chapters, when we seek to model mathematically the phenomena of interest,
approximations are necessary because the governing equations are usually too
hard to solve. Sometimes, as with the lubrication theory used for slowly flowing
lava and glaciers, the approximation amounts to an asymptotic expansion, in
which case, the errors are known. On other occasions, as in the depth-averaged
models used for relatively fast debris and mud flows, one assumes a certain struc-
ture for the flow, and this is essentially a Galerkin projection that attempts to
extend the lubrication analysis (as we used it here to extend the weakly nonlinear
theory).

Unfortunately, on occasions, even Galerkin is not enough to allow us access to
the physical regime that might be of interest. That is, there may be no plausible
approximations evident, or maybe the number of approximations needed gets
far out of hand. Instead, another kind of modelling is needed. Perhaps this
is full-scale numerical simulation. But this approach is always restricted by the
power of computations. Indeed, current technology precludes us from taking this
approach too far without entering into situations in which we do not fully resolve
the solutions and cannot make parameterical studies to gauge their robustness.
Nevertheless, this approach is popular, and has been very successful in furthering
our understanding of turbulent and geophysical fluids.

There is, however, another direction that we can also exploit. This direction
avoids the governing equations and big computers altogether. The idea is that
there is a process or phenomenon that is of interest, and we need to determine
whether a particular physical effect is capable of explaining it. Then, to test out
the hypotheses, we write down a “conceptual” or “phenomenological” model.
In other words, we throw away asymptotic arguments and attempt to write a
mathematical metaphor of the physical process. The idea is somewhat similar
to Galerkin projection, although Galerkin usually proceeds from the governing
equations by making uncontrolled approximations. The reduced phenomenologi-
cal or conceptual models can have different degrees of sophistication and contain
as much physics as one tries to incorporate. Moreover, the models themselves
need not even be theoretical – analogue experimental models can serve equally
well if not better. In future chapters, the reader should recognize many of these
conceptual models. Below we give examples relevant to convection in the earth’s
mantle and to aeolian sand ripples.

1.4 Solitary Waves in Conduits

In this section, we show an example of how solitary wave solutions can naturally
emerge in the dynamics of geophysical systems. We mentioned earlier how, in
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a popular image, convection in the Earth’s mantle produces rising plumes. The
plumes rise upwards and drain fluid from below. They leave behind them a
trailing conduit which, under favourable circumstances, can remain open and
continue to drain fluid. This conduit is roughly a uniform cylinder. If the source
of the upcoming fluid is not steady, a disturbance in the source flux travels up
the conduit as a nonlinear travelling structure or structures. In particular, a
source with sporadic fluctuations can produce solitary waves [14,15].

Given that the conduits themselves are supposed to form from a vigorous
convective instability, and pierce a complicated background flow, it is impossi-
ble to proceed from the governing equations in the reductive fashion outlined
above in order to construct a model for these objects. How can we proceed in a
situation like this? We outline two complementary approaches, which illustrate
this modelling style.

First, it is not necessary to proceed purely theoretically – experiments can
also provide analogue models of the phenomenon of interest. In fact, using soluble
fluids (to eliminate surface tension) with different properties one can quite easily
create distinct conduits of up-going fluid. One way to do this is to use fluids with
different density, in which case if we confine the light fluid beneath the heavier
one, the lower fluid will rise upward, buoyantly displacing the heavier fluid (see,
for example, the chapters on mantle convection). With a suitable experimental
set up, this Rayleigh–Taylor instability can be engineered to create a single
upward plume with a trailing conduit. Moreover, by injecting fresh light fluid
at the bottom we can vary the source flux in a controlled way. Fig. 1.9 shows
photographs of isolated disturbances propagating up a conduit produced in this
fashion using a mixture of syrup and water as a light fluid, and pure syrup as
the heavy fluid.

The disturbances generated in this way appear to have almost permanent
form, meaning they preserve their identity as they traverse the conduit. In other
words, they are close approximations of solitary waves. Even more surprising is
that multiple solitary waves can interact in a fashion very reminiscent of the
dynamics of solitons [16,17]. This is what is illustrated in the right-hand panels
of Fig. 1.9 – two structures approach one another, collide, and then separate
with only a slight change in form (injected die serves to highlight the initially
lower solitary wave, and then to reveal the mass exchange between the objects).

The second approach is the theoretical one. Here, however, instead of at-
tempting to derive a reduced model from the governing equations, we opt for
writing the model down from phenomenological or plausibility arguments alone.
For the conduit problem, we aim to describe propagating structures, so we need
a fair degree of sophistication (however, we also throw far more away). Let z
denote a height variable in what we pretend is a conduit of slowly moving, im-
miscible fluid; we need a partial differential equation in z and time, t. The main
physical variables will be the cross-sectional area of the conduit, A(z, t), and the
local mass flux, Q(z, t).
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(a) (b)

Fig. 1.9. (a) Sequential photographs (with equal time intervals) of a solitary wave with
a small amount of dye. The circulation of dyed fluid in closed streamlines is illustrated.
The conduit and most of the wave contains clear fluid which is scarcely distinguishable.
The camera was traveling upward with the waves to take these photographs. (b) A
solitary wave containing dyed fluid overtakes a small wave without fluid that is initially
invisible. Dyed material is injected into the leading wave which then becomes larger
and leaves the depleted wave behind

Now, for an incompressible immiscible fluid in the conduit, mass must con-
served, and so

∂A

∂t
+
∂Q

∂z
= 0 . (1.38)

If we assume that the mass flux changes due to pressure variations, P (z, t),
which are compensated by viscous forces within the conduit, then we can write
an equation of the form,

Q = − A2

8πμi

∂P

∂z
, (1.39)

where μi is the dynamic viscosity of the conduit fluid. This form assumes that
the fluid moves up the conduit with a vertical velocity profile that is parabolic in
the radial coordinate. Finally, the pressure variation is assumed to be caused by
buoyancy and temporal changes in cross-sectional area, which induce flow and
therefore pressure variations outside the conduit:

P = −(ρe − ρi)gz +
μe

A

∂A

∂t
, (1.40)

where μe is the dynamic viscosity of the external fluid.
Now we nondimensionalize:

Ã = A/Ao z̃ = z/L Q̃ = Q/Qo t̃ = t/T , (1.41)
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where

L =
(
μeAo

8πμi

)1/2

and T =
1

g(ρe − ρi)

(
8πμiμe

Ao

)1/2

. (1.42)

The dimensionless equations are then,

∂A

∂t
+
∂Q

∂z
= 0 (1.43)

Q = A2
[
1 +

∂

∂z

(
1
A

∂Q

∂z

)]
, (1.44)

where, in our by-now standard abuse of notations, we have dropped the tilde.
In the limit of small-wave amplitude (|A| 	 1), one can reduce these equations
to the Korteweg–de-Vries equation [18] (another soliton equation).

Travelling-wave solutions to the above equations are given by

dA
dξ

= ± A

c1/2 [1 + c− 2cA−1 − 2 lnA− (1− c)A−2]1/2 , (1.45)

where A = A(ξ) and ξ = z − ct, which can be reduced to quadrature. The
equation has a fixed point A = 1, corresponding to the undisturbed conduit,
and so there can be families of solitary wave solutions with different speeds, c,
that approach A = 1 as ξ → ±∞. There is a second fixed point at A = Am and
dA/dξ = 0, which corresponds to the peak of the solitary wave, and provides a
relation between wave speed and maximal conduit area:

c = (2A2
m lnAm −A2

m + 1)/(Am − 1)2 . (1.46)

As shown in Fig. 1.10, the two branches of (1.45) define two curves on the
(A,dA/dξ) plane; provided c > 2, we can construct the solitary wave by joining
together the segments of these two curves that connect the two fixed points at
A = 1 and A = Am. For low amplitude waves, Am → 1, c→ 2, which is the phase
speed of long linear waves. In the other, large-amplitude limit, Am � 1, and it
can be shown that the solitary wave shape is the Gaussian, A ≈ exp(−ξ2/2c)
[17].

Given our initial assumptions, we can write the dimensionless velocity profile
in the conduit in the form,

u = 2A
(

1− r
2

A

)[
1 +

∂

∂z

(
1
A

∂Q

∂z

)]
(1.47)

for 0 ≤ r ≤ A1/2, where r is the radial coordinate. This is the parabolic vertical
velocity profile, and simplifes further,

u =
2
A

(
1− r

2

A

)
(cA+ 1− c) , (1.48)
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Fig. 1.10. The solitary wave on the (A, dA/dξ) plane and plotted against ξ = x − ct
for c = 5

giving the maximal speed,

um = 2A−1
m (cAm + 1− c) . (1.49)

It is readily seen that um/c > 1 for all Am > 1, i.e. fluid in the wave moves faster
than the wave itself. In contrast, ahead and behind the wave, A = 1 and u = 2,
which is less than um. Thus the solitary waves must contain trapped, recircu-
lating fluid. This is precisely what the injected die reveals in Fig. 1.9. Further
comparisons between the model and experiments can be found in [16,17].

1.5 Blown by Wind

Convection is a splendid example both for the patterns that it creates, and the
ease by which we can go through the linear stability theory and weakly non-
linear development of the governing equations (the Navier–Stokes equations in
Boussinesq approximation). Few other systems are this submissive. In fact, the
governing equations for many fluids relevant to geomorphology and geology are
either intractable or unknown, as we shall see in chapters to follow. Most no-
table for their difficulty are the equations for granular media. Thus, now that we
finally arrive at the problem of sand ripples, we do not even have a solid founda-
tion on which to build our study. Instead, we must base the whole exploration
on a phenomenological model. Whilst this is less appealing than beginning from
accepted governing equations, provided the model is well-posed, we can continue
as before and use the mathematical tools of stability and weakly nonlinear the-
ory we have already developed to explore the problem. An illustration of this
philosophy is one of our goals in this section.

Aeolian ripples are commonly found in sand deserts, often atop dunes, and on
sandy beaches. An example of the patterns formed by these structures is shown
in Fig. 1.11. The physical mechanism responsible for the formation of ripples
is thought to be the action of the wind on loose sand. A classic reference to
ripples and dunes is the book “The Physics of Blown Sand and Desert Dunes”
by R.A. Bagnold [19]. This book describes in detail the process of sand saltation
(the hopping of grains above the sand surface) that is responsible for ripple
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formation, and it represents one of the starting points of the modern theory of
granular media.

Fig. 1.11. A photograph of desert sand ripples

1.5.1 Saltation and Reptation

The essential idea is that when the wind strength is above some threshold, grains
are displaced by the direct action of the wind, and are lifted into the air (in a
process analogous to the lifting of sediment grains under water, that is described
in some detail in the fourth part of this volume). Even for strong winds, however,
sand grains are too heavy to stay suspended and return to the ground (unlike
what happens for sand in water). During their flight, the grains reach a velocity
that is approximately that of the wind, and upon their impact with the surface,
they impart their energy and momentum to the sand, and eject other grains. For
sufficiently large wind velocities, the bombardment by sand grains accelerated
by the wind generates a cascade process, and an entire population of saltating
grains hopping on the sand surface emerges. During strong winds, this layer of
saltating grains can reach a thickness of more than a meter.

Experimental results [20,21,22] indicate that the cascading bombardment
process generates a bimodal population of moving grains: One part of the popu-
lation is formed by grains that are ejected with large energy; these reach higher
elevations and are directly accelerated by the wind. These high-energy grains
bombard the surface elsewhere and maintain the cascade process. The second
population consists of grains that are ejected with low energy, and stay close to
the sand surface. These “crawling” grains compose what is called the “reptating”
population.

Following Anderson [23], we build a heuristic model of the sand transport
process based on the conservation law,

(1− λp)ρp
∂ζ

∂t
= −∂Q

∂x
(1.50)

where ζ(x, t) is the height of the sand surface, ρp is the density of a sand grain,
λp is the porosity of the bed (typically, λp ≈ 0.35), and Q(x, t) is the sand flux.
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Equation (1.50) is known, in fluvial geomorphology, as the Exner equation, and
it is discussed further in the fourth part of this volume.

The flux, Q, is the sum of the flux of saltating grains, Qs, and the flux
of reptating grains, Qr. Saltating grains are accelerated by the wind to speeds
close to the windspeed, and follow a ballistic path to their next impact with
the ground. If their arced trajectory is a long one, it seems plausible that the
angle at which the grains descend back to the bed is dictated largely by the wind
speed, and that the flux of saltating grains is fairly uniform. Hence we assume
that Qs is approximately independent of x, and we do not consider it further
in the Exner equation (though we should remember that Qs is the driving force
of the reptation flux). If reptating grains undergo a small jump of length ā, the
flux Qr(x, t) at point x is proportional to the number of reptating grains that
have been ejected between the point x− ā and the point x:

Qr(x, t) = mp

∫ x

x−ā

Nej(x′, t)dx′ (1.51)

where Nej(x, t) is the number density of reptating grains ejected per unit area
of bed and unit time, and mp is the mass of each grain.

Now, the number density Nej of ejected reptating grains must be given by
the number density of impacting saltating grains, Nim. As a simple model, we
assume that Nej = nrNim where nr is the average number of reptating particles
ejected by a single impact of a saltating grain. Finally, because the saltating flux
is constant, and characterized by the fixed angle φ at which the grains descend
back to the ground, the number density of impacting grains changes only because
of variations in the slope of the bed. Based on geometrical considerations, we
obtain [19,23]:

Nim = N0
im

[
1 +

tan θ
tanφ

]
cos θ = N0

im

1 + ζx cotφ√
1 + ζ2x

, (1.52)

where N0
im is the number density of impacting grains on an horizontal surface

and θ is the inclination of the bed (θ > 0 when the bed dips upwind). Provided
this slope is small, we can expand the above expression and obtain

Nim(x) ≈ N0
im [1 + ζx cotφ] . (1.53)

By inserting this expression in (1.50), we obtain

∂ζ

∂t
= −β ∂

∂x
[ζ(x)− ζ(x− ā)] , (1.54)

where β = mpnrN
0
im cotφ/[ρp(1− λp)].

Equation (1.54) is our phenomenological equation that we hope governs ripple
formation. Indeed, there is a linear instability in the model that we uncover by
the usual procedures: Let ζ ∝ exp[ik(x − ct)]. By inserting this solution into
(1.54), we obtain the dispersion relation,

c = β [1− exp(−ikā)] . (1.55)
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Thus there is an instability with growth rate, σ = kIm(c) = βk sin(kā). The
ripples move downwind with the phase speed Re(c) = β[1 − cos(kā)]. The first
peak in the ripple’s growth rate, at kā = π/2, corresponds to ripples with wave-
length λ = 4ā, which coincides with that expected from qualitative arguments
[23]. Note that the origin of this instability resides in the non-locality of the flux
of transported grains (i.e. the presence of a space integral in the expression for
the sediment flux Qr – the instability disappears for ā = 0). A similar situation
is encountered when dealing with simplified models of fluvial ripples and dunes,
as discussed in the fourth part of this book.

Evidently the simple model has the serious drawback that the growth rate
diverges for k → ∞, indicating that it is not well-posed. Partly responsible is
the hypothesis that the reptation length is constant. Anderson showed that the
unpleasant behavior can be cured by making the hypothesis that the reptation
length is not a fixed number, but it is a random variable, a, sampled from values
α, −∞ < α < ∞, using a probability distribution p(α). The spatially varying
part of the reptation flux then becomes

Qr(x, t) = mpnr

∫ ∞

−∞
[Nim(x)−Nim(x− α)]p(α)dα . (1.56)

The simpler, ill-posed model is recovered with the choice p(α) = δ(ā − α). On
linearization, one then finds the dispersion relation,

c = β [1− p̂(k)] , (1.57)

where p̂(k) is the Fourier transform of p(α). Provided that p̂(k) decreases at
large wavenumber, the growth rate remains finite for k � 1. For example, if

p(α) =
{
αλ2e−λα α ≥ 0

0 α < 0 , (1.58)

where λ is a parameter, we find

c =
βk2

λ2 + k2 +
2ikβλ3

(λ2 + k2)2
. (1.59)

This predicts that the growth rate vanishes for k →∞, although all wavenumbers
remain unstable.

An alternative regularization comes from the observation that the flux of
reptating particles depends on the local bed slope [24]: Reptating particles have
a harder time in climbing up a positive slope than in rolling down an incline.
This can be accounted for by writing

Qr(x, t) = mpnr

∫ ∞

−∞
[Nim(x)−Nim(x− α)]p(α)dα− μ0ζx , (1.60)

where μ0 is a parameter weighting the sensitivity of the flux to the bed slope.
The stability analysis now results in

c = β [1− p̂(k)]− iμk , (1.61)
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where μ = μ0/[ρp(1− λp)]. For example,

cr =
{
β(1− cos kā)
βk2/(λ2 + k2) σ =

{
βk sin kā− μk2

2βk2λ3/(λ2 + k2)2 − μk2 , (1.62)

for the two models considered above. The slope-dependence of the flux therefore
stabilizes short-wavelength perturbations. Moreover, it is clear that the destabi-
lizing cascade (as measured by β) must now overcome the stabilizing influence
of slope-induced reptation (estimated by μ) in order to form ripples. In other
words, by varying the relative strength of these two effects, we can control the
instability and tune the system to be near a marginally stable state. That state
is given by βā = μ for both models (given that ā =

∫
αp(α)dα = 2/λ for the

second model), at which point long waves with k 	 1 are on the brink of insta-
bility. This sets the stage for further analysis of the problem, and so (1.60) is a
convenient point of departure for our theory of sand ripples.

1.5.2 A Minimal Model

Given the formulation of a well-posed model, we now nondimensionalize to
streamline the formulae, eliminate distracting constants and isolate the impor-
tant parameters of the problem. We introduce the non-dimensional variables,

x̃ = x/ā , α̃ = α/ā , ζ̃ = ζ/ā , t̃ = βt/ā , p̃(α̃) = āp(α) , (1.63)

where ā is the average reptation length, and we obtain the nondimensional evo-
lution equation

∂ζ

∂t
=
∫ ∞

−∞
[F(x− α)−F(x)]p(α)dα+ κζxx (1.64)

where we have again dropped the tilde decoration,

F(x) =
tanφ+ ζx√

1 + ζ2x
, (1.65)

and κ = μ/(βā).
This equation is still quite complicated, but reduces further near the onset

of instability. To achieve this reduction, we exploit the long-wave character of
the instability near onset: We set ζ(x, t) = εζ(X, t), where X = εx or ∂x = ε∂X .
In this case,

F(x−α) → F(X−εα) ≈ F(X)−εαFX(X)+
ε2α2

2
FXX(X)−ε

3α3

6
FXXX(X)+... ,

(1.66)
and so we may write

ζt = −ε
[
1− 1

2
εa2∂X +

1
6
ε2a3∂2

X

]
FX + κε2ζXX +O(ε4) (1.67)
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where ap =
∫
αpp(α)dα. Moreover,

F(x) ≈ εζX −
1
2
ε2ζ2X tanφ− 1

2
ε3ζ3X +O(ε4) . (1.68)

Thence,

ζt = −ε2(1− κ)ζXX +
1
2
ε3a2ζXXX −

1
6
ε4a3ζXXXX +

1
2
ε3 tanφ(ζ2X)X

+
1
2
ε4(ζ3X)X −

1
4
ε4a2 tanφ(ζ2X)XX +O(ε5) . (1.69)

Finally, by introducing u = ζX and some rescaling we arrive at the approxima-
tion,

ut = −uξξ + γuξξξ − uξξξξ + δ(u2)ξξ + (u3)ξξ −�(u2)ξξξ , (1.70)

where ξ is the rescaled spatial coordinate and γ, δ and � are parameters.
The linear instability is present in (1.70) through the diffusion term which

has a negative sign. Thus the ripple instability can be rationalized in terms of
negative diffusion. It should be noted that the model (1.70) is not strictly an
asymptotic one, since we mix orders, but we do at least have an idea of the size of
the neglected terms. Also, if we ignore the dispersive terms, and set γ = � = 0,
we arrive at a version of the so-called Cahn–Hilliard model – another canonical
equation that describes many long-wave instabilities. Like the real Ginzburg–
Landau equation, the Cahn–Hilliard equation has a Lyapunov functional and
describes the formation and coarsening of front patterns. However, the dispersive
terms of (1.70) remove the Lyapunov functional, and so one cannot anticipate
a coarsening dynamics for the ripple model without solving the equation. In
fact, over a fairly wide parameter range, the forming patterns do coarsen, as
illustrated in Fig. 1.12, which shows a numerical solution of the equation. The
dispersive terms also introduce a strong drift in the solution.

It is no accident that the minimal model in (1.70) has the form of a generalized
Cahn–Hilliard equation. The long-wave analysis naturally reduces the original
equations to this form; the various terms are the lowest orders of the power
series expansion in ε. A key difference is that the Cahn–Hilliard model has the
additional symmetry x→ −x, which removes the two dispersive terms in (1.70).
Nevertheless, the symmetries of the original governing equations are responsible
for the appearance of each kind of term in (1.70) and the absence of some
other kinds (such as a linear term, uξ, or nonlinear terms without derivatives
like u2 – these are forbidden by the original symmetries). Any set of governing
equations with the same symmetries should lead to the model (1.70) on long-
wave expansion. Thus provided we have the right symmetries, (1.70) is actually
a far better model than we might originally appreciate – although the current
derivation is based on what we admit is a flawed metaphor for sand dynamics,
the long-wave expansion of better governing equations would produce the same
model. Indeed, a different approach altogether would have been to write down
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Fig. 1.12. A numerical solution of the minimal model (1.70), for γ = 1, δ = 3 and
� = 1/2. The domain is periodic with size 25π. Panel (a) shows u(ξ, t) as a density on
the (ξ, t) plane, and panel (b) shows the corresponding solution for ζ, defined by u = ζξ,
as a progression of snapshots. The code for this computation was kindly provided by
Yuan-Nan Young (Northwestern University)

the symmetries of the original system, argue for a long-wave instability, and
simply write down (1.70). Symmetry arguments of this kind, because they can
be used to avoid a complicated asymptotic expansion, are popular in nonlinear
dynamics.

Given these arguments, it is perhaps not so surprising that the model (1.70)
is also similar to some other equations derived for sand ripples [25,26,27,28,29].
Most of these latter models [26,27,28,29] base their description on an extension
of the so-called BCRE equations for the dynamics of granular sandpiles [30].
What is appealing here is that the model is obtained by introducing very little
new physics over the approaches of Bagnold and Anderson.

After all these heuristic approximations and rather uncontrolled expansions,
we may of course wonder whether (1.70) has anything to do with real aeolian
ripples. Numerical integrations indicate a qualitative resemblance between the
solution of the equation and the general aspect of aeolian ripples. To obtain
serious progress, however, one now needs a quantitative comparison between the
predictions of these simplified models and the results of laboratory experiments
and field measurements, as well as an extension of the models to take into account
the spatial two-dimensionality of real aeolian ripples and the presence of sand
grains with different size. Here, we are content with the fact that one can derive a
simple phenomenological model of ripple dynamics, based on a blend of physical
intuition and mathematical manipulations.
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1.6 Morals

In this Introduction, we have rushed through a variety of mathematical methods
that can be used to build models of geological and geomorphological patterns.
Some of these methods are rigorous, such as the derivation of amplitude equa-
tions in proximity of a supercritical bifurcations, but have correspondingly a
limited range of applicability. Other methods are heuristic, and are based on a
mixture of phenomenological intuition and uncontrolled mathematical approxi-
mations. Most of the methods mentioned in this chapter have a long history of
successes and failures, and provide a starting point for the description of com-
plex geological and geomorphological systems. In the chapters to come, we shall
see many of these methods in action. Sometimes they will lead to great success,
sometimes not. In any event, it is worth trying to use them, especially because
there is not much else that can be done to obtain a theoretical understanding of
the systems we are dealing with. Bon voyage.
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2.1 Introduction

Non-Newtonian fluid mechanics is a vast subject that has several journals partly,
or primarily, dedicated to its investigation (Journal of Non-Newtonian Fluid
Mechanics, Rheologica Acta, Journal of Fluid Mechanics, Journal of Rheology,
amongst others). It is an area of active research, both for industrial fluid prob-
lems and for applications elsewhere, notably geophysically motivated issues such
as the flow of lava and ice, mud slides, snow avalanches and debris flows. The
main motivation for this research activity is that, apart from some annoyingly
common fluids such as air and water, virtually no fluid is actually Newtonian
(that is, having a simple linear relation between stress and strain-rate character-
ized by a constant viscosity). Several textbooks are useful sources of information;
for example, [1,2,3] are standard texts giving mathematical and engineering per-
spectives upon the subject. In these lecture notes, Ancey’s chapter on rheology
(Chap. 3) gives further introduction.

Non-Newtonian fluids arise in virtually every environment. Typical exam-
ples within our own bodies are blood and mucus. Other familiar examples are
lava, snow, suspensions of clay, mud slurries, toothpaste, tomato ketchup, paints,
molten rubber and emulsions. Chemical engineers, and engineers in general, are
faced with the (often considerable) practical difficulties of modelling a variety of
industrial processes involving the flow of some of these materials. Consequently,
much theory has been developed with this in mind, and our aim in this review is
to guide the reader through some of the developments and to indicate how and
where this theory might be used in the geophysical contexts.

2.2 Microstructure and Macroscopic Fluid Phenomena

Most non-Newtonian fluids are characterized by an underlying microstructure
that is primarily responsible for creating the macroscopic properties of the
fluid. For example, a variety of non-Newtonian fluids are particulate suspensions
– Newtonian solvents, such as water, that contain particles of another mate-
rial. The microstructure that develops in such suspensions arises from particle–
particle or particle–solvent interactions; these are often of electrostatic or chem-
ical origin.

N.J. Balmforth and A. Provenzale (Eds.): LNP 582, pp. 34–51, 2001.
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A common example of such a suspension is a slurry of kaolin (clay) in water.
Kaolin particles roughly take the form of flat rectangular plates with different
electrostatic charges on the faces and on the sides; their physical size is of the
order of a micron. In static fluid, the plates stack together like a giant house of
cards. This structure becomes so extensive that the electrostatic forces that hold
the structure together engender a macroscopic effect, namely the microstructure
is able to provide a certain amount of resistance to fluid flow [4].

Of course, the image of the kaolin structure within the slurry as a giant house
of cards is a gross idealization. Undoubtedly, the kaolin forms an inhomogeneous,
defective structure with a variety of length scales. Nevertheless, the important
idea is that microstructure can lead to macroscopic observable effects on the flow
of the fluid. For the kaolin slurry, we anticipate that microstructure adds to the
resistance to flow provided the shearing (rate of deformation) is not too great.
However, once the fluid is flowing and shearing over relatively long scales, the
microstructure must disintegrate – the house of cards collapses. Thus, for greater
shearing (larger rates of deformation), the fluid begins to flow more easily. This
macroscopic, non-Newtonian effect of “shear thinning” is well documented and a
key effect in suspension mechanics. The crudest model of the phenomenon is to
make the fluid viscosity a decreasing function of the rate of strain. In this simple
departure from the regular fluid behaviour, one then makes the shear stress
a nonlinear function of the strain rate. This is an example of a “constitutive
law”; we elaborate further on such laws soon, but first we continue with a brief
discussion of other non-Newtonian effects.

If the concentration of kaolin is sufficiently high, the microstructure can pro-
vide so considerable a resistance to deformation that material does not flow at
all until a certain amount of stress is exerted on the fluid. At smaller stresses,
the fluid behaves like an elastic solid, and simply returns to its original state if
the applied stress is removed. Above the critical stress, the “yield stress”, the
material begins to flow. Materials exhibiting yield behaviour are said to behave
plastically, and when they flow viscously after yield, the terminology viscoplastic
is often used.

The kaolin–water slurry is what one might call a “pure” form of mud. But,
when the mud is less pure, and contains numerous embedded particles, grains
or boulders with widely varying sizes (as in most geophysical conditions), the
clay particles still form microstructure, with the attendant macroscopic effects.
Hence muds are a classic example of a geophysical viscoplastic fluid. But there
are also other geophysical materials with microstructure. For example, snow
flakes, through a process of partial melting and refreezing, act to form a static
coherent structure; this is relevant when considering avalanches, see also Chap.
13. And lava has a microstructure of bubbles and silicate crystals suspended
within a hot viscous solvent.

Shear thinning and yield stresses are common effects in particle suspensions,
but they are not the only type of non-Newtonian behaviour we can encounter.
Another type of behaviour arises in polymeric fluids. Here, the fluid is laced
with high molecular weight deformable molecules (polymers), whose length can
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be so long that the collective effect of the deformations of individual molecules
affects the flow. Notably, because polymers coil and entangle themselves and
their neighbours through weak molecular interactions (such as hydrogen bond-
ing), they provide an effective elastic force that resists flow deformations which
separate, straighten and stretch them. Moreover, because the forces produced by
molecular rearrangements depend on their original orientations, polymeric fluids
can also display significant memory dependence; that is, the fluid “remembers”
the way in which it has been deformed. The macroscopic consequence is that the
fluid can display highly elastic effects, such as the recoil of the fluid back into a
container after it has begun to pour out of it.

Some of the effects of such “viscoelasticity” can be rather weird and surpris-
ing, and in all discussion of such fluids it is customary to mention a few examples:
The Weissenberg effects [5] include die swell [6,7], wherein fluid emerges from a
pipe and then undergoes a subsequent and sudden radial expansion downstream,
and rod climbing, where the free surface of a rotating fluid rises up around the
rod forcing it into motion (the surface of a Newtonian fluid would be depressed
there). In the flow of a viscoelastic liquid down an open channel, the free sur-
face bulges slightly to create a rounded fluid profile [8]. Viscoelastic flow past
a bubble [9] leads to a distinct cusp at the rear stagnation point due to a long
filament of highly stretched polymers in the bubble wake.

An important point that one should take from this discussion is that non-
Newtonian fluid effects can be varied and unusual. As a result, the literature on
non-Newtonian fluid mechanics contains many models of suspensions and poly-
meric fluids, each adding or encapsulating some observed effect. Unfortunately
many of these models are designed with precisely one set of effects in mind and
none adequately deal with the general non-Newtonian fluid. Consequently, be-
cause non-Newtonian effects all typically stem in some way from the underlying
fluid microstructure, one should keep the microscopic physics in mind whilst
negotiating one’s way through the minefield of rheological models to which we
now give some introduction.

2.3 Governing Equations

To begin, we must first describe the continuum approximation that underlies
the models to be discussed here. This continuum approximation assumes that
the dimensions of the flow fields we are considering, with lengthscale L, are far
greater than the lengthscale of the microstructure of the fluid l; that is, L� l.
Given this continuum hypothesis we can derive the governing equations for a
fluid using conservation of mass and examining the rate of change of momentum
within a volume of fluid with lengthscale L. If the fluid is incompressible, mass
conservation yields

∇ · u = 0 , (2.1)



2 Geophysical Aspects of Non-Newtonian Fluid Mechanics 37

where u denotes the Eulerian velocity field (here we shall only consider incom-
pressible fluids). Conservation of momentum leads us to

�
Du
Dt

= ∇ · σ + F , (2.2)

where the fluid density is �, the convective derivative is D/Dt ≡ ∂/∂t + u · ∇,
the stress tensor is σ ≡ {σij}, and F denotes a body force, such as gravity. For
incompressible fluids, the stress tensor is conveniently split into an isotropic piece
−pI, where p is the pressure field, and a remainder, here denoted by τ ≡ {τij},
called the deviatoric stress tensor. Thus,

σ = −pI + τ or σij = −pδij + τij , (2.3)

and the momentum equation becomes

�
Du
Dt

= −∇p+∇ · τ + F . (2.4)

So far, apart from the continuum hypothesis, and for brevity and practicality
assuming incompressibility, we have not made any statement about the fluid
itself; mass conservation and the momentum equation are valid for all fluids.
Thus the development so far parallels that of a Newtonian fluid, much as can be
found in textbooks such as [10].

To produce a closed model, we must further specify how the deviatoric stress
tensor τij is related to the properties of the fluid. Many non-Newtonian fluid
models do this by relating the deviatoric stress to the rate-of-strain tensor, γ̇ij ,
here defined as

γ̇ = ∇u + (∇u)T or γ̇ij =
∂ui

∂xj
+
∂uj

∂xi
; (2.5)

where the superscript T denotes the transpose (some other authors use a mi-
nor variation with an extra factor of 1/2). Further variables are also sometimes
included, such as the strain tensor γij (which arises in linear elasticity), temper-
ature, pressure, or particulate concentration. The relationship between τij , γ̇ij

and any other variables is the constitutive relation of the fluid, and closes the
set of governing equations. This relation is the key ingredient to non-Newtonian
fluid models and contains all of the fluid microphysics; unsurprisingly, the consti-
tutive law can be extremely complicated. Indeed, there is considerable freedom
in deciding how the fluid behaves due to changes in its deformation (the in-
stantaneous strain, strain rates or strain history), or the behaviour due to its
surroundings (such as temperature or pressure).

If the fluid is temperature-dependent and in a situation where the tempera-
ture can change, as is often the case for ice or lava flows, then we also require an
energy equation. This equation describes, for example, how mechanical energy is
converted by molecular friction into heat. Such frictional heating is often negli-
gible in many fluid problems – after all we do not heat cups of coffee by stirring
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them. But in ice flows, this effect can be important (see Chap. 11). Of much more
importance in general fluid problems, however, is that a change in temperature
can affect the fluid microstructure. This may give rise to magnitudes of variation
in macroscopic material properties. Indeed, many fluids are Newtonian at fixed
temperature, but have viscosities that are dramatically affected by temperature
changes, as spreading golden syrup upon hot toast will demonstrate.

The energy equation is:

�c
DT
Dt

=
1
2
τij γ̇ij +∇ · (K∇T ) . (2.6)

The parameters c and K are the specific heat (at constant pressure or volume, as
the fluid is incompressible) and conductivity. In deriving this equation we have
assumed that the thermal expansion coefficient for the fluid is negligible, and
we have ignored other energy sources or sinks, such as from plastic or elastic
work, or from inelastic collisions between particles within the microstructure.
The energy equation describes how the temperature field evolves in the fluid as
a result of advection, diffusion and frictional heating. Such thermal evolution
subsequently affects fluid microstructure and, thence, material properties. In
turn, this modifies the fluid flow according to the constitutive law.

2.4 Constitutive Models

Newtonian fluids are characterized by an isotropic microstructure of passive
spherical molecules that do not chemically interact with one another. The con-
stitutive law is particularly simple: the deviatoric stress is linearly proportional
to the rate of strain and the coefficient of proportionality is the viscosity, μ. Thus

τij = μ γ̇ij ,

and (2.2) reduces to the more familiar Navier–Stokes equation,

�
Du
Dt

= −∇p+ μ ∇2u + F .

For non-Newtonian fluids the constitutive relations can be much more compli-
cated and must be built to reflect the macroscopic properties engendered by
the fluid microstructure. There are several ways in which one goes about this
construction; here we mention four different styles.

The first kind of approach is theoretical and “kinetic”: one assembles a model
of the molecular anatomy of the fluid and then builds a kinetic theory for the
fluid microstructure. Sometimes, this goes by way of an investigation of the
flow around a single idealized model polymer, or emulsion droplet, and then
the generation of the appropriate constitutive equation for a dilute suspension
via an averaging procedure [11]. But other routes are also possible, including
the representation of the fluid microstructure as a regular lattice or network of
interacting elements [12]. These theories furnish a fluid model directly from the
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input microscopic physics, and in an idealized world would be the most sensible
approach. Unfortunately, such kinetic approaches have only recently become
possible, and even then only for very simple fluids. Moreover, the mathematics
behind them is often based upon physical approximations rather than asymptotic
analysis. The problem is that it is currently technically impossible to build a
kinetic theory for anything more than a very simple range of molecular models.
For example, a popular model in visco-elasticity is a perfect network of identical
elastic rods. But real fluids never conform to the idealizations necessary in order
to fabricate kinetic theories, and even the simplest of such theories can lead to
constitutive laws with very convoluted forms. Nevertheless, much progress has
been made in the recent non-Newtonian fluid literature in this direction.

A second style of approach is purely phenomenological: one simply writes
down a convenient model equation that represents how one imagines the fluid
microstructure to affect the flow. Historically, this type of approach was the
first used in non-Newtonian fluid mechanics. For example, Maxwell’s model of
a viscoelastic fluid was largely phenomenological – the stresses have a “fading
memory” of the strain rates, which models the relaxation of the fluid to applied
deformation at a molecular level.

The third approach was taken somewhat after the first phenomenological
models and is largely an attempt to improve on them. The phenomenological
theories provided a set of simple constitutive relations that at times did not
possess some of the symmetries of the fluid. For example, the original Maxwell
model was not “objective” when written in three dimensions, meaning that it
took different forms in different frames of reference (see later). The third ap-
proach was therefore to write down the simplest kinds of constitutive models
that possessed the same symmetries as the fluid. Thus Oldroyd wrote down a
general constitutive model for a linear visco-elastic fluid model. This “Oldroyd-
8” model contains a set of free parameters and has been claimed to work well in
several situations. Moreover, several kinetic theories have also eventually led to
the same kinds of models.

The difficulty in proceeding theoretically to furnish the constitutive law has
led to a very popular fourth approach which is practical, but empirical. One
performs various experiments upon the fluid using, for example, a viscome-
ter, and then postulates a plausible stress strain-rate relation. Experiments for
non-Newtonian fluids are not necessarily easy to perform [6] and a consider-
able amount of effort is sometimes required to neatly design experiments that
isolate a particular factor. This empirical approach focusses on the macroscopic
behaviour of the fluid and to a large extent simply takes the fluid microstructure
for granted. Needless to say, the empirical models that one derives in this way are
dangerous in that they are derived for specific experimental conditions and are
not necessarily suitable once one changes those conditions. However, given some
non-Newtonian fluid with a complicated and possibly unknown microstructure,
the empirical approach is often the most expedient way forward.

This discussion should illustrate to the reader how non-Newtonian fluid me-
chanics has a certain schizophrenic aspect to it. On the one hand, the theory is
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mathematically complicated and furnishes unwieldy constitutive laws. And on
the other, there is a pragmatic approach that provides workable, but potentially
unreliable, models. Below we give some examples of the forbidden fruit of the
marriage of the two.....

2.5 Generalized Newtonian Models

Generalized Newtonian fluid models assume a fairly simple constitutive rela-
tion in which one modifies the linear relationship between the stresses and the
strain rates by making the constant of proportionality, the viscosity, a prescribed
function of strain-rate, temperature or particulate concentration. Thus,

τij = μ(γ̇, T, φ) γ̇ij (Generalized Newtonian model) , (2.7)

where we use τ and γ̇ to represent the second invariants of the stress and strain
rate,

τ =
√
τijτij/2 , γ̇ =

√
γ̇ij γ̇ij/2 ; (2.8)

(γ̇ can be thought of as a measure of the magnitude of the deformation rate)
and φ is the particle concentration.

2.5.1 Power-law Fluids and the Herschel–Bulkley Model

A popular example of this kind of model is the power law fluid:

μ(γ̇) = Kγ̇n−1 (power law model) . (2.9)

This viscosity function has two parameters, the consistencyK and the index n. If
n = 1 we revert to Newtonian behaviour and the consistency is just the viscosity.
If n < 1, the effective viscosity decreases with the amount of deformation. Thus
this models the disintegration of fluid structure under shear, the shear thinning
effect mentioned earlier.

Conversely, if n > 1, the viscosity increases with the amount of shearing,
which implies that the fluid microstructure is build up by the fluid motion.
This kind of effect can occur if the molecules of the microstructure can bind
together on contact; during increasing flow these molecules can come into contact
more regularly and thus larger structures are created. Examples of such “shear
thickening” materials are corn flour (which is used to thicken soup) and highly
concentrated suspensions. The latter show shear thickening due to dilatancy [3]:
at low shear rates the particles are closely packed together and a small amount
of fluid lubricates the flow of particles. But, at higher shear rates, the close
packing is disrupted and the material expands (dilates) and there is no longer
enough fluid to lubricate particle–particle interactions. The resistance to flow
then increases substantially.

The empirical power law model is a useful fit to the observed data, and
can often provide good quantitative results over many decades of the shear rate.
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However, it does not capture the effects of yield stress. Probably the most popular
model that incorporates both shear thinning or thickening and a yield stress is
the Herschel–Bulkley model [13]:

τij =
(
Kγ̇n−1 + τp/γ̇

)
γ̇ij for τ ≥ τp

γ̇ij = 0 for τ < τp
(Herschel− Bulkley model) .

(2.10)
The new parameter τp that we introduce is the yield stress. This formula also
contains an even simpler model, the Bingham fluid, which is given by (2.10)
with n = 1. For this model, the fluid flows as a Newtonian fluid, with strain
rate proportional to the difference between the applied and yield stresses, once
it has yielded. With n = 1, the Herschel–Bulkley model allows also for shear
thinning or thickening beyond yielding. Two recent review articles upon yield
stress phenomena are [14] and [15] and the model often appears in geophysical
models, as illustrated in several other chapters in this volume.
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Fig. 2.1. Non-Newtonian fluid models. A sketch of the constitutive models for a variety
of rheological models. In (a) we show the power-law and Herschel–Bulkley models.
Three curves are shown in each case, displaying shear-thinning and shear-thickening
flow curves. The Bingham fluid and a Newtonian fluid are also shown. In panel (b) we
display the Carreau model, μ(γ̇) = μ∞+(μ0 −μ∞)/[1+(λγ̇)2](1−n)/2 (μ0, μ∞, λ and n
are constants), which regularizes the infinite viscosity of the shear-thinning power-law
fluid at zero strain rate. In (c) we show the bi-viscous regularization of the Bingham
model, which allows flow for all strain rates. Panels (d) and (e) show thixotropic and
rheopectic hysteresis curves. The scales are arbitrary
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2.5.2 Variants and Deviants

There are many other empirical equations that provide stress-strain-rate re-
lations within the generalized Newtonian framework, although the power law,
Bingham and Herschel–Bulkley models are those most widely used; an illustra-
tion showing these models is in Fig. 2.1. However, this is not to say that they are
uniformly accepted. Indeed, there is much discussion in the recent literature over
whether these models are physically plausible. For example, the shear-thinning
power law fluid predicts an infinite viscosity at zero strain rate. Even the con-
cept of a yield stress has received much recent criticism, with evidence presented
to suggest that most materials weakly yield or creep near zero strain rate [15].
Moreover, from a mathematical perspective, the discontinuous surface defined
by the yield condition, τ = τp, introduces several undesirable features into the
non-Newtonian fluid model, mainly because this surface is difficult to track ac-
curately. Such criticisms have fuelled the introduction of further models that go
some way to avoid the problems (see [3] p. 14, and [1]). For example, the Carreau
model regularizes the infinite viscosity of the shear-thinning power-law fluid (see
Fig. 2.1). And various regularizations of the Herschel–Bulkley or Bingham fluid
modify the constitutive law so that, for γ̇ → 0, the stress abruptly decreases
to zero in the manner of a Newtonian fluid with a large viscosity. The latter
regularizations allows flow to occur even at very low strain rates and are partic-
ularly useful for numerical work, [16,17,18]. A popular, although not necessarily
optimal, regularization is to adopt a biviscous model, as shown in Fig. 2.1.

Many geophysical materials such as muds [19,20], debris flows and snow
avalanches (see Chaps. 13 and 21) display behaviour that can be crudely cap-
tured by the Herschel–Bulkley model. However, there are probably many other
properties of these flows that cannot [21]. Nevertheless, at the very least, the
Herschel–Bulkley model can be used as the starting point for more elaborate
models. This model has also been used for lavas (see Chap. 7). Here, the mi-
crostructure is provided by a combination of bubbles and crystals. Bubbles de-
form with the fluid motion; numerical computations with bubbly viscous fluids
suggest that shear thinning can result [22]. Crystals, however, may have the
opposite effect [23]: crystallization can be induced by the shearing motion of
the fluid and so microstructure can be build up in a shear thickening fashion.
Both effects may compete in lava, and which dominates depends on the ambient
conditions.

2.5.3 Temperature Dependence

Many materials have strongly temperature-dependent microstructure. For gen-
eralized Newtonian fluids, the most common way of accounting for this depen-
dence is to make the viscosity a function of temperature. A popular choice is an
exponential, Arrhenius, dependence:

μ(T ) = μ∗ exp(Q/RT ) (2.11)
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where μ∗ is the viscosity value evaluated at some reference temperature, Q is
the activation energy and R is the universal gas constant. Sometimes it is more
convenient to use the approximation,

μ(T ) = μ∗ exp[−G̃(T − Ta)] , (2.12)

where Ta and G̃ are two more prescribed constants. Provided the temperature
variation is relatively small, (2.12) can be considered as an approximation to
(2.11); in some other contexts, this is referred to as the Frank–Kamenetski ap-
proximation. Exponential forms for the temperature dependence are commonly
used for lavas [23,24,25,26,27], laboratory materials used to model magma and
lava (such as wax, paraffin and corn syrup [28,29]), muds [30,31,32], and ice
sheets [33].

Some fluids display both strong temperature dependence and other non-
Newtonian effects, like shear thinning or yield behaviour. Lava and ice are two
such materials. Within those subjects there have been attempts to generate
empirical models incorporating all these features. Typically, they proceed by
simply combining the earlier models. For example, one particular model that
has found a niche of geophysical importance is Glen’s Law [34,35] for the flow of
ice. It has the stress-strain-rate relation,

μ(γ̇, T ) = exp(Q/nRT )γ̇(n−1)/n, n ∼ 3 , (2.13)

and combines an Arrhenius temperature dependence with shear thinning. Typi-
cally the constitutive law is written in terms of the second invariant of the stress,
rather than the strain rate, for reasons of algebraic ease in subsequent analysis.
However, despite the wide usage of this law, there is significant disagreement
between measurements taken in various laboratory experiments and from ac-
tual ice flows [36]. Part of the reason for this disagreement seems to be that
ice relaxes under stress only over long times, and this relaxation has not been
correctly taken into account in most measurements.

2.5.4 Concentration Dependence

Another issue that often arises in fluid suspensions is how the microstructural
effects depend upon the particle concentration, φ. For Newtonian fluids, the
Einstein relation was deduced to give the viscosity correction due to a dilute
suspension of rigid spheres within a solvent of viscosity μ0:

μ = μ0

(
1 +

5
2
φ

)
. (2.14)

Strictly speaking, this model is only suitable if the suspension is very dilute.
A simple resummation of (2.14) that attempts to extend the formula to much
larger concentrations is the Einstein–Roscoe relation:

μ = μ0

(
1− φ

φm

)−α

. (2.15)
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The quantity φm is a maximum packing fraction beyond which the suspension
cannot flow; for a suspension of solid spheres, φm ≈ 0.68, but this quantity
depends on the shape of the particles and how they organize themselves into a
lattice structure. Experiments with concentrated non-colloidal suspensions [37]
suggest that a good empirical fit is achieved if α ≈ 1.82. Other related models
are reviewed in [38]. Similar approximations have been developed for lava, where
one argues that the role of the suspended particles is played by silicate crystals
[39], and in temperate ice (a binary mixture of ice and water at the melting
temperature), where the concentration does not refer to particles at all, but to
the water content [40].

Particle concentration also affects the yield stress in viscoplastic fluids [14],
and so we need another formula for τp(φ) in the constitutive law. In geophysi-
cal contexts, the combined effect of concentration dependence on viscosity and
yield stress may be important for lava (because crystallization occurs when the
temperature falls) and for some debris flows.

Given that the fluid properties depend on particle concentration, one should
also add an equation that determines φ. In some situations, it may be possible
to treat the concentration as though it were homogeneous; then φ is simply a
parameter. However, the origin of many effects observed in suspensions can be
traced to the appearance of an inhomogeneous particle distribution. A notable
example that plagues chemical engineers is wall slip. Many rheometers operate
by creating a shear flow inside the fluid by rotating the walls containing the
material. Often it is observed that high shear layers build up near these walls in
which the particle concentration is depleted. Because the fluid is then relatively
dilute in these region, and they are frequently extremely thin, they act like
lubricating “slip” layers. As a result, the direct measurements taken with the
instrument can be in error.

Another example that may be of geophysical relevance is viscous resuspen-
sion. The observation here is that particles in a shearing suspension tend to
migrate away from regions with relatively large shear. This migration provides
an uplift in flows over plates that can oppose and even dominate the natural
tendency to sediment [41].

To deal with concentration variations, we need a conservation equation for
φ. One relevant to viscous resuspension is [42] :

Dφ
Dt

+∇ · [Jc + Jμ] = 0 (2.16)

Jc = −Kca
2φ∇(φγ̇) , Jμ = −Kμγ̇φ

2 a
2

μ

dμ
dφ
∇φ . (2.17)

Here Jc and Jμ are the fluxes due to particle collisions and spatially varying
viscosity; the particular forms quoted are given by heuristic arguments in [42].
The parameters Kc and Kμ are constants determined experimentally and a is
the particle radius.

In lava, particle diffusion and migration may be unimportant for silicate
crystals. However, crystals form when the temperature decreases, and so one
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should add sources and sinks associated with the phase change of solidification.
Moreover, as in ice, the crystal structure may form anisotropically and with a
broad distribution of sizes. The particle concentration φ in lava could equally
well be considered to be the concentration of bubbles or dissolved volatiles.
We mentioned earlier the effect of bubbles, but volatiles add chemical effects
that can also modify microstructure (for example, OH− ions are observed to
inhibit polymerization of silicon–oxygen bonds). Furthermore, as temperature
and pressure changes, the bubble and volatile content can also change, with
one being converted to the other. Overall, this makes the modelling of lava an
extremely challenging problem.

2.5.5 Hysteresis

There are complicating issues that the generalized Newtonian models do not cap-
ture. One often overlooked issue is hysteresis. As described above, for a static
viscoplastic material there is a microstructure that prevents flow until the yield
stress is exceeded. Once flowing the structure is gradually broken down with
increasing shear, and this gradual attrition of the microstructure leads to non-
linear stress strain-rate behaviour. The reverse situation, in which the strain-rate
is decreased until the structure reforms, is conceptually identical. However, there
is no pressing reason why structure should reform in the same way that it dis-
integrates; in practice some hysteresis occurs. As a result the stress-strain-rate
relation is not identical when the same material is measured with increasing or
decreasing strain-rates. That is, the “up-curves” and “down-curves” on the γ̇–τ
plane are different.

The most common types of hysteretic curves are illustrated in the final two
panels of Fig. 2.1. The “thixotropic” fluid is shear thinning, and microstructure
disintegrates due to the flow of the fluid. Thus the viscosity decreases during
the experiment. The “rheopectic” fluid is shear thickening and structure builds
up during the experiment. Both thixotropic and rheopectic behaviour have been
observed in lavas [23]; thixotropy may be associated with the effects of bubbles,
whereas shear-induced crystallization may be responsible for the rheopexy.

We illustrate hysteresis with some rheological measurements for a kaolin–
water slurry and a celacol (Methyl–Cellulose) solution. The data is taken with
a TI Instruments CSL 500 controlled-stress, cone-and-plate rheometer (6 cm,
2 degree measurement geometry). The results are shown in Fig. 2.2; this also
shows the Herschel–Bulkley models that were used to fit the data. Hysteresis is
certainly evident for the kaolin slurry. There are also some sharp changes in the
up-curves that are possibly indicative of wall slip in the cone and plate device.
The extreme example of celacol shows a material that behaves viscoplastically at
first, but the destruction of the microstructure is permanent, and on decreasing
the applied stress the material behaves viscously.

Another form of hysterisis occurs if the yield strength is itself time dependent,
with a distinct gellation timescale. In this case, the structure that creates the
yield strength takes time to form. Thus the material may have different yield
strengths dependent upon when we choose to disturb it or bring it to rest [43].
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2.6 Viscoelasticity

Under some circumstances a material will exhibit both elastic and viscous be-
haviour; in response to some applied shear many materials show initially viscous
behaviour and then ‘relax’ to elastic behaviour. The generalized Newtonian fluid
model does not incorporate any elastic effects whatsoever, and so is inappropri-
ate for such flows. Instead, it is usually necessary to introduce the strains as
well as strain rates into the constitutive law. This is apparent from the form the
constitutive law must take in the extreme limits: an incompressible linear elastic
material has the stress is proportional to the strain, whereas a Newtonian fluid
has the stress proportional to the rate of strain. Thus, for a general viscoelastic
fluid, the constitutive law takes the form of an evolution equation.

The appearance of time evolution terms in the rheology relation reflects the
relaxational character of the fluid stresses, and leads to the notion of a character-
istic relaxation timescale. Many rheological measurement devices for viscoelastic
fluids are designed with this in mind. One standard experiment is to apply in-
stantaneously a shear at the surface of a sample material. If the material is
linearly elastic the resulting stress is zero before the application of the shear,
and constant immediately afterwards. On the other hand, if the material is a
Newtonian fluid, the stress is infinite at the instant the stress is applied, but
thereafter is zero. Thus elastic and viscous responses are markedly different, and
many real materials have elements of both types of response. A viscoelastic ma-
terial will have an initially large stress due to the viscous component, but the
stress then decreases over the relaxation time to a constant value arising due to
the intrinsic elasticity.

If we assume that the relation between the deviatoric stress and the strain
rates is purely linear, then a general constitutive law can be stated:

τij =
∫ t

−∞
G(t− τ)γ̇ij(τ)dτ . (2.18)

Here, G(t) is called the relaxation function, and builds in the elastic and viscous
behaviour. Implicitly, the shape of the function G(t) determines the character-
istic relaxation timescale (or timescales if there are more than one).

The relaxation time is important because it characterizes whether viscoelas-
ticity is likely to be important within an experimental or observational timescale.
For example, we might consider the continents upon the earth’s surface as solid
over a timescale based upon the human lifespan, but upon a geological timescale
they could be considered as a viscous, or viscoelastic, fluid. Many fluids, partic-
ularly those in industrial situations containing polymers or emulsion droplets,
exhibit both elastic and viscous responses on an experimental or observational
timescale.

For a Newtonian fluid, G(t) = μδ(t) and relaxation is immediate. For a linear
elastic material, G(t) = μH(t). If we denote the relaxation time by λ then the
simplest viscoelastic model, the Maxwell model, has G(t) = μ exp(−t/λ)/λ and
the integral relation above can be recast in the form of a differential constitutive
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relation,
τij + λτ̇ij = μγ̇ . (2.19)

Much can be achieved with this simple extension to the Newtonian constitu-
tive model, and in many circumstances, particularly if one wishes to investigate
whether viscoelasticity can be important, this linear theory suffices. Extensions
to multiple relaxation times with a sequence of relaxation functions are also
straightforward.

Unfortunately, the Maxwell model (2.19) has at least one major failing – it
is not frame indifferent (objective). That is, if we change to a moving coordinate
frame the equations also change. Since we are concerned with material behaviour
this should not occur. One crude, effective and ad-hoc cure is to replace the
time derivatives in (2.19) with more complicated operators that build in the
convection, rotation and stretching of the fluid motion. These operators, called
either Oldroyd or Jaumann derivatives, render the equations frame indifferent; in

usual tensor notation, the Oldroyd (upper convected) derivative,
�
b, for a tensor

b is
�
b =

Db
Dt
−b·(∇u)−(∇u)T ·b or

�
b ij = ḃij +ukbij,k−uj,kbki−ui,kbkj . (2.20)

These derivatives involve the local fluid motion, and so substantially complicate
the constitutive law, and therefore computations using them.

Although we introduce these derivatives as a mathematical device to improve
the linear model, one can also obtain these derivatives by working with dilute
suspensions and low Reynold’s number hydrodynamics – the kinetic approach
mentioned earlier. By studying the fluid motion around a single elastic sphere,
emulsion droplet, or a dumbbell connected with an elastic spring, and then
analyzing the force exerted by the droplet upon the fluid, one can construct
constitutive relations. Rather pleasingly these also involve Oldroyd, or Jaumann,
derivatives and so the apparently crude mathematical fix has some physical basis.
Further details of this approach can be found in [44] or [1].

A popular, more refined version of the Maxwell model is the so-called Oldroyd-
B model; a simplification of his Oldroyd-8 model. The Oldroyd-B model takes
account of the stresses due to both the Newtonian solvent and the polymeric
constituents:

τ = τ s + τ p . (2.21)

The total viscosity μ is also written as the sum of solvent and polymeric viscosi-
ties, μ = μs + μp. Thus, if η = μs/(μs + μp), the stress is written as

τ = μ[ηγ̇ + (1− η)a] . (2.22)

The constitutive equation for the extra stress tensor a takes the form,

a + λ
�
a = γ̇ , (2.23)

where λ is the polymer relaxation time. There are several problems with the
Oldroyd-B model [45], which suggest that it should not be used indiscriminately
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to model viscoelastic flows. On the other hand, this model gives a reasonable
description for some flows of dilute polymeric suspensions in highly viscous sol-
vents with a single characteristic relaxation time (“Boger fluids” – [46]), and
has been used extensively in attempting to characterize and interpret fluid flows
[47,48].

One might imagine that because viscoelasticity is commonly engendered by
dissolved polymers, there are few geophysical fluids which behave in this fashion.
In fact, somewhat surprisingly, lava has been observed to show some viscoelastic
non-Newtonian effects. For example, the Weissenberg effect (rod climbing) was
observed in some laboratory experiments, and upward bulges have been seen
on lava flows on Mount Etna [23]. Also, prolonged time-dependent relaxational
effects are seen in measurements of density, pressure and sound speed [49]; re-
laxation times range from seconds to weeks.

2.7 Concluding Remarks

In this chapter we have given a brief overview of some phenomena and rheo-
logical models of non-Newtonian fluid mechanics. However, this is a notoriously
involved subject, mainly due to the wide range of often complex and sometimes
unexpected behaviours that real fluids and fluid-like materials exhibit. We can
only hope to scratch the surface of the subject here, provide references to allow
the interested reader to delve further into the subject, and draw together the
underlying theory required in later chapters.

It is also important to appreciate the limitations of the models we have
described. Indeed, this subject is not like Newtonian fluid mechanics where the
Navier–Stokes equation is uniformly accepted; there is still much debate over
which constitutive models are appropriate for different materials, and this is
particularly prevalent for viscoelastic fluids. The generalized Newtonian models
that seem easiest to use are empirical, and the explanation for the experimentally
observed behaviour is based upon heuristic microstructural arguments. However,
the models are essentially curve fits to observed data that have a convenient
mathematical form. Some of the viscoelastic models have a sounder physical
foundation, but they are typically far more complicated and are often designed
with a specific phenomenon in mind and fail to incorporate the behaviour one
wishes to model. None the less, many models exist with a spectrum of degrees of
sophistication that build in both physical behaviour and mathematical niceties.

Despite all of these efforts much remains to be understood for non-Newtonian
flows in general. Later chapters on debris flows, ice, snow avalanches and lava
highlight aspects of the behaviours we have discussed in this chapter: yield stress,
shear thinning, temperature dependence and particle concentration dependence.
These chapters also describe the current modelling difficulties that remain. For
example, the Bingham and Herschel–Bulkley models have had some success for
concentrated mud flows containing fine particles [50,51], but have been less suc-
cessful for flows containing larger particles [21]. Debris flows (Chap. 21) incor-
porate a range of particle sizes, that at one extreme may be so significant that
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we violate the continuum approximation. The detailed failure of the Herschel–
Bulkley model in these cases is due to several effects. The model does not allow
for fluid motion relative to solid debris, it does not incorporate energy dissipa-
tion for the solid boulders and grains interacting, or for the way that such large
objects can slide or roll along the base of the flow. None the less for primarily
shear-dominated flows of concentrated suspensions of fine particles, Bingham-
like models can provide good predicative and quantitative information. Indeed,
in a later chapter we shall adopt the Herschel–Bulkley model to analyse some
isothermal viscoplastic lava flows.

Lastly, we have focussed exclusively on fluids in this chapter. Yet some geo-
physical materials ought probably not to be treated as fluids at all. For example,
the bubbly magma that rises through the conduits within volcanos (see Chap.
8) is much closer to being a foam, and dry landslides and avalanches and some
debris flows [52] are fully fledged granular media (see Chap. 4).
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3 Introduction to Rheology
and Application to Geophysics

C. Ancey

Cemagref, unité Erosion Torrentielle, Neige et Avalanches, Domaine Universitaire,
38402 Saint-Martin-d’Hères Cedex, France

3.1 Introduction

This chapter gives an overview of the major current issues in rheology through
a series of different problems of particular relevance to geophysics. For each
topic considered here, we will outline the key elements and point the reader to
ward the most helpful references and authoritative works. The reader is also
referred to available books introducing rheology [1,2] for a more complete pre-
sentation and to the tutorial written by Middleton and Wilcock on mechanical
and rheological applications in geophysics [3]. This chapter will focus on mate-
rials encountered by geophysicists (mud, snow, magma, etc.), although in most
cases we will consider only suspensions of particles within an interstitial fluid
without loss of generality. Other complex fluids such as polymeric liquids are
rarely encountered in geophysics.

The mere description of what the term rheology embraces in terms of scien-
tific areas is not easy. Roughly speaking, rheology distinguishes different areas
and offshoots such as the following:
• Rheometry. The term “rheometry” is usually used to refer to a group of

experimental techniques for investigating the rheological behavior of mate-
rials. It is of great importance in determining the constitutive equation of
a fluid or in assessing the relevance of any proposed constitutive law. Most
of the textbooks on rheology deal with rheometry. The books by Coleman,
Markovitz, and Noll [4], Walters [5] and by Bird, Armstrong, and Hassager
[6] provide a complete introduction to the viscometric theory used in rheom-
etry for inferring the constitutive equation. Coussot and Ancey’s book [7]
gives practical information concerning rheometrical measurements with nat-
ural fluids. Though primarily devoted to food processing engineering, Steffe’s
book presents a detailed description of rheological measurements; a free sam-
ple is available on the web [8]. In Sect. 3.2, we will review the different tech-
niques that are suitable to studying natural fluids. Emphasis is given both to
describing the methods and the major experimental problems encountered
with natural fluids.

• Continuum mechanics. The formulation of constitutive equations is prob-
ably the early goal of rheology. At the beginning of the 20th century, the
non-Newtonian character of many fluids of practical interest motivated Pro-
fessor Bingham to coin the term rheology and to define it as the study of the
deformation and flow of matter. The development of a convenient mathemat-
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ical framework occupied the attention of rheologists for a long time after the
Second World War. At that time, theoreticians such as Coleman, Markovitz,
Noll, Oldroyd, Reiner, Toupin, Truesdell, etc. sought to express rheological
behavior through equations relating suitable variables and parameters rep-
resenting the deformation and stress states. This gave rise to a large number
of studies on the foundations of continuum mechanics [6]. Nowadays the
work of these pioneers is pursued through the examination of new problems
such as the treatment of multiphase systems or the development of nonlo-
cal field theories. For examples of current developments and applications to
geophysics, the reader may consult papers by Hutter and coworkers on the
thermodynamically consistent continuum treatment of soil–water systems
[9,10], the book by Vardoulakis and Sulem on soil failure [11], and Bedford
and Dumheller’s review on suspensions [12]. A cursory glance at the liter-
ature on theoretical rheology may give the reader the impression that all
this literature is merely an overly sophisticated mathematical description of
the matter with little practical interest. In fact, excessive refinements in the
tensorial expression of constitutive equations lead to prohibitive detail and
thus substantially limit their utility or predictive capabilities. This probably
explains why there is currently little research on this topic. Such limitations
should not prevent the reader (and especially the newcomer) from studying
the textbooks in theoretical rheology, notably to acquire the basic principles
involved in formulating constitutive equations. Two simple problems related
to these principles will be presented in Sect. 3.3 to illustrate the importance
of an appropriate tensorial formulation of constitutive equations.

• Rheophysics. For many complex fluids of practical importance, bulk behavior
is not easily outlined using a continuum approach. It may be useful to first
examine what happens at a microscopic scale and then infer the bulk proper-
ties using an appropriate averaging process. Kinetic theories give a common
example for gases [13] or polymeric liquids [6], which infer the constitutive
equations by averaging all the pair interactions between particles. Such an
approach is called microrheology or rheophysics. Here we prefer to use the
latter term to emphasize that the formulation of constitutive equations is
guided by a physical understanding of the origins of bulk behavior. Recent
developments in geophysics are based on using kinetic theories to model bed
load transport [14], floating broken ice fields [15], and rockfall and granular
debris flows [16]. It is implicitly recognized that thoroughly modeling the
microstructure would require prohibitive detail, especially for natural flu-
ids. It follows that a compromise is generally sought between capturing the
detailed physics at the particle level and providing applicable constitutive
equations. Using dimensionless groups and approximating constitutive equa-
tions are commonly used operations for that purpose. In Sect. 3.4, we will
consider suspensions of rigid particles within a Newtonian fluid to exemplify
the different tools used in rheophysics. Typical examples of such fluids in
a geophysical context include magma and mud. Chapters 4 and 14 provide
further examples of rheophysical treatments with granular flows.
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Other aspects of rheology, such as complex flow modeling and computational
rheology, are not addressed in this introductory chapter. Chapter 2 in this book
introduces the reader to the main rheological properties (viscoplasticity, time-
dependent behaviour, etc.) encountered in geophysics. The reader is referred to
examples of application to geophysical problems that are given in other chapters,
notably Chap. 7 for lava flows, Chap. 13 for snow avalanches, Chaps. 22 and 21
for mud and debris flows.

3.2 Rheometry

At the very beginning, the term rheometry referred to a set of standard tech-
niques for measuring shear viscosity. Then, with the rapid increase of interest
in non-Newtonian fluids, other techniques for measuring the normal stresses
and the elongational viscosity were developed. Nowadays, rheometry is usually
understood as the area encompassing any technique which involves measuring
mechanical or rheological properties of a material. This includes visualization
techniques (such as photoelasticimetry for displaying stress distribution within
a sheared material) or nonstandard methods (such as the slump test for evalu-
ating the yield stress of a viscoplastic material). In most cases for applications
in geophysics, shear viscosity is the primary variable characterizing the behavior
of a fluid. Thus in the following, we will mainly address this issue, leaving aside
all the problems related to the measurement of elongational viscosity. Likewise,
the description of the most relevant procedures in rheometric measurement is
not addressed here. We will first begin by outlining the main geometries used
in rheometry. The principles underlying the viscometric treatment will be ex-
posed in a simple case (flow down an inclined plane). Then, we will examine the
most common problems encountered in rheometry. We will finish this section by
providing a few examples of rheometric measurements, which can be obtained
without a laboratory rheometer.

3.2.1 Standard viscometers

The basic principle of rheometry is to perform simple experiments where the
flow characteristics such as the shear stress distribution and the velocity profile
are known in advance and can be imposed. Under these conditions, it is possible
to infer the flow curve, that is, the variation of the shear stress as a function
of the shear rate, from measurements of flow quantities such as torque and the
rotational velocity for a rotational viscometer. In fact, despite its apparent sim-
plicity, putting this principle into practice for natural fluids raises many issues
that we will discuss below. Most rheometers rely on the achievement of curvi-
linear (viscometric) flow [4]. The simplest curvilinear flow is the simple shear
flow achieved by shearing a fluid between two plates in a way similar to New-
ton’s experiment depicted in Sect. 3.3. But, in practice many problems (fluid
recirculation, end effect, etc.) arise, which preclude using such a shearing box
to obtain accurate measurements. Another simple configuration consists of an
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inclined plane or channel. To exemplify the viscometric approach, we will show
how some flow properties such as the discharge equation (variation of the fluid
discharge as a function of the flow depth) can be used to infer the constitu-
tive equation characteristics. We consider a gravity-driven free-surface flow in
a steady uniform regime down an inclined channel. The plane is tilted at an
inclination θ to the horizontal. We use the Cartesian coordinate system of origin
0 and of basis ex, ey, ez, as depicted in Fig. 3.1.

e

free surface y=h
0 u(y)

ey

x

Fig. 3.1. Definition sketch for steady uniform flow

The velocity field u only depends on the coordinate y and takes the following
form: ux = u(y), uy = 0, and uz = 0, where u is a function of y to be deter-
mined. Accordingly, the strain-rate tensor γ̇ = (∇u + t∇u)/2 has the following
components in the coordinate system:

γ̇ =
γ̇

2

⎡⎣0 1 0
1 0 0
0 0 0

⎤⎦ , (3.1)

where the shear rate γ̇ is defined as a function of the coordinate y and implicitly
of the inclination θ: γ̇(y) = (∂u/∂y)θ. The momentum balance can be written
as:

�
du

dt
= �g +∇.σ , (3.2)

where � and g respectively denote the local material density and gravitational
acceleration. We assume that there is no slip at the bottom: u(y) = 0. Further-
more, we assume that there is no interaction between the free surface and the
ambient fluid above except the pressure exerted by the ambient fluid. Notably,
we ignore surface tension effects on the free surface. Without restriction, the
stress tensor can be written as the sum of a pressure term p and a deviatoric
term called the extra-stress tensor s (see also Sect. 3.3) [2,4]: σ = −p1+s. For a
homogeneous and isotropic simple fluid, the extra-stress tensor depends on the
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strain rate only: s = G(γ̇), where G is a tensor-valued isotropic functional. In
the present case, it is straightforward to show that the stress tensor must have
the form:

σ = −p1 +

⎡⎣ sxx sxy 0
sxy syy 0
0 0 szz

⎤⎦ . (3.3)

Thus, the stress tensor is fully characterized by three functions: the shear stress
τ = σxy = sxy, and the normal stress differences: N1 = sxx − syy and N2 =
syy−szz, called the first and second normal stress differences, respectively. Since
for steady flows acceleration vanishes and the components of s only depend on
y, the equations of motion (3.2) reduce to:

0 =
∂sxy

∂y
− ∂p

∂x
+ �g sin θ , (3.4)

0 =
∂syy

∂y
− ∂p
∂y
− �g cos θ , (3.5)

0 =
∂p

∂z
. (3.6)

It follows from (3.6) that the pressure p is independent of z. Accordingly, inte-
grating (3.5) between y and h implies that p must be written: p(x, y)−p(x, h) =
syy(y)− syy(h) + �g(h− y) cos θ. It is possible to express (3.4) in the following
form:

∂

∂y
(sxy + � g y sin θ) =

∂p(x, h)
∂x

. (3.7)

Equation (3.7) has a solution only if both terms of this equation are equal to a
function of z, which we denote b(z). Moreover, (3.6) implies that b(z) is actually
independent of z; thus, in the following we will note: b(z) = b. The solutions to
(3.7) are: p (x, h) = bx+c and sxy(h)−sxy(y)−� g y sin θ = b(h−y), where c is a
constant, which we will determine. To that end, let us consider the free surface.
It is reasonable and usual to assume that the ambient fluid friction is negligible.
The stress continuity at the interface implies that the ambient fluid pressure p0
exerted on an elementary surface at y = h (oriented by ey) must equal the stress
exerted by the fluid. Henceforth, the boundary conditions at the free surface
may be expressed as: −p0ey = σey, which implies in turn that: sxy(h) = 0 and
p0 = p(x, h)− syy(h). Comparing these equations to former forms leads to b = 0
and c = p0 + syy(h). Accordingly, we obtain for the shear and normal stress
distributions:

τ = �g(h− y) sin θ , (3.8)

σyy = syy − (p− p0) = −�g(h− y) cos θ . (3.9)

The shear and normal stress profiles are determined regardless of the form of the
constitutive equation. For simple fluids, the shear stress is a one-to-one function
of the shear rate: τ = f(γ̇). Using the shear stress distribution (3.8) and the
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inverse function f−1, we find: γ̇ = f−1(τ). A double integration leads to the flow
rate (per unit width):

q =
∫ h

0
dy
∫ y

0
f−1(τ(ξ)) dξ . (3.10)

Taking the partial derivative of q with respect to h, we obtain:

γ̇ = f−1(τ(h)) =
1
h

(
∂q

∂h

)
θ

. (3.11)

This relation allows us to directly use a channel as a rheometer. The other normal
components of the stress tensor cannot be easily measured. The curvature of the
free surface of a channeled flow may give some indication of the first normal stress
difference. Let us imagine the case where it is not equal to zero. Substituting the
normal component syy by syy = sxx −N1 in (3.5), then integrating, we find:

sxx = p+ �gy cos θ +N1 + d , (3.12)

where d is a constant. Imagine that a flow section is isolated from the rest of the
flow and the adjacent parts are removed. In order to hold the free surface flat
(it will be given by the equation y = h, ∀z), the normal component σxx must
vary and balance the variations of N1 due to the presence of the sidewalls (for
a given depth, the shear rate is higher in the vicinity of the wall than in the
center). But at the free surface, the boundary condition forces the normal stress
σxx to vanish and the free surface to bulge out. To first order, the free surface
equation is:

−�gy cos θ = N1 + d+O(y) . (3.13)

If the first normal stress difference vanishes, the boundary condition −p0ey =
σey is automatically satisfied and the free surface is flat. In the case where
the first normal stress difference does not depend on the shear rate, there is no
curvature of the shear free surface. The observation of the free surface may be
seen as a practical test to examine the existence and sign of the first normal stress
difference and to quantify it by measuring both the velocity profile at the free
surface and the free-surface equation. Computation of the shear-stress function
and normal stress differences is very similar for other types of viscometers. Figure
3.2 reports the corresponding functions for the most common viscometers. All
these techniques are robust and provide accurate measurements for classic fluids,
with uncertainty usually less than 2%. For geophysical fluids, many problems of
various types may arise.

First, the viscometric treatment relies on the crucial assumption that the
extra-stress tensor is a one-to-one function of the strain-rate tensor only (class
of simple fluids). Many classes of material studied in geophysics are not in fact
homogeneous, isotropic, or merely expressible in the form σ = −p1 + s(γ̇). For
instance, for materials with time-dependent properties (thixotropic materials,
viscoelastic materials), the constitutive equation can be expressed in the form
σ = −p1+s(γ̇) only for a steady state. Another example is provided by granular
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Rheometer type Sketch Viscometric function
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Fig. 3.2. Chief geometries used in rheometry

flows. In this case, when applied to experimental data obtained by studying dry
granular flows down an inclined channel [17], the viscometric treatment leads
to the conclusion that the flow curve should be a decreasing function of the
shear rate in violation of a stability criterion imposing that the flow curve be
an increasing function. Although such a decrease in the flow curve cannot be
directly interpreted in terms of a constitutive equation, it provides interesting
rheological information that can be explained on the basis of microstructural
theories [18].

Second, for most viscometers, computing the shear rate from experimental
data can raise serious problems. A major source of uncertainty is that in most
viscometric procedures the shear rate is expressed as a derivative – for instance
∂q/∂h in (3.11) – which must be estimated from experimental data. To do so,
different procedures are available but they do not always provide the same re-
sults, especially when data are noisy [19]. A typical example of these problems
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is given by the concentric-cylinder rheometer (or Couette rheometer). The shear
rate is inferred from the rotational velocity Ω and the torque (per unit depth)
C using the following relationship:

Ω = −1
2

∫ C/(2πR2
2)

C/(2πR2
1)
γ̇(τ) d(ln τ) . (3.14)

When the gap between the two cylinders is narrow, it is possible to approximate
the shear rate as: γ̇ = R1Ω/(R2−R1)+O(1−R2/R1). However, such a geome-
try is not very suitable to studying natural fluids (slipping, size effects, etc.) and
usually a large gap is preferred. For large gaps, one of the most common approx-
imations is attributed to Krieger who proposed for Newtonian and power-law
fluids [20,21]:

γ̇ =
2Ω(1 + α)

1− βf
f (3.15)

with f = d lnΩ/d lnC; α = f ′f−2χ1(−f log β); χ1(x) = x(xex − 2ex + x +
2)(ex − 1)−2/2, β = (R1/R2)

2. However, this method can give poor results
with yield stress fluids, especially if it is partially sheared within the gap. In
this case, Nguyen and Boger [22] have proposed using γ̇ = 2Ωd lnΩ/d lnC. In
their treatment of debris suspensions, Coussot and Piau [23] used an alternative
consisting of an expansion into a power series of (3.15). They obtained: γ̇ =
2Ω
∑∞

n=0 f
(
βnC/(2πR2

1)
)
. For methods of this kind, computing the shear rate

requires specifying the type of constitutive equation in advance. Furthermore,
depending on the procedure chosen, uncertainty on the final results may be as
high as 20% or more for natural fluids. Recently, a more effective and practical
method of solving the inverse problem has been proposed [24,25]: the procedure
based on Tikhonov regularization does not require the algebraic form of the τ−γ̇
curve to be prespecified and has the advantage of filtering out noise. The only
viscometer that poses no problem in converting experimental data into a τ − γ̇
curve is the parallel-plate rheometer. In this case, the shear rate distribution is
imposed by the operator: γ̇ = ΩR/h. But such a relationship holds provided
centrifugal forces are negligible compared to the second normal stress difference:
�R2w2 	 N2, where w is the orthoradial component of the velocity. Such an
effect can be detected experimentally either by observing secondary flows or by
noticing that doubling both the gap and the rotational velocity (thus keeping
the shear rate constant) produces a significant variation in the measured torque.

Third, any rheometer is subjected to end effects, which have to be corrected
or taken into account in the computation of the flow curve. For instance, end
effects in a channel are due to the finite length of the channel as well as the
sidewalls, both producing potentially significant variations in the flow depth.
Likewise, in a Couette rheometer, the measured torque includes a contribution
due to the shearing over the bottom surface of the bob. Such a contribution is
substantially reduced using a bob with a hole hollowed on the bottom surface
so that air is trapped when the bob is immersed in the fluid. But this can be
inefficient for natural fluids, such as debris suspensions, and in this case, the
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bottom contribution to the resulting torque must be directly assessed using the
method proposed by Barnes and Carnali [26]. For a parallel-plate rheometer,
the fluid surface at the peripheral free surface may bulge out or creep, inducing
a significant variation in the measured torque, possibly varying with time. Fur-
thermore, many natural fluids encountered in geophysics are suspensions with a
large size distribution. The size of the rheometer should be determined such that
its typical size (e.g. the gap in a rotational viscometer) is much larger than the
largest particle size. For instance, for debris flows, this involves using large-sized
rheometers [23,27].

Last, many disturbing effects may arise. They often reflect the influence of
the microstructure. For instance, for a particle suspension, especially made up
of nonbuoyant particles, sedimentation and migration of particles can signifi-
cantly alter the stress distribution and thus the measured torque. Likewise, for
concentrated pastes, a fracture inside the sheared sample may sometimes be ob-
served, usually resulting from a localization of shear within a thin layer. Other
disturbing effects are experimental problems pertaining to the rheometer type.
For instance, when using a rotational viscometer with a smooth metallic shearing
surface, wall slip can occur. Apart from effects resulting from microstructural
changes, which are a part of the problem to study, it is sometimes possible to
reduce disturbing effects or to account for them in the flow-curve computation.
For instance, to limit wall slip, the shearing surfaces can be roughened. Another
strategy involves measuring the slipping velocity directly and then computing an
effective shear rate. Still another possibility requires using the same rheometer
with different sizes, as first proposed by Mooney for the capillary rheometer.

All the above issues show that, for complex fluids (the general case for nat-
ural fluids studied in geophysics), rheometry is far from being an ensemble of
simple and ready-for-use techniques. On the contrary, investigating the rheologi-
cal properties of a natural material generally requires many trials using different
rheometers and procedures. In some cases, visualization techniques (such as nu-
clear magnetic resonance imagery, transparent interstitial fluid and tools, bire-
fringence techniques) may be helpful to monitor microstructure changes. Most
of the commercialized rheometers are now controlled by a PC-type computer,
both controlling the measurements and providing automatic procedures for com-
puting the flow curve. Such procedures should be reserved for materials whose
rheological behavior is well known, and consequently are of limited interest for
natural fluids.

3.2.2 What Can Be Done Without a Rheometer?

In the laboratory, it is frequently impossible to investigate the rheological prop-
erties of a natural fluid using a rheometer. For instance, with snow or magma,
such tests are almost always impractical. For debris suspensions, it is usually
impossible to carry out measurements with the complete range of particle size.
This has motivated researchers to developed approximate rheometric procedures
and to investigate the relations between field observations and rheological prop-
erties. For instance, given the sole objective of determining the yield stress, the
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semiempirical method referred to as a slump test can provide an estimate of the
yield stress for a viscoplastic material. This method involves filling a cylinder
with the material to be tested, lifting the cylinder off and allowing the material
to flow under its own weight. The profile of the final mound of material as well
as the difference δ between the initial and final heights is linked to the yield
stress. Pashias and Boger [28] have found:

δ

h
= 1− 2

τc
�gh

[
1− ln

(
2
τc
�gh

)]
, (3.16)

where h is the cylinder height, � the material density. Close examination of ex-
perimental data published by Pashias and Boger shows a deviation from the
theoretical curve for yield stress values in excess of approximately 0.15�gh. For
yield stress values lower than 0.15�gh (or for δ/h > 0.4), uncertainty was less
than 10% for their tests. The explanation of the deviation for higher yield stress
values lies perhaps in the weakness of the assumption on the elastoplastic be-
havior for very cohesive materials. Coussot, Proust and Ancey [29] developed
an alternative approach based on an interpretation of the deposit shape. They
showed that the free surface profile (the relationship between the material height
y and the distance from the edge x) depends on the yield stress only. On a flat
horizontal surface, the free surface profile has the following expression:

�gy

τc
=
√

2
�gx

τc
. (3.17)

Comparisons between rheological data deduced from a parallel plate rheome-
ter and free surface profile measurements showed an acceptable agreement for
fine mud suspensions and debris flow materials. Uncertainty was less than 20%,
within the boundaries of acceptable uncertainty for rheometrical measurement.
The major restriction in the use of (3.17) stems from the long-wave approxima-
tion, which implies that the mound height must far outweigh the extension of
the deposit: h − δ � τc/(�g). The method proposed by Coussot et al. [29] can
be extended to different rheologies and boundary conditions. In the field, such a
method applied to levee profiles of debris flow can provide estimates of the bulk
yield stress provided that the assumption of viscoplastic behavior holds.

Observing and interpreting natural deposits may provide interesting informa-
tion either on the flow conditions or rheological features of the materials involved
[30]. For instance, laboratory experiments performed by Pouliquen with granular
flows have shown that the flow features (e.g. the mean velocity) of a dry granular
free-surface unconfined flow can be related to the final thickness of the deposit
[31]. Although fully developed in the laboratory, such a method should be appli-
cable to natural events involving granular flows. More evidence of the interplay
between the deposit shape, the flow conditions, and the rheological features is
given by the height difference of two lateral levees deposited by a debris flow in
a bending track [32].
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3.3 The Contribution of Continuum Mechanics

In 1687, Isaac Newton proposed that “the resistance which arises from the lack
of slipperiness of the parts of the liquid, other things being equal, is proportional
to the velocity with which the parts of the liquid are separated from one another”
[33]. This forms the basic statement behind the theory of Newtonian fluid me-
chanics. Translated into modern scientific terms, this sentence means that the
resistance to flow (per unit area) τ is proportional to the velocity gradient U/h:

τ = μ
U

h
, (3.18)

where U is the relative velocity with which the upper plate moves and h is
the thickness of fluid separating the two plates (see Fig. 3.3). μ is a coefficient
intrinsic to the material, which is termed viscosity. This relationship is of great
practical importance for many reasons. It is the simplest way of expressing the
constitutive equation for a fluid (linear behavior) and it provides a convenient
experimental method for measuring the constitutive parameter μ by measuring
the shear stress exerted by the fluid on the upper plate moving with a velocity U
(or conversely by measuring the velocity when a given tangential force is applied
to the upper plate).

h

U

e
x

e
y

Fig. 3.3. Illustration of a fluid sheared by a moving upper plate

In 1904, Trouton did experiments on mineral pitch involving stretching the
fluid with a given velocity [34]. Figure 3.4 depicts the principle of this experiment.
The fluid undergoes a uniaxial elongation achieved with a constant elongation
rate α̇, defined as the relative deformation rate: α̇ = l̇/l, where l is the fluid
sample length. For his experiments, Trouton found a linear relationship between
the applied force per unit area σ and the elongation rate:

σ = μeα = μe
1
l

dl
dt
. (3.19)

This relationship was structurally very similar to the one proposed by Newton
but it introduced a new material parameter, which is now called Trouton viscos-
ity. This constitutive parameter was found to be three times greater than the
Newtonian viscosity inferred from steady simple-shear experiments: μe = 3μ.
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At first glance, this result is both comforting since behavior is still linear (the
resulting stress varies linearly with the applied strain rate) and disturbing since
the value of the linearity coefficient depends on the type of experiment. In fact,
Trouton’s result does not lead to a paradox if we are careful to express the
constitutive parameter in a tensorial form rather than a purely scalar form.

l

dl

ë

Fig. 3.4. Typical deformation of a material experiencing a normal stress σ

This was achieved by Navier and Stokes, who independently developed a
consistent three-dimensional theory for Newtonian viscous fluids. For a simple
fluid, the stress tensor σ can be cast in the following form:

σ = −p1 + s (3.20)

where p is called the fluid pressure and s is the extra-stress tensor representing
the stresses resulting from a relative motion within the fluid. It is also called
the deviatoric stress tensor since it represents the departure from equilibrium.
The pressure p is defined as (minus) the average of the three normal stresses
p = −trσ/3. This also implies that tr s = 0. The pressure used in (3.20) is
analogous to the static fluid-pressure in the sense that it is a measure of the
local intensity of the squeezing of the fluid. Contrary to the situation for fluids
at rest, the connection between this purely mechanical definition and the term
pressure used in thermodynamics is not simple. For a Newtonian viscous fluid,
the Navier–Stokes equation postulates that the extra-stress tensor is linearly
linked to the strain rate tensor γ̇ = (∇u + t∇u)/2 (where u is the local fluid
velocity):

s = 2ηγ̇ (3.21)

where η is called the Newtonian viscosity. It is worth noticing that the consti-
tutive equation is expressed as a relationship between the extra-stress tensor
and the local properties of the fluid, which are assumed to depend only on the
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instantaneous distribution of velocity (more precisely, on the departure from
uniformity of that distribution). There are many arguments from continuum
mechanics and analysis of molecular transport of momentum in fluids, which
show that the local velocity gradient ∇u is the parameter of the flow field with
most relevance to the deviatoric stress (see [37]). On the contrary, the pressure is
not a constitutive parameter of the moving fluid. When the fluid is compressible,
the pressure p can be inferred from the free energy, but it is indeterminate for
incompressible Newtonian fluids. If we return to the previous experiments, we
infer from the momentum equation that the velocity field is linear : u = Uexy/h.
We easily infer that the shear rate is: γ̇ = ∂u/∂y = U/h and then comparing
(3.21) to (3.18) leads to: η = μ. Thus, the Newtonian viscosity corresponds to
the simple shear viscosity. In the case of a uniaxial elongation, the components
of the strain-rate tensor are:

γ̇ =

⎡⎣ α̇ 0 0
0 −α̇/2 0
0 0 −α̇/2

⎤⎦ . (3.22)

At the same time, the stress tensor can be written as:

σ =

⎡⎣σ 0 0
0 0 0
0 0 0

⎤⎦ . (3.23)

Comparing (3.20), (3.22), and (3.23) leads to: p = −ηα̇ and σ = 3ηα̇, that
is: μe = 3η, confirming that the Trouton elongational viscosity is three times
greater than the viscosity. It turns out that Trouton’s and Newton’s experiments
reflect the same constitutive behavior. This example shows the importance of an
appropriate tensorial form for expressing the stress tensor. In the present case,
the tensorial form (3.21) may be seen as a simple generalization of the simple
shear expression (3.18).

In many cases, most of the available information on the rheological behav-
ior of a material is inferred from simple shear experiments (see Sect. 3.2). But,
contrary to the Newtonian (linear) case, the tensorial form cannot be merely
and easily generalized from the scalar expression fitted to experimental data.
First, building a three-dimensional expression of the stress tensor involves re-
specting a certain number of formulation principles. These principles simply
express the idea that the material properties of a fluid should be independent
of the observer or frame of reference (principle of material objectivity) and the
behavior of a material element depends only on the previous history of that ele-
ment and not on the state of neighboring elements [6]. Then it is often necessary
to provide extra information or rules to build a convenient expression for the
constitutive equation. To illustrate this, we shall consider a simple example: the
Bingham equation (see also Chaps. 2 and 22). When a fluid exhibits viscoplastic
properties, we usually fit experimental data with a Bingham equation as a first
approximation [35,36,38]:

γ̇ > 0 ⇒ τ = τc +Kγ̇ . (3.24)
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Equation (3.24) means that for shear stresses in excess of a critical value, called
the yield stress, the shear stress is a linear function of the shear rate. Conversely
when τ ≤ τc there is no shear within the fluid (γ̇ = 0). The question arises as to
how the scalar expression can be transformed into a tensorial form. The usual
but not the only way is to consider a process, called plastic rule, as the key
process of yielding. A plastic rule includes two ingredients. First, it postulates
the existence of a surface in the stress space (σ1, σ2, σ3) delimiting two possible
mechanical states of a material element (σi denotes a principal stress, that is an
eigenvalue of the stress tensor) as depicted in Fig. 3.5. The surface is referred
to as the yield surface and is usually represented by an equation in the form
f(σ1, σ2, σ3) = 0. When f < 0, behavior is generally assumed to be elastic
or rigid. When f = 0, the material yields. Second it is assumed that, after
yielding, the strain-rate is directly proportional to the surplus of stress, that is,
the distance between the point the representing the stress state and the yield
surface. Translated into mathematical terms, this leads to write: γ̇ = λ∇f with
λ a proportionality coefficient (Lagrangian multiplier).
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Fig. 3.5. Yield surface delimiting two domains

How must the yield function f be built to satisfy the principle of material
objectivity? For f to be independent of the frame, it must be expressed not as a
function of the components of the stress but as a function of its invariants. An
invariant is a quantity that does not depend on the frame in which it is expressed.
For instance, it is well known that the determinant of a tensor is an invariant. In
contrast with tensor invariants used in mathematics without physical meaning, it
is usual in mechanics to use specific forms for the invariants of the stress tensor:
they are defined in such a way that they can be used as the coordinates of the
point representing the stress state M in the stress space (see Fig. 3.6). The first
invariant I1 = trσ = σ1 + σ2 + σ3 represents the mean stress multiplied by 3
(|OP | = I1/3 in Fig. 3.6), the second invariant I2 = (tr2σ−trσ2)/2 = −tr(s2)/2
can be interpreted as the deviation of a stress state from the mean stress state
(|PM |2 = −2I2 in Fig. 3.6) and is accordingly called the stress deviator. The
third invariant I3 = −tr s3/6 reflects the angle in the deviatoric plane made by
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the direction PM with respect to the projection of σ1-axis and is sometimes
called the phase (cos2 3ϕ = I23/I

3
2 in Fig. 3.6).

If the material is an isotropic and homogenous fluid, the yield function f is
expected to be independent of the mean pressure and the third invariant (for
reasons analogous to those given above for explaining the form of the constitutive
equation). Thus we have f(σ1, σ2, σ3) = f(I2). In plasticity, the simplest yield
criterion is the von Mises criterion, asserting that yield occurs whenever the
deviator exceeds a critical value (whose root gives the yield stress): f(I2) =√
−I2 − τc. As depicted in Fig. 3.6, the resulting yield surface is a cylinder of

radius τc centered around an axis σ1 = σ2 = σ3. (If we draw the yield surface in
the extra-stress space, we obtain a sphere of radius

√
2τc.)
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Fig. 3.6. On the left, the yield surface in the stress space when the von Mises criterion
is selected as yield function. A stress state is characterized by its three principal stresses
and thus can be reported in the stress space. The three invariants of the stress tensor
can be interpreted in terms of coordinates

Once the stress state is outside the cylinder defined by the yield surface, a
flow occurs within the material. As stated above, it is assumed that the strain
rate is proportional to the surplus of stress. This leads to the expression:

γ̇ = λ∂f/∂s = λ
(√

I2 − τc
) s√

I2
. (3.25)

For convenience, we define the proportionality coefficient as: λ−1 = 2η. It is
generally more usual to express the constitutive equation in the converse form
s(γ̇). To that end, we express the second invariant of the strain rate tensor J2

as J2 = −tr(γ̇2)/2 =
[
λ
(√
−I2 − τc

)]2. Then we deduce:

γ̇ = 0⇔
√
−I2 ≤ τc , (3.26)
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γ̇ = 0⇔ σ = −p1 +
(

2η +
τc√
−J2

)
γ̇ , (3.27)

which is the usual form of the Bingham constitutive equation. It is worth noting
that contrary to the Newtonian case, the general tensorial expression (3.26)–
(3.27) cannot not easily be extrapolated from the steady simple-shear equation
(3.24).

3.4 Rheophysics

The rheophysical approach seeks to derive the bulk properties by examining what
may happen at the microscopic scale. Generally the bulk stress tensor is com-
puted by averaging the local stresses. Accurate computation has been achieved
in a certain number of simple cases. Kinetic theories for gases, polymers, and
granular media (rapidly sheared) are typical examples. In most cases for fluids
involved in geophysics, computations are so much more complex that analytical
results cannot be provided. One can, however, benefit from this approach either
by building approximate rheological models or by finding convenient scalings
for the key variables describing bulk behavior. Typical examples include all the
treatments focusing on the rheology of concentrated suspensions. To begin with,
we will outline the principles used in deriving the bulk constitutive equations.
This will lead to introducing important concepts such as the pair distribution
function, the averaging operator, particle interactions, and evolution equations.
We will examine these different notions through the example of Newtonian sus-
pensions with no loss of generality since they can be encountered with a similar
meaning in other theories such as the kinetic theories for granular flows [39].
Then we will examine how it is possible to simplify the constitutive equation
to obtain approximate equations. The last subsection will demonstrate the ad-
vantages of dimensional analysis combined with a microstructural analysis of
particle interactions in deriving appropriate scalings for experimental data and
theoretical results.

3.4.1 Definition of the Bulk Stress Tensor and Selected Applications

One of the key questions in rheophysics is to establish the way in which bulk
behavior can be deduced from the microstructure properties. For suspensions,
this is generally achieved by averaging the local stress and particle interactions.
As all the issues around the most appropriate averaging procedure are still being
debated, here we restrict our attention to the approach followed by Batchelor
and many subsequent authors. The reader interested in further information on
averaging is referred to specific papers [41,42,43,44,45,46,47,48,40].

In the following, we consider a suspension of rigid spherical particles of ra-
dius a within an incompressible Newtonian fluid with viscosity η. Particles are
assumed to be identical and neutrally buoyant. The solid fraction φ is defined
as the ratio of the solid volume to the total volume. In a fundamental paper,
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Batchelor showed that the bulk stress is the sum of a fluid contribution and a
particle contribution [49]:

σ̄ = σ̄(f) + σ̄(p) , (3.28)

where the fluid part can be written as

σ̄(f) = 2η¯̇γ − 〈pf 〉1− �f < u′ ⊗ u′ > , (3.29)

where ¯̇γ denotes the averaged strain-rate tensor, 〈pf 〉 is the mean interstitial
fluid pressure, �f is the fluid density, u′ refers to velocity fluctuations, and ⊗
is the tensor product. We use brackets and the bar symbol to represent en-
semble and volume-averaged quantities respectively. The ensemble average of a
quantity f(r, t) at position r and time t, is computed by performing a large
number of experiments (“realizations”), with the same macroscopic initial and
boundary conditions, and measuring f at r at the same time relative to the
beginning of each experiment. The average of these realizations forms the en-
semble average. To do such a computation, we have to record the configuration
CN of N particles (specified by their positions, linear, and angular velocities)
contained in a volume V . After calculating the probability P (CN , t) of observ-
ing a given configuration CN at time t, we can define the ensemble average as
< f(r, t) >=

∫
P (CN , t)f(x, t;CN )dCN . Such a definition is not very practical

since it implies to specify the positions and velocities of all the particles con-
tained in V . A strategy to bypass this difficulty is to focus on a single particle
(“test particle”) and examine how other particles are distributed with respect
to this particle. This leads to introduce the pair distribution function P2, which
is the probability of finding a particle located at y when the centre of the test
particle is simultaneously in x. Formulated in mathematical terms, this leads to
write the ensemble average of f(r, t) as:

< f(r, t) >=
∫
C2

P2(t;x,y)f (2)(x, t;C2)dxdy ≈
∫
C2

P2(t;x,y)f(x, t)dxdy

(3.30)
where f (2) denotes the conditional averaged function when the position of two
spheres is fixed. It is usually assumed that the conditional averaged function f (2)

can be merely replaced by f . For dilute suspensions, apart from systems governed
by fluctuations (critical phase transition), such an assumption is generally sound
but remains to be proven for concentrated suspensions. The ensemble average
is conceptually very convenient since it offers a sound statistical description
of suspensions and it has the advantage that the operations of differentiation
and ensemble averaging commute. However, its use is restricted by the poor
knowledge that we may have on the distribution of particles in the suspension.
An alternative is to use a volume average, that is, to average the quantity f over
a control volume V , whose length scale must be large compared to the average
distance between particles but small with respect to a distance over which the
average of the property at hand varies appreciably. According we define the
volume-averaged quantity f̄ as f̄(r, t) =

∫
V

f(x, t)dx/V .
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In parallel to the fluid contribution, it is possible to obtain a generic expres-
sion of the particle contribution [40]:

σ̄(p) = σ̄
(p)
surface −

1
2
Jp < Ω′ ⊗Ω′ > −�p < u′ ⊗ u′ > (3.31)

where σ̄
(p)
surface denotes the contribution due to forces exerted on the particle

surface, Ω′ the fluctuations of angular velocity of particles, and Jp the inertia
moment. It can be shown that the surface contribution σ̄

(p)
surface reflects the effects

of local forces at the particle level and may be deduced by averaging the local
forces [40]:

σ̄
(p)
surface =

a

V

N∑
m=1

∫
A

(m)
p

σk ⊗ kdk = an 〈σk ⊗ k〉 (3.32)

where σk is the local stress acting on the particle surface (σkdk is sometimes
referred to as the contact force), k is the outward normal at the contact point,
dk the angle around k, n is the number density (n = φ/(4πa3/3)). In the first
equality in (3.32), we use a volume average of all contact forces acting on the
surface A(m)

p of N beads included in a control volume V . The second equality is
a simple translation of the first one in terms of ensemble average, which is more
usual in kinetic theories or homogenization techniques.

To compute the two contributions, we have to introduce further ingredients.
In particular, information on the particle distribution and the forces acting on
particles is needed. In fact these two elements are tightly connected. It can be
easily shown by first taking f = 1 in (3.30), then calculating the total time deriva-
tive that the pair distribution function satisfies an evolution equation called the
Smoluchowski equation:

∂P2

∂t
+∇x.P2U

(2)
x +∇r.P2U

(2)
r = 0 (3.33)

where U
(2)
x and U

(2)
r are the conditionally averaged velocity and relative velocity

between the two particles located at x and x + r. From a general point of view,
these two velocities depend on the interparticle forces F (hyd), the Brownian mo-
tion, etc., which in turn depend on the imposed velocity gradient γ̇. There is no
for-all-purpose solution to this equation, but several particular applications have
been completely or partially explored. The simplest application of this theory
is to consider suspensions sufficiently dilute for the hydrodynamic interplay be-
tween two particles to be negligible. In this case, if the Reynolds particle number
Rep = 2�a |U | /η (with U the particle velocity relative to the fluid) comes close
to zero, the hydrodynamic force that the particle undergoes is the Stokes force:
F (hyd) = 6πηaU [37]. (This force is inferred from the so-called Stokes equation,
that is, the Navier–Stokes equation in which the inertial terms have been ne-
glected since Rep → 0: μ∇2u = ∇pf .) Both the disturbances in the fluid velocity
and fluid stress fields can be inferred from Stokes problem. At a point x from
the particle center, the disturbance in the fluid stress due to the slow motion
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of the particle can be expressed as: σ(f) = −x.f/(4π|x|3)1 + η(∇u +t ∇u),
where u = (1 + xx/|x|2).f/(8πη|x|) is the disturbance in the velocity field and
f a constant such that

∫
σ(f)k dk = F (hyd) [37,50]. Using (3.32) with P2 = 1

(assumption of dilute suspensions), we deduce that the bulk stress tensor can be
expressed as:

σ̄ = −〈pf 〉1 + 2η
(

1 +
5
2
φ

)
¯̇γ . (3.34)

Thus the well-known Einstein relationship for the effective viscosity of a dilute
suspension is obtained: ηeq/η = 1+2.5φ+O(φ), holding for solid fractions lower
than 2%. This method has been progressively extended to take further interac-
tions into account. Batchelor and Green [51,52] provided the pair distribution
function and the disturbances in the velocity and pressure fields when the solid
concentration is increased so that the velocity and pressure caused by the motion
of a particle is significantly influenced by the presence of another particle. This
leads to modifying the Einstein equation as follows: ηeq = η+2.5φ+7.6φ2+o(φ2).
Subsequently, the Brownian force [53], colloidal forces [54], the effect of solid frac-
tion [55,56], and the particle surface roughness [57] have been included in the
bulk stress computation.

3.4.2 Approximate Models

Because of the complexity of the dynamics of multiparticle interactions, rigorous
microstructural theories generally do not provide analytical results. For instance,
no analytical constitutive equation is available to predict the bulk behavior of
Newtonian suspensions or granular flows at high solid fractions. A common way
of overcoming this difficulty is to approximate the pair distribution function and
the particle interaction expressions. This leads to a wide range of approximate
models, whose applicability compensates for the introduction of ad hoc approx-
imations. It is worth noting that numerical simulations of particle dynamics are
increasingly used as an intermediate step between the theoretical models and the
approximate equations. Typical examples include the treatment performed by
Zhang and Rauenzahn [46,58] for granular flows and by Phan Thien [59,60] for
concentrated viscous suspensions. Here, to exemplify the derivation of approxi-
mate models, we present the reasoning for deriving the bulk viscosity (see also
[40,61]). The first step is to specify the approximate pair distribution function.
This is usually done by considering a given configuration of particles (generally
assumed to be cubic) and by assuming that the face-to-face distance between
particles (ξ) is fixed on average and related to the solid fraction as follows:

ξ

a
= 2

ς

1− ς , with ς = 1− 3

√
φ

φm
, (3.35)

where φm is the maximum random solid concentration (φm ≈ 0.635 for unimodal
suspensions of spherical particles). The pair distribution function may thus be
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written as:

P2(k)|r=ξ =
nc∑
i=1

δ(k − ki) , (3.36)

where δ is the Dirac function, ki denotes the directions of the neighboring particle
centers in the considered configuration with respect to the test-particle center,
nc the coordination number (number of indirect contacts). The lubrication force
between two spheres can be divided into three contributions: a squeezing con-
tribution, a shearing contribution, and a term due to the rotation of spheres. It
can be shown that, in a steady state, the squeezing contribution is to leading
order [62]:

F sq =
3π
2
η
a2

ξ
cn , (3.37)

where cn is the normal component of the relative particle velocity c. The force
due to shearing motion can be written to first order: F sh = πηa ln (ξ/a) ct (with
ct the tangential component of the relative particle velocity) and the force due to
the rotation of particles is: F rot = 2πηa2 ln (ξ/a) k×Ω. These two contributions
are of the same order and their magnitudes increase as ln(ξ/a). Consequently, for
concentrated suspensions, to leading order in ξ/a, they are negligible compared
to the squeezing force. All the above expressions tend toward infinity when the
gap becomes extremely small, which would preclude any direct contact. The
squeezing contribution can be evaluated by incorporating (3.37) into (3.32):

σ(p)
sq =

3π
2
a3

ξ
μnd 〈cn ⊗ k〉 . (3.38)

The relative velocity is computed as the average velocity imposed by the bulk
flow:

c ≈ 2aL̄k − 2a < Ω > ×k = 2a(¯̇γk − (< Ω > −ω̄)× k) , (3.39)

where L̄ = ∇ū denotes the bulk velocity gradient, ω̄ is the curl of L̄, and ¯̇γ is
the symmetric part of L̄. It follows that the squeezing velocity can be written:

cn = 2a(¯̇γ : k ⊗ k)k . (3.40)

The contribution due to the squeezing motion is directly deduced from (37):

σ(p)
sq =

9
4
a

ξ
ηφ(¯̇γ : ki ⊗ ki)ki ⊗ ki . (3.41)

It should be noted that the Newtonian character of bulk stress is dictated by
the symmetry of the directions ki with respect to the principal directions of the
strain-rate tensor. Let us consider a simple shear flow. If we assume that (i) the
particle configuration is cubic, (ii) its privileged axes coincide with the principal
axes of the strain-rate tensor, (iii) the predominant action is due to squeezing,
then we can deduce that the bulk viscosity varies as:

ηeq = α
a

ξ
η , (3.42)
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with α = 9φ/4. Thus it is shown that the bulk viscosity of a concentrated sus-
pension should tend towards infinity when the solid concentration comes closer
to its upper limit φm.

The main drawback in the derivation of approximate models lies in the specu-
lative character of many assumptions. As pointed out by different authors [63,64],
the mean-field approach presented here suffers a great deal from questionable
approximations. Among others, it is obvious from (3.40)–(3.41) that the result-
ing bulk stress tensor depends to a large extent on the particle arrangement,
the face-to-face distance between particles, and the velocity field. For instance,
using different methods or assumptions, most authors have obtained a bulk vis-
cosity whose expression is structurally similar to (3.42), but sometimes with a
different value for α. For instance, using a similar approach, Goddard [65] found
α = 3φ/8 while van den Brule and Jongshaap arrived at α = 9φ/4 [61]. Using an
energy-based method, Frankel and Acrivos obtained α = 9/4 [66]. Sengun and
Probstein [67] inferred a more complicated expression from energy considerations
but, asymptotically for solid concentrations near the maximum concentration,
they found a comparable expression for the bulk viscosity, with α ≈ 3π/4, close
to the value determined by Frankel and Acrivos. On the basis of energy and
kinematic considerations, Marrucci and Denn [64] argued that coefficient α is
not constant and must vary as α ∝ ln(a/ξ) in the worst case. Likewise, Adler
et al. [63] put forward that averaging the different configurations through which
the particle arrangement passes does indeed smooth the singularity 1/ς and con-
sequently the bulk viscosity does not diverge when the solid concentration tends
to its maximum.

It is worth noting that approximate models can be built using empirical rea-
soning without any recourse to a detailed analysis of particle interactions. A
typical example in the area of suspensions is given by Krieger and Dougherty’s
model [68]. The authors assumed that within a suspension of non-Brownian,
noncolloidal particles, a particle sees a homogeneous fluid surrounding it, whose
viscosity depends only on the solid fraction and the interstitial fluid viscosity.
This is obviously a crude assumption since this particle is more influenced by
nearby particles than by more distant particles. Using dimensional analysis (see
below), it may be shown that the bulk viscosity is of the form: ηeq = ηf(φ). The
bulk viscosity can be computed by assuming that one first introduces a solid
fraction φ1, then a solid fraction φ2 so that the resulting solid concentration is
φ. For doing so, we must choose φ2 such that it satisfies: φ2 = (φ−φ1)/(1−φ1).
Finally we must have: f(φ1)f(φ2) = f(φ), which must hold whatever the solid
fractions. It can be shown that the only function obeying such an equality is of
the form: f(φ) = (1− φ)−β . Experimentally, β has been generally estimated at
approximately 2. Krieger and Dougherty’s expression has been modified to rep-
resent experimental data over as wide a range of solid concentrations as possible:

ηeq
η

=
(

1− φ

φm

)−[η]φm

, (3.43)
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where [η] = lim
φ→0

(ηeq − η)/(ηφ) = 2.5 is called the intrinsic viscosity. Such a

relation matches the Einstein expression at low solid fractions. Many expres-
sions with a form similar to (3.43) have been proposed to take further phenom-
ena (aggregating of particles [69], shear-thinning, colloidal effects, polydispersity
[70,71], etc.) into account. A common element in several models is to consider
that the maximum solid concentration is not constant but is rather a shear-rate-
dependent function since it should reflect changes in the microstructure. For
instance, in order to make an allowance for viscoplastic behavior, Wildemuth
and Williams [73,72] have assumed that the maximum solid fraction relaxes
with shear stress from a lower value φ0 to an upper bound φ∞:

1
φm

=
1
φ0
−
(

1
φ0
− 1
φm

)
f(τ) (3.44)

where f(τ) = (1+Aτ−m)−1, A andm are two constants intrinsic to the material.
This also implies that such a suspension (with φ0 ≤ φ ≤ φ∞) exhibits a yield
stress:

τc(φ) =
[
A

(
φ/φ0 − 1

1− φm/φ∞

)]1/m

. (3.45)

It should be noted that in the model and experiments presented by Wildemuth
and Williams, the yield appearance reflects either colloidal effects or structural
changes in the particle arrangement (jamming, friction between coarse particles)
or both of them.

In contrast, Sengun and Probstein [67] proposed different arguments to ex-
plain the viscoplastic behavior observed in their investigations on the viscosity of
coal slurries (with particle size typically ranging from 0.4 μm to 300 μm). Their
explanation consists of two approximations. First, as it is the interstitial phase,
the dispersion resulting from the mixing of fine colloidal particles and water
imparts most of its rheological properties to the entire suspension. Secondly,
the coarse fraction is assumed to act independently of the fine fraction and to
enhance the bulk viscosity. They introduced a net viscosity ηnr of a bimodal
slurry as the product of the fine relative viscosity ηfr and the coarse relative
viscosity ηcr. The fine relative viscosity is defined as the ratio of the apparent
viscosity of the fine-particle suspension to the viscosity of the interstitial fluid:
ηfr = ηf/η0. The coarse relative viscosity is defined as the ratio of the apparent
viscosity of the coarse-particle slurry to the viscosity of the fine-particle suspen-
sion: ηcr = ηc/ηf . The two relative viscosities depend on the solid concentrations
and a series of generalized Péclet numbers. For the coarse-particle suspensions,
all the generalized Péclet numbers are much greater than unity. Using a dimen-
sional analysis, Sengun and Probstein deduced that the coarse relative viscosity
cannot depend on the shear rate. In contrast, bulk behavior in fine-particle sus-
pensions is governed by colloidal particles and thus at least one of the generalized
Péclet numbers is of the order of unity, implying that the fine relative viscos-
ity is shear-dependent. Sengun and Probstein’s experiments on viscosity of coal
slurries confirmed the reliability of this concept [67]. Plotting log ηnr and log ηfr
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against log γ̇, they found that over a wide range of concentrations, the curves
were parallel and their distance was equal to log ηcr (see Fig. 3.7). However, for
solid concentrations in the coarse fraction exceeding 0.35, they observed a sig-
nificant departure from parallelism which they ascribed to nonuniformity in the
shear rate distribution within the bulk due to squeezing effects between coarse
particles.

Generally, all these empirical models successfully provide an estimation of
bulk viscosity over a wide range of solid fraction, as shown in Fig. 3.8, provided
that the maximum solid concentration has been correctly evaluated. In practice,
for natural fluids such as debris suspensions, this evaluation may be problematic
and lead to a large uncertainty in computing bulk viscosity.
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η
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)

 coal dispersion φ=0.3 (colloidal) 
 bimodal coal slurry φ

c
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Fig. 3.7. Variation of the bulk viscosity of coal slurry as a function of the shear
rate. The bulk viscosity curve is parallel to the curve obtained with the fine fraction.
After [67]

3.4.3 Contribution of Dimensional Analysis

Expressing bulk behavior in terms of dimensionless groups is a practical and
usual way of identifying the most relevant variables and delineating flow regimes.
A certain number of studies have so far focused on suspensions of rigid spherical
particles within a Newtonian fluid with a narrow size distribution [7,54,76,78].
In this case, a suspension of noninteracting particles is characterized by eight
variables: (i) for particles, the density �p, the radius a, and the solid volume
concentration φ; (ii) for the interstitial fluid, the viscosity η and the density �f ;
(iii) for the conditions imposed during an experiment, the temperature T , the
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Fig. 3.8. Variation in the bulk viscosity as a function of the reduced fraction. Typical
data obtained by Thomas [74] and Pätzold [75] are reported

shear rate γ̇ (or equivalently the shear stress τ), and the experiment duration
texp. According to the principles of dimensionless analysis, the bulk viscosity
can be expressed as a function of 8− 3 = 5 dimensionless groups. The following
numbers are preferentially formed: the solid fraction φ, the Reynolds particle
number Re = (2a)2γ̇/η reflecting fluid inertia at the particle scale, the Péclet
number Pe = 6πγ̇a3η/(kT ) (where k refers to the Boltzmann constant) defined
as the ratio of viscous forces to Brownian forces, the Deborah number expressed
as the ratio of a particle relaxation time tp to the typical time of the experi-
ment De = tp/texp (depending on the particle size, the particle relaxation can
be linked to the Brownian diffusion time tp = 6πa3η(kT )−1 or the Stokes relax-
ation time tp = 2a2�p(9η)−1), the Stokes number St = 2�pRe/(9�f )−1 defined
as the ratio of a particle relaxation time to a fluid characteristic time. If the par-
ticles are colloidal, van der Waals’ attraction and electrostatic repulsion must be
taken into account, giving rise to two dimensionless groups: an attraction num-
ber Natt = ηa3γ̇/A, where A is the Hamacker constant of the colloidal particles,
and a repulsion number Nrep = ηa2γ̇/(εψ2

0), where ε is the fluid permittiv-
ity and ψ0 the surface potential. As examples, taking a = 0.5 mm, γ̇ = 1 s−1,
η = 10−3 Pa.s, texp = 10 s, T = 293 K, �p = 2500 kg/m3 for a suspension of
coarse particles slowly sheared (typically a suspension of particles in a water-
glycerol solution), we find: Re = 10−3, Pe = 580 106, St = 5 10−4, De = 10−2.
Taking a = 0.5 μm, A ≈ 10−20 J, ε = 7 10−10 C2J−1m−1, ψ0 ≈ 100 mV,
�p = 2650 kg/m3 for a suspension of colloidal particles slowly sheared (typi-
cally a water–kaolin dispersion), we find: Re = 10−9, Pe = 0.6, St = 6 10−10,
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De = 6 10−2, Natt ≈ 10−2, Nrep ≈ 4 10−5. Using the dimensional analysis prin-
ciples (i.e. ignoring dimensionless numbers much lesser or greater than unity)
[79], we expect from the magnitude orders found above that, typically for the
viscosity of a coarse-particle suspension, bulk viscosity depends on the solid con-
centration mainly: ηeq/η = f(φ), and for a dispersion, it depends on the Péclet
number and the solid concentration: ηeq/η = f(φ, Pe). Such scalings have been
successfully compared to experimental data [80,81]. The main problem encoun-
tered in geophysics is that fluids generally involve a wide range of size particles
and different types of particle interaction. For instance, typically for a debris
flow, the particle size ranges from 1 μm to more than 1 m and particle interac-
tions can include colloidal effects, collisional, frictional, lubricated contacts, etc.
Thus the large number of physical parameters intervening in the problem makes
any thorough and general examination of the resulting flow regimes intricate. To
our knowledge, only partial results have so far been provided on the relevant di-
mensionless groups controlling bulk behavior of natural fluids [7] (see also Chap.
21).
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4.1 Introduction

A granular material is a collection of a large number of discrete solid parti-
cles with interstices filled with a fluid or a gas. If the interstitial fluid plays an
insignificant role in the transportation of momentum, flows of such materials
can be considered as dispersed single-phase flows. In other occasions, when the
mass of the interstitial fluid is comparable to that of the solids the interactions
between the fluid and solid phases are significant, the motion of the fluid can
then provide the driving force for the flow of the solid phase. The dynamical be-
haviour of these materials can be very complex; its description involves aspects
of traditional fluid mechanics, plasticity theory, soil mechanics and rheology.

4.1.1 Some Distinctive Features of Granular Materials

Granular materials exhibit a number of distinctive features not shared by “or-
dinary” solids, fluids and gases. In fact, depending on the externally applied
mechanisms they behave somewhat like solids or fluids or gases. Furthermore,
their behaviour can in a given process change from, say being fluid-like to sud-
denly solid-like, often repeatedly, so that an intermittent reaction results from
a driving mechanism that may strictly be continuous. Distinctive features of
granular materials are the following:

Dilatancy. Deformations in a granular body are always accompanied by vol-
ume changes and can in principle be easily understood. If an array of identical
spherical grains at closest packing is subjected to a load so as to cause a shear
deformation, then from pure geometrical considerations that particles must ride
one over another it follows that an increase in volume of the bulk material will
occur, see Fig. 4.1. This property was termed dilatancy by Reynolds in 1885.
Despite this fact, there are many phenomena for the description of which this
non-volume preserving – a kind of compressibility – need not be accounted for.
For instance, in a granular avalanche followed from initiation to runout, the mass
expands at the onset of its motion and it contracts at the moment of settling,
but while rapidly moving down the mountain flank variations of the volume are
generally small.

N.J. Balmforth and A. Provenzale (Eds.): LNP 582, pp. 79–107, 2001.
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Fig. 4.1. Explaining dilatancy: (a) Identical circular disks in closest packing and when
they have been sheared. The layer thickness must increase if such shear deformations
are possible. (b) A rubber bellows, filled with a granular material of densest packing
and sealed with a plug and pore space filled with water, of which the filling is made
visible by the liquid level in the pipette. Outside pressure deforms the content, also by
shear; the water level in the pipette falls as a result of the pore space extension
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Fig. 4.2. Mohr–Coulomb yield criterion (σ > 0 as a pressure): If the point representing
normal and shear tractions, (σ, τ), at an interior surface element lies in the shaded area
then that element can be in equilibrium without deformation, if it lies on the limiting
straight lines, then yielding occurs. (a) holds for a material without, (b) with cohesion

Near-Coulomb Behaviour. When grains are poured on a rough horizontal
plane from a fixed source point they pile up in a heap (triangular in 2d and
circular cone in 3d). The surface angle θ, called angle of repose is that limiting
angle below which the heap stays unchanged at rest and above which surface
grains move down as avalanches to reconstitute the limiting angle.

The behaviour inside the material is analogous and described by the Mohr–
Coulomb yield criterion, which states that yielding will occur on a plane element
at an interior point, when the shear, τ , and normal, σ, tractions acting on the
plane element are related by (see Fig. 4.2a)

|τ | = (tanφ)σ , σ > 0 as a pressure . (4.1)

φ is the static internal angle of friction, and it is generally assumed that φ = θ.
Typical values are from 25◦ to 40◦. The law (4.1) ignores cohesion which is of
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Fig. 4.3. Definition of the “Pauschalgefälle”: It is the angle � between a line connecting
the centres of mass in the initial and end positions and the horizontal. It is smaller
than the internal angle of friction φ, because during motion a fluidized layer is formed
close to the bed

significance e.g. when sand is wet. With cohesion the law (4.1) is replaced by
(see Fig. 4.2b)

|τ | = a+ (tanφ)σ , σ > − a

tanφ
. (4.2)

Many physical phenomena, whether they are of static or dynamic nature, can
be very well described by employing the above Mohr–Coulomb material be-
haviour. Recent continuum-mechanical developments, however, generally involve
Coulomb behaviour in special limiting situations but treat the sand, porous ma-
terial or snow as a material with elastic, viscous and/or plastic behaviour.

Fluidization. It is well known that avalanches (of snow or gravel or rock)
travel very large distances, generally much larger than one would expect on
the basis that the loss in potential energy from initiation to runout is balanced
by the work done due to basal sliding (evaluated with the given internal angle
of friction, φ), see Fig. 4.3. Several postulates have been proposed (hover-craft
action at the base, melting of rock, fluidization aided by the presence of fine
dust). The most acceptable explanation is that in a very thin layer immediately
above the sliding surface the strong shearing gives rise to enhanced collisions
of the particles, leading to an increase of the mean particle distance and thus
reducing the effective friction angle. One way to handle this situation is to ignore
the thickness of the boundary layer and to introduce a basal Mohr–Coulomb type
friction law with a bed friction angle δ < φ. Alternatively, one may resolve the
boundary layer with a theory that accounts for the dilatation due to the particle
collisions.

Liquefaction by Seismic Waves. The devastating earth quakes in Niigata
(1992) and Kobe (1995) left behind a number of large residential buildings,
erected in saturated soil, which sunk into the ground and are now tilted, but
otherwise practically left intact, see Fig. 4.4, right. This phenomenon can be
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Fig. 4.4. Left: Glacier moraines in Tuyk
Valley, Alaarcha basin North Tien Shan, Kir-
gizstan. The moraine to the left has been dis-
placed by a (probably seismically induced)
debris flow. (Courtesy Dr. Vladimir Aizen,
University of California at Santa Barbara).
Above: Overturned buildings. Photo prob-
ably taken after the devastating earthquake
in Kobe or Niigata. The overturning is the

result of the liquefaction of the soil at the passage of the seismic wave. (Courtesy Prof.
Dr. D. Kolymbas, Innsbruck)

explained as follows: Before the passage of the earthquake the building was in
equilibrium with the buoyancy forces and the shear stresses that were established
between the water saturated soil and the base of the building. When the seismic
wave was passing the shear stresses were suddenly released, the weight of the
building and the buoyancy force out of equilibrium, so that a motion could set
in. Liquefaction phenomena are also in action when the soil in a slope suddenly
becomes unstable and moves catastrophically downhill (Fig. 4.4, left). The reason
is often heavy rainfall so that the soil is quickly becoming soaked with water.
In such debris and mud flow events water plays a significant role; it follows that
theories of dry granular materials are likely not appropriate for their description.

The phenomenon discussed next is so significant in geological flows that we
reserve its own subsection to it: Particle size separation or particle size segrega-
tion. It is seen almost everywhere in granular deposits, and its phenomenology
is understood but the theoretical state of its description is still fairly meagre.

4.1.2 Particle Size Segregation

It is a common experience for everyone who wishes to mix different types of
particles that it is very difficult to achieve homogeneous mixing of several sorts
of grains, whereas it is, in general fairly easy to achieve homogeneous mixing with
miscible fluids. Conversely, moving a spoon in a jar of well mixed dry-freezed
coffee shows that the large coffee grains will rise to the surface. Factors that can
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(a) (b)

Fig. 4.5. (a) Sketch of a profile from a deposit of a pyroclastic flow due to the volcanic
eruption of Mount St. Helens, 12 June 1980. The profile is taken from a position about
6.7 km north of the crater and 1 km southwest of the Spirit Lake. One complete “flow
unit”is shown that is under- and overlain by other flow units. The profile indicates a
clear reverse grading in which larger grains are at the upper portions of the flow unit,
while smaller grains are in its lower parts. Each flow unit corresponds to the passage
of a pyroclastic flow (Courtesy of S. Straub [113]). (b) Debris flow deposit form a
disastrous flow event on 31 July–1Aug. 1996 in Taiwan. In the picture the road in the
front has been cleared. It demonstrates particle size separation. The free surface of the
deposit is covered by large bolders, whilst the lower part consists of the fine material

give rise to separation are differences in size, density and shape and differences
in resilience (i.e. interaction forces) during impact.

Avalanche-, Debris- and Pyroclastic Flow Deposits. Such particle size
separations are often observed in avalanche-, debris- and pyroclastic flow de-
posits. In dynamical systems of such flows one generally observes that the large
particles move to the front and to the top surface whilst small particles accumu-
late at the bottom and in the rear part of the avalanche. In deposits of pyroclastic
flows due to volcanic eruptions or in marine deposits in the depository zone of
turbidity currents the following is encountered. Deposition profiles show a repet-
itive occurrence of flow units with the dust particles at the bottom and particle
size increasing as one moves higher up until a level is reached where a new flow
unit commences. Each flow unit corresponds to the passage of an avalanche, and
obviously it is characterised by reverse (or inverse) grading, see Fig. 4.5a. This
same structure of inverse grading can also be observed in deposits of debris flows.
Often a rather thin “skin”of larger particles covers the top, whilst the main part
of the body is occupied by the smaller size components, see Fig. 4.5b.

The phenomenon of inverse grading can relatively easily be understood, if one
assumes that gravity plays a significant role in explaining it. A simple mathemat-
ical model was presented by Savage and Lun [105] that allows the quantification
of the process of gravity separation of fine from coarse spherical particles during
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the shearing flow of an initially randomly mixed material down an inclined chute.
The model is restricted to shear flow of a cohesionless granular material which
consists of spherical particles of two sizes. During the shearing motion the parti-
cles experience continued rearrangements. These rearrangements are assumed to
be random. The shearing motion is supposed to be the macroscopic manifesta-
tion of a large number of such microstate realizations, and the laws of statistics
are supposed to hold in order to derive the properties of the macrosystem. At
any instance, there will be a distribution of void spaces. If a void space at a
certain depth is sufficiently large, then a particle from a position immediately
above can fall into it when it moves past this void space in the shearing motion.
For a given realization of the solid concentration, the probability of finding a
hole that a small particle can fall into is obviously larger than the probability of
finding a hole that a large particle can fall into. This will lead to a tendency for
particles to segregate out, with fines at the bottom and coarse ones at the top.
This mechanism is, of course, orientation dependent due to the action of gravity.
This mechanism is called the random fluctuating sieve mechanism.

It is clear that this gravity-induced size-dependent void filling mechanism is
insufficient to explain the phenomenon of inverse grading, because there exists a
net mass flux perpendicular to the direction of the shearing motion towards the
bed. A second mechanism must therefore exist for the transfer of particles from
one position to another which gives rise to a counter flow so as to accommodate
for the mass loss in the transverse direction of motion that would otherwise
exist. Savage and Lun [105] propose that, as a result of the fluctuating contact
forces on an individual particle, that there can occur force imbalances such that
a particle is squeezed out of its own position into a position above or below.
This mechanism cannot be gravity driven nor be size dependent. It must be as
large as need be to compensate the mass flux towards the non-movable bed. This
proposal is called the squeeze expulsion mechanism.

Sand-Piles and Rotating Drums. Inverse grading can easily be made experi-
mentally visible in laboratory experiments.

In the first experiment, consider two vertical glass plates forming a narrow
gap; together with a basal plate and side walls they form a plane “silo”. This
space is filled from a single central point source at the upper edge with a binary
mixture of cohesionless (white) sugar crystals of 0.5 mm nominal diameter and
(dark) spherical iron powder with mean diameter 0.34 mm. Although material is
continuously deposited at the top of the pile it does not immediately flow down
the faces because of the differences between the static and dynamic angles of
friction. Once the static friction angle is exceeded the avalanche flows down the
face of the pile and forms a roll-wave, as shown in Fig. 4.6a, in which the kinetic
sieving takes place. As the avalanche reaches either the base or the wall of the
silo it is rapidly brought to rest by an upslope moving shock wave, as shown in
Fig. 4.6b. These upslope moving shock waves freeze the particle size distribution
into the deposited granular material and thus preserve the pattern formed during
the avalanche motion. Successive and alternating avalanche releases on both faces
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(a)

(b)

(c)

Fig. 4.6. Sand-piles formed by pouring a mixture of white large and dark small particles
between the slit of two parallel glass plates. (a) Photograph and schematic diagram of
a granular avalanche in a typical roll wave configuration. An inverse-graded particle
size distribution rapidly develops in which the large (white) particles overlie the small
(dark) particles forming a stripe. Velocity shear through the avalanche thickness then
transports the larger (white) particles to the front. (b) Photograph and schematic
diagram of the upward propagating dispersed shock wave. The material below the shock
is at or near rest, whilst the grains above the shock are flowing rapidly downslope. (c)
Photograph of the final deposition of the material as a pine tree type sand pile. As
opposed to panels (a) and (b), the larger particles are here dark and the small ones
white. (From [34])

of the triangular pile build up a sequence of such layers giving rise to a pine tree
pattern as shown in Fig. 4.6c. It should also be mentioned that there is a tendency
for the upslope propagating shock wave to destabilize the granular material on
the opposite face of the pile as it reaches the centre, so that avalanches tend to
form first on one side and then on the other.

In the second experiment the same granular mixture is contained within the
small gap between two disks (diameter 25 cm) with a free surface that lies above
the centre as shown in Fig. 4.7; particle size segregation may then occur if the
disk is rotated about its centre. To emphasize the pattern formation, the disk
is laid horizontally and gently shaken so that all the small particles fall to the
bottom. Once gently returned to the vertical, one side of the disk is completely
white whilst the other is completely dark. When the disk is rotated at constant
rate (110 seconds per revolution), intermittent avalanches are formed at the free
surface. The intermittency again stems from the difference between static and
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(a) (b) (c)

Fig. 4.7. At small rotation rates intermittent avalanche release in a thin rotating disk
filled with a granular mixture leads to the formation of stripes tangent to the free
surface (a), which are then rotated and buried to form a Catherine wheel effect (b).
At faster rotation rates a quasi-steady flow develops in which the free surface is fixed
in space and there is a continuous distribution of particle sizes outside the central core
(c). The large particles are now white and the smaller ones dark. (From [34])

dynamic internal friction angles. The central circular core of material remains
completely undisturbed by the slow rotation of the drum [77,81]. Each avalanche
release sorts the material, forming a stripe, which is frozen into the deposit by
the shock wave and subsequently rotated and buried in the undisturbed material
below the free surface. Subsequent releases create a sequence of stripes (Fig. 4.7a)
tangent to the central core, which create a Catherine wheel effect (Fig. 4.7b).

At faster rotation rates (< 20 seconds per revolution) the intermittency of
the avalanche ceases, the shock waves and the stripes disappear and a steady-
state flow regime dominates, Fig. 4.7c. The material is continuously released on
the upper side and continuously deposited on the lower side of the concave free
surface and is transported between the two positions by a quasi-steady avalanche
in which kinetic sieving takes place. Since the smaller particles are concentrated
at the bottom of the avalanche they are the first to get deposited on the lower
half of the free surface and a new pattern develops in which the central core
is undisturbed, and there is a continuous distribution of grain sizes outside the
central core, starting with a high concentration of small particles near the core
and ending with a high concentration of large particles near the outer wall as
shown in Fig. 4.7c.

4.1.3 Structure of Theories

Structurally, granular materials are described by three different theoretical con-
cepts:

• Molecular Dynamics: One models the granular material as an assem-
blage of a large number of rigid bodies interacting with one another. Pos-
tulates are introduced to describe the interaction between the particles at
the contact points and Euler’s equations of the motion of each finite di-
mensional body are formulated and solved. This discrete particle method is
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applied to a large number of bodies in 2d and 3d flow configurations, see e.g.
[11,12,23,42,72,97,119,120,121].

• Statistical Mechanics: In the limit as the number of particles becomes
infinitely large this method is replaced by a statistical approach, in which
moments of a Boltzmann type equation are used. Interactions between the
individual bodies are expressed by the collision operator, here accounting
for the loss of energy under collision. The number of moments taken defines
the complexity of the theory, which is now continuous for fields that are
statistical averages of fields exhibiting large fluctuations on the microscale,
see e.g. [39,50,53,54,55,73,104].

• Continuum Mechanical Models: These are purely phenomenological de-
scriptions and are restricted to macroscopic length scales that extend over
many particle diameters. Closure conditions are based on common rules of
rational thermodynamics and may account for microstructural effects, see
e.g. [1,2,31,91,114,122,123,126].

In the next sections we shall illustrate accounts on all three of these concepts.

4.2 Single-Phase Theories

In many flows involving granular materials, the interstitial fluid plays an insignif-
icant role in the transportation of momentum, and thus flows of such materials
can often be considered as dispersed single-phase rather than multi-phase flows.
Rockfalls, landslides and flow avalanches of snow, but also pipe flows of grains
and pills in the food and pharmaceutical industry are examples of this sort. For
dry materials (i.e. granules which are suspended in a gas of negligible density)
there are three mechanisms that contribute to the generation of stress:

(1) dry Coulomb-type rubbing friction,
(2) transport of momentum by particle translation between contacts,
(3) dispersive momentum transport by collisional interactions.

In general, all three mechanisms are effective, however, there are flow regimes
in which only a single one plays a dominant role. For instance, at high solid
concentrations and low shear rates, the particles will be in close contact; as a
result the stresses are of the quasi-static, rate-independent Coulomb-type. On
the other hand, at very low concentrations and high shear rates the particles
are likely to be in contact a very short time, and mean free paths are large as
compared to the particle diameter. The transport of momentum by particles
is significant and the bulk material will in some way behave like a dilute gas.
When concentrations and shear rates are large, momentum transfer occurs as a
result of collisional interactions, since the void spaces are too small to permit
essential particle transport between collisions. This is referred to as the grain
inertia regime.

In the following we will introduce various methods to describe the flows of
granular materials.
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4.2.1 Molecular Dynamics

The molecular dynamics approach to simulate the dynamics of granular mate-
rials is a direct numerical simulation of particle–particle interaction [119]. The
calculations are typically carried out for a fixed number of spherical particles (or
in two dimensions circular disks) that are usually bounded on the four sides by
stationary or periodic boundaries. Initially, the particles have assigned random
velocities. The numerical method involves explicit integration of Newton’s law
of motion. The collision between the spheres is often assumed to be elastic; slip
could be allowed during contact as well as frictional resistance. While dealing
with spherical particles it is unnecessary to know all the Euler angles to de-
termine the subsequent motion of the particles; however the method could in
principle be extended to simulations involving non-spherical particles in which
case the initial orientations of the individual particles would be necessary1.

ŝ

ri rj

Ωi Ωjn̂

xi xj

z

y

x

Fig. 4.8. Sketch of particle–particle contacts

Newton’s second law of motion reads for a system of grains

F i = mi
d2xi

dt2
, (4.3)

where F i denotes the force acting on particle i and xi stands for the position
vector of the i-th particle. The crucial point and the physical input that enters
1 For a non-spherical body the angular momentum equation is described in a frame

fixed with the body: the Euler equations. The degrees of freedom are the so-called
Euler angles; they describe at each instance the orientation of the body relative to a
fixed coordinate system. Since a sphere is symmetric relative to any plane through its
center only one equation is needed to describe its rotation. This leads to a substantial
reduction of the complexity of the numerical integrations of many particle systems.
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into the simulations are the forces. Besides external forces like gravity, the only
forces are the ones acting during particle–particle and particle–wall collisions.

Whenever two spherical particles are closer to one another than the sum of
their radii (d := ri +rj) they interact via normal and shear forces. In the normal
direction n̂, given by the line connecting the two centers of mass of the colliding
particles (see Fig. 4.8), the first contribution exerted on particle i comes from
an elastic restoring force

F i
elastic = −kn (ri + rj − (xi − xj) · n̂)α

, (4.4)

where kn denotes Young’s modulus. For α = 1, (4.4) corresponds to Hooke’s law,
and for α = 1.5 the Hertzian contact force due to slightly deformable spheres
is investigated [43,68]. The second contribution acting in the direction of n̂ is
a dissipative force proportional to the relative particle velocity in the normal
direction

F i
diss = −γnmeff(ẋi − ẋj) · n̂ , with meff :=

mimj

mi +mj
, (4.5)

where γn stands for a phenomenological friction coefficient.
The force in the tangential direction ŝ is somewhat more artifical. The first

contribution is a viscous friction force, assumed to be proportional to the relative
velocity difference of the surfaces of the particles in this tangential direction,

F i
viscous = −γsmeff [(ẋi − ẋj) · ŝ + riΩi + rjΩj ] , (4.6)

where Ωi represents the angular velocity of the i-th particle (clockwise rotation is
chosen as positive). To account for real static friction, which might lead to stable,
static arches, a virtual spring is put at the point of contact inception during a
collision [69,98]. This leads to a static friction force, neglecting rotation,

F i
static = −ks

∫
(ẋi − ẋj) · ŝ dt , (4.7)

in which integration is over the contact time. Due to the Coulomb yield criterion
(4.2), the magnitude of the shear force exerted on particle i, F i

shear, is given by

|F i
shear| = min

(∣∣F i
viscous + F i

static

∣∣ , a+ μ
∣∣F i

elastic + F i
diss

∣∣) , with μ = tanφ ,
(4.8)

where φ is the static internal angle of friction, while a is the cohesion. Different
authors used different approaches in modeling the collisional forces (4.4)–(4.7)
and criterion (4.8) in whole or in part. Despite the differences, however, they
obtained many reasonable numerical results [24,28,69,72,92,97,117,118,121,128].

Since all forces, except the external forces like gravity, only act during particle
contacts, one must keep track of all the collisions during numerical simulations. A
naive implementation would check at each time step for all N particles whether
they are in contact with any of the other N − 1 particles. This is very inefficient
and hardly feasible for system sizes of more than a few thousand particles. In or-
der to achieve as effective numerical simulations as possible, different numerical
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methods have been suggested, see e.g. [3,10,80,95]. Numerical results obtained
by the molecular dynamic simulations exhibit fair to good agreement with ob-
servations. For example, in a simulation of plane Couette flow by Thompson
and Grest [117] a Hooke type elastic force model with 750 soft particles with
equal radii is employed. A plug-like motion of the core and a thickness of the
boundary shear layers of 6 to 12 particle diameters is found, which shows good
agreement with experimental results [41]. Surprisingly, the shear stress did not
show a quadratic dependence on the mean shear rate as expected [5] but be-
came constant for large shear rates; this was explained by the dilatancy in the
steady-state regime. Besides, segregation by size or mass can also be modelled
by the use of molecular dynamics [40,89,96].

Such direct simulations can hardly handle real practical problems involving
hundreds of thousands, in fact millions of particles, in which the interactions
between any particle and its neighbours are far from simple. Nonetheless, they
do provide useful insight into the formulation of theories, much the same as
experimental results. This is demonstrated in the various computer codes that
have been developed and are in use (see the review of Campbell [11] and Savage
[101]).

Above, most molecular dynamic simulations have been performed for dry
granular materials. The stickiness due to the humidity of the surrounding air
may make it necessary to account for the cohesion. In such cases and when the
viscous nature of the surrounding fluid is large, the interstitial fluid is significant.
In such cases the Navier–Stokes equations can be used to model the fluid phase.
What remains is to adequately incorporate the interactions between the grains
and the fluid.

4.2.2 Statistical Mechanics

Procedures of statistical mechanics along the lines of molecular dynamics of
dense gases or liquids have also been developed. The important results are the
evolution equations for the density, the velocity and the granular temperature.
Included in these expressions are also explicit formulas for the constitutive quan-
tities. The statistical theory approaches that have been used are extensions of
ideas of Brownian motion, Grad’s thirteen moment method [53,54], Bhatnagar–
Gross–Krook relaxation model [6,74] and Enskog dense gas theory [9,56,73,104].

A three-dimensional constitutive equation derived from the kinetic theory of
a rarefied gas was proposed for the behaviour of dry granular flows in the inertia
regime. The basic model was first presented by Savage and Jeffrey [104] then
corrected and improved by Jenkins and Savage [56] and Lun et al. [73]. This
model involves all sophisticated mathematical tools used in the kinetic theory.
Its two fundamental assumptions are that momentum transfers via collisions pre-
vail and that only binary collisions occur. This implies that the granular phase
must be sufficiently dispersed which, for dry granular flows subject to gravity,
seems possible only for very rapid motions. Some simpler models considered
other types of energy dissipation [79,88,111,112] occurring specifically during
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collisions, but the collision process was still considered to be predominant. Un-
fortunately, most flows of practical interest probably fall into the intermediate
regime where both frictional contacts and particle–particle collisions are signif-
icant. For example the experimental results of Johnson et al. [61] and Ancey
et al. [4] clearly demonstrated that dry granular flows exhibit complex proper-
ties and that their behaviour cannot in general be described with the statistical
theory alone. With a view to providing a more realistic approach capable of pre-
dicting both slow and rapid granular flows, Johnson and Jackson [60] proposed
adding a Coulomb frictional yield stress term to the stress found in the Lun et
al. [73] development. Nevertheless a complete, theoretical treatment of slow or
moderately rapid, channelled, granular flows taking into account both friction
and collisions has yet to be performed.

Some detailed reviews about the statistical mechanics approach have been
presented by Hutter and Rajagopal [48].

4.2.3 Continuum Mechanical Models
without Additional Balance Laws

Higher Order Closure Models. Many experimental results show that dry
granular materials exhibit non-Newtonian behaviour [5,41,100,107,110]. On the
basis of these observations purely mechanical theories for the grain inertia regime
were designed; they made use of the balance laws of mass and momentum and
constitutive equations for the stress tensor. The balance equations of mass and
linear momentum read as follows

dρ
dt

+ ρ divv = 0 , ρ
dv

dt
= divT + ρb , with

d(·)
dt

=
∂(·)
∂t

+ v · grad , (4.9)

where v is the velocity, T the Cauchy stress tensor, b the specific body force and
ρ is the density, also given as ρ = γν, with the granular true density γ and the
grain volume fraction ν. For incompressible grains, the balance of mass (4.9)1
can also be rewritten as

dν
dt

+ ν divv = 0 . (4.10)

In the early purely mechanical phenomenological theories [30,31,51,79,87] and
[91,100,110], the Cauchy stress T is of the form

T = f(ν, grad ν,D) , (4.11)

where D = sym grad v is the stretching tensor. It is not physically obvious
why the stresses should depend upon the gradients of ν, however (see [100]). It
should also be emphasized that models of the form (4.11) have limited appli-
cability: dense slow to moderately fast flows of granular materials, but by the
same token models that arise from kinetic theory approaches also have equally
limited applicability, namely very rapid flows. A thorough discussion of models
of the class (4.11) can be found in [76].
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The most general isotropic representation for the stress given by (4.11) is

T = a0I + a1D + a2D
2 + a3 grad ν ⊗ grad ν + a4 sym (grad ν (D ⊗ grad ν))

+a5 sym
(
grad ν

(
D2 ⊗ grad ν

))
, (4.12)

where the coefficients a1, a2, . . . , a5 are functions of

ai = ãi

(
ν, ID, IID, IIID, grad ν · grad ν, grad ν ·Dgrad ν, grad ν ·D2grad ν

)
with the principal invariants

ID = trD , IID = 1
2

(
(trD)2 − tr(D2)

)
, IIID = detD . (4.13)

However, this representation is not very useful here. The early models were
therefore essentially generalizations of Reiner–Rivlin fluids and had the structure

T = α1I + α2D + α3D
2 , (4.14)

where αi, i = 1, 2, 3 are functions of the principal invariants of D and ν. However,
these models are fraught with internal inconsistencies, which has succinctly been
discussed in [108]. They cannot exhibit all normal stress differences in simple
shear flow, while those whose stress depends on both grad ν and D can do so.

Here, we shall now introduce a model belonging to the class (4.11) that is
appropriate for flows of such granular materials under non-isothermal conditions.
In the model of interest, the Cauchy stress T takes the form [93]

T = (β0(ν) + β1(ν)tr (grad ν ⊗ grad ν) + β2(ν)trD) I + β3(ν)D
+β4(ν) (grad ν ⊗ grad ν) . (4.15)

One can arrive at a model with the precise structure shown in (4.15) from a
kinetic theory approach based on Enskog’s dense gas theory [76]. Amongst the
many specific continuum models, (4.15) has been used to study a variety of
problems: Massoudi [75] describes flows in problems involving fluidization, and
later Johnson et al. [57,58,59] use the same model in flows involving suspensions
of particles in fluids, in various geometries. Another related study is that of the
flow of granular materials down a vertical pipe due to the action of gravity, by
Gudhe et al. [37]. They carried out a detailed parametric study of the problem
and found that for a certain range of parameters, the predictions of the the-
ory agree quite well with the experimental results of Savage [100]. Rajagopal
et al. [94] have also studied the flow of a granular material using a similarity
transformation v = u(y)î, ν = ν(y) and showed that for a range of values of
the material parameters, the equations admit non-unique solutions, one in which
the volume fraction increases monotonically from the free surface to the bottom
plane, and the other in which it decreases monotonically from the free surface
to the plane.
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Constitutive Postulates for Rapid Flow of Cohesionless Materials. The
constitutive equation of a suspension in sufficiently rapid flows where collisions
are predominant was proposed by Bagnold [5]. Indeed, in the so-called inertia
regime, Bagnold assumed that momentum transfer was due to elastic collisions
between particles of parallel layers in relative motion. The momentum transmit-
ted through each collision is proportional to the relative velocity between the two
colliding particles which for one-dimensional shear is proportional to the shear
rate γ = du/dy, because they belong to two adjacent layers in relative motion.
For the same reason the collision frequency is also proportional to γ. The shear
stress originating in collisions is therefore proportional to γ2. The momentum
transfer process also yields a normal stress proportional to shear stress.

These trends were found to be in agreement with some experimental re-
sults [5,107]. Bagnold’s experimental results in his annular cell viscometer [5],
in which identical, rigid, neutrally buoyant spheres in a Newtonian fluid under
shear were considered, have corroborated that the dispersive pressure and the
shear stress depend quadratically upon shear rate, if the dynamic friction angle
is independent of shear rate. This strong rate dependence differs sharply from
simple Newtonian behaviour. The constitutive relation for the stress tensor T
in a general three-dimensional case is postulated as suggested in (4.14) for the
Reiner–Rivlin fluid with coefficient functions αi (i = 1, 2, 3) such that Bagnold’s
shear cell results for the shear and normal stresses are reproduced as closely as
possible. The constitutive relation achieving this is not unique. The following
proposed relations satisfy this requirement:

McTigue [78]: T = f(ρ)
(√
IIDD −AD2

)
,

Savage [100]: T = f(ρ)
(
−AIIDI +

√
IIDD

)
,

Jenkins and Cowin [52]: T = f(ρ)
(√
IIDD − (1/2)ADΔ

)
,

(4.16)

where IID is the second invariant of the tensor D and

DΔ := Ḋ + D L + LT D , L = gradv

and f(ρ) and A are supposed to be known from parameterisations. These stress-
stretching relationships are rate dependent2 and do only represent the dynamic
portion of the stress tensor. They can describe rapid flows without cohesion. For
a slow flow of granular material, a quasi-static, rate-independent part must be
added to it.

Constitutive Postulates with Cohesion. In general terms, the flows of gran-
ular materials exhibit plastic as well as viscous behaviour. Soil under quasi-static
2 A stress stretching relation is called rate dependent if a replacement of D by

λD, λ �= 0, yields a functional relation for T that depends on λ. If the emerging
relationship should be independent of λ, it is called rate independent. The versor D̂
defined in (4.18) is rate independent. Rate dependent is also called viscous, while
rate independent is called plastic.
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loads exhibits plastic behaviour, while rapid shearing of a debris flow is predom-
inantly viscous. Examples of purely viscous behaviour are the Newtonian fluids,
the Bagnold fluid and essentially all constitutive models derived from statistical
mechanics. Purely plastic behaviour is exhibited by all Mohr–Coulomb models
(see [25]). Simple viscoplastic models are the Bingham and Herschel–Bulkley
bodies (see [14] and [17] as well as Chap. 2).

The usual approach taken is that, for a viscoplastic shear flow in a grav-
itational field, one might represent the total stresses as the linear sum of a
rate-independent dry friction part describing the quasi-static flow regime plus a
rate dependent viscous part covering the grain inertia regime.

As a result of the cohesion a granular mass sliding down an inclined plane
develops a vigorously active fluidized layer only very close to the bed, whereas
the layer on top of this is more or less passively riding with the lower layer. If the
fluidized bed is very thin in comparison to the passive layer it may be ignored
altogether and incorporated in the basal boundary condition. This is done by
Savage and Hutter [102,103]. This theory has been widely used to describe the
two-dimensional (later extended to three-dimensional) motion of a finite mass
avalanche over a rough inclined slope [33,35,36,44,45,46,49,65,116]. These appli-
cations show a good agreement with experimental results. For details see Chap.
14.

If in a granular flow the sheared and the passive layers are of comparable
thickness, then a more detailed analysis is required. This is the combined shear-
plug-flow regime. Norem et al. [85] introduce an extension of the Criminale–
Ericksen–Filbey fluid [22] as a model for rapid shear flow of a granular material
and demonstrate that their proposed constitutive relation fitted the experimental
data of Savage and Sayed [107] well and was, in steady shear flow with free
surface, capable of having both a shear-deformation and a plug-flow regime.
Their constitutive relation has the form

T = −pI + 2μD̂ + 2ηD + (2Ψ1 + 4Ψ2)D2 + Ψ1A , (4.17)

where D̂ is called a versor [29] and A is the second Rivlin–Ericksen–tensor,
expressed by

D̂ = D/
√

trD2 , A = Ḋ −W D + D W , (4.18)

in which W = skw gradv, and μ, η, Ψ1 and Ψ2 are phenomenological coefficients,
where η is a viscosity and Ψ1 and Ψ2 are viscometric functions. In a steady simple
shear flow, they account for primary and secondary normal stress effects. The
coefficient μ is a plastic modulus, assumed by Norem et al. [85] in the form

μ =
1√
2

(
a+ βpk

e

)
, β = tanφ , (4.19)

where a, β and k are constants while pe is their effective pressure, which will
simply be the pressure p, as any pore pressure is ignored. To find the interpre-
tation of the plastic modulus, consider a pure shear deformation ∂u/∂y = γ(y),
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v = w = 0 in the limit as γ → 0. Then, (4.17) implies the shear stress

τ = a+ (tanφ)pk , (4.20)

which, for k = 1, corresponds to a Coulomb friction model. Thus, a is the
cohesion and φ the internal friction angle. Thus, (4.17) combines a dry Coulomb
plastic behaviour with a non-Newtonian viscous behaviour.

Another three-dimensional formulation of the constitutive equation for vis-
coplastic fluids takes the form [18,27]⎧⎨⎩D = 0 ,

√
|IIT | < τc ,

T =
√

2 τcD̂ + f(IID)D ,
√
|IIT | ≥ τc ,

(4.21)

where τc is the yield stress, IIT = 1
2

(
(trT )2 − tr(T 2)

)
is the second invariant of

T and f(IID) a positive continuous function of IID.
Special cases are the Bingham fluid (f = μB = constant) and Herschel–

Bulkley fluid (f = 2nK/(
√
|IID|)1−n), in which K and n are positive parameters

[13,15,19,84,109]. Another model that fits into the same class is

T =

⎧⎪⎨⎪⎩
ρν1D ,

√
|IIT | < τc ,

√
2 τc

(
1− ν

ν1

)
D̂ + ρνD ,

√
|IIT | ≥ τc ,

(4.22)

in which τc is the yield stress and ν, ν1 are positive constants. Liu and Mei [71]
proposed this model for debris flows and were able to separate with it regions of
weak and strong shearings. They also analysed with it the linear and nonlinear
stability of shear flows and the formation of roll waves in free surface gravity
flows.

Yet another proposal is a combination using (4.16) and (4.21) as follows⎧⎨⎩D = 0 ,
√
|IIT | < τc ,

T =
√

2 τcD̂ + T (4.16)(D) ,
√
|IIT | ≥ τc ,

(4.23)

in which T (4.16)(D) is one of the stress expressions in (4.16). For steady shear
all expressions (4.23) reduce to the one-dimensional constitutive relation for the
shear stress τ , proposed by Julien and Lan [62]⎧⎪⎪⎨⎪⎪⎩

du
dy

= 0 , τ < τc ,

τ = τc + μd

(
du
dy

)
+ μc

(
du
dy

)2

, τ ≥ τc ,
(4.24)

where μd denotes dynamic viscosity, μc a dispersive and turbulence parameter,
and τc is the yield stress. In this constitutive relation the shear stress contains the
yield stress, a linear and a quadratic rate-dependent part. Using (4.24), Julien
and Lan successfully simulated various experimental data obtained by Govier et
al. [32], Savage and McKeown [106] and Bagnold [5].
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4.2.4 Constitutive Theories with Additional Balance Laws

The main difference between a classical theory of solid or fluid bodies and the
theory of granular or porous materials is connected with the existence of the
pore space that affects the kinematics of the material at the macroscopic scale
encompassing several microstructural granular elements. An additional variable
is introduced – the porosity or its complement, the solid volume fraction – to
describe the distribution of the grain volume fraction in the total microscopic
control volume. In the construction of a theoretical model the classical balance
laws of mass, momenta and energy together with constitutive relations for the
internal (or free) energy, stress tensor and heat flux vector still form the “back
bone”of a theoretical formulation of granular materials, but these laws must
now be supplemented by relations describing the evolution of the grain volume
fraction ν (or porosity 1 − ν). A number of models of this class have been
proposed; they can be divided into two classes:

• additional constitutive relations are introduced,
• additional field equations in the form of either evolution equations or balance

equations are proposed.

The simplest models of the first class are those proposed by Bowen [8] and
Sampaio and Williams [99]. These authors write ρ = γν, where ρ is the density
in the granular assemblage, γ the true mass density of the granules and ν the
solid volume fraction as before. For constant 3 γ, the material of which the grains
are made is density preserving and the emerging theory is formally analogous
to a classical compressible mixture. This theory has been demonstrated to be
flawed especially when it is applied to dynamical and relaxation processes, see
[7].

The most commonly used model within the second class seems to be that
proposed by Goodman and Cowin [30,31]. It makes also use of ρ = γν, but does
not a priori impose the constancy of γ. This enlarges the number of field variables
by one, the volume fraction ν, and entails in compensation the introduction of an
additional field equation. It is called the balance law of equilibrated forces and is
analogous to the classical balance equation of linear momentum and motivated
by a variational analysis [20].

The field equations of this theory are given by

R := (γν)· + γν divv = 0 ,
M := γνv̇ − divT − γνb = 0 ,
N := γνkν̈ − divh− γνf = 0 ,
E := γνε̇− T ·D − h · grad ν̇ + γνfν̇ + div q − γνr = 0 ,

(4.25)

where (•)· is the material time derivative defined in (4.9). R = 0 and M = 0
are the balance laws of mass and linear momentum (and balance of moment of

3 This is a special constitutive relation; more general would be, if γ would depend on
other variables as for instance the pressure, volume fraction, etc.
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momentum is identically satisfied by the requirement that T is symmetric). The
third equation in (4.25), N = 0, is new, has scalar structure and contains new
fields: k = constant is called the coefficient of equilibrated inertia; h and f are the
equilibrated stress vector and intrinsic equilibrated body force, respectively. This
equation comprises the equilibrated force balance and is supposed to model the
microstructural force systems operative in granular materials. The conservation
of energy (4.25)4, E = 0, differs from the traditional statements. It does not only
balance internal energy ε, heat flux q, stress power T ·D and radiation r, it also
contains two additional terms, −h · grad ν̇ + γνfν̇, interpretable as the power of
working of the equilibrated stress and intrinsic equilibrated force.

Equations (4.25) constitute six scalar equations for e.g. γ, ν, v and θ. These
are called the independent fields. The remaining variables arising in (4.25),
namely4

C := {T ,h, q, f, ε, η,φ} , (4.26)

must then be functionally related to these independent fields. The form of this
dependence defines the constitutive class and a popular choice is

S := {ν, grad ν, ν̇, γ, θ, grad θ,D} . (4.27)

S is called the state space and C = Ĉ(S) defines the material model. The assumed
dependence on the rate of deformation tensor implies a fluid-like behaviour, it
is suitable for describing rapid granular shear flows. In another study, Nunziato
and Cowin [86] considered a slightly different theory in which the dependence
on the rate of deformation tensor was suppressed, but the dependence upon the
deformation gradient (among other things) were retained. These assumptions
imply a solid-like behaviour, and it is thought that this type of model is appro-
priate for quasi-static motions of porous solid materials and pressed powders. A
combination of both is, of course, equally possible.

The postulation C = Ĉ(S) is not arbitrary as it must be in conformity with the
second law of thermodynamics. The latter is commonly expressed as a balance
of entropy

Π = γνη̇ + divφ− γνs ≥ 0 , (4.28)

where η, φ, s and Π are the specific entropy, its flux, supply and production den-
sities, respectively. The first two are equally constitutive quantities. The inequal-
ity (4.28) must be satisfied for all processes satisfying the balance laws (4.25)
and constitutive relations C = Ĉ(S). This requirement constrains the form of the
constitutive relations. There are several approaches available in the literature
how this reduction of the constitutive relations is executed; they differ not only
in details but also in fundamental physical assumptions, thus corresponding to
4 Note that (4.26) contains two additional fields, not arising in (4.25): η the specific

entropy and φ, the entropy flux. Their occurrence will become apparent later.
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different second laws of thermodynamics5. Results obtained with the entropy
principle of Müller [83] depend on the functional form of the Helmholtz free
energy

ψ = ε− θη .

If ψ does not depend upon ν̇, ψ = ψ̂(•, ν̇), then it can be shown that

ψ = ψ̂(ν, grad ν · grad ν, γ, θ) , φ(S) = q(S)/θ ,

h = A grad ν with A = 2γν
∂ψ

∂(grad ν · grad ν)
.

(4.29)

Thus, the free energy depends only on subspace E := S \ {D} of the state space
S, and h is given once ψ is specified. Moreover, the entropy flux assumes the
classical relationship q/θ, where θ is the absolute temperature. The constitutive
relations for the stress tensor T , heat flux vector q and intrinsic equilibrated
body force f can be decomposed into equilibrium, (·)E , and non-equilibrium,
(·)D, parts

T = T E + T D , q = qE + qD , f = fE + fD , (4.30)

of which the former are given by

T E = −νpI −Agrad ν ⊗ grad ν , qE = 0 , fE =
p− β
γν

, (4.31)

with

p = γ2 ∂ψ

∂γ
, β = γν

∂ψ

∂ν
, (4.32)

whilst the latter are general relations of the form C = Ĉ(S) such that they
vanish in the equilibrium state: T D(E) = 0, qD(E) = 0 and fD(E) = 0. If, for
the dynamic parts a linear theory in the non-equilibrium variables is considered,
then

qD = −κgrad θ , T D = ξν̇I + λ(trD)I + 2μD , fD = −ζν̇ − δtrD , (4.33)

where

κ ≥ 0 , μ ≥ 0 , λ+
2
3
μ ≥ 0 , ξ ≥ 0 , ζ ≥ 0 , δ ≥ 0 . (4.34)

5 One approach is that of Coleman–Noll, using the Clausius–Duhem inequality [16];
another is the entropy principle of Müller [82,83] and Liu [70] which is more general.
A comparison of the two methods for the granular material with the constitutive class
(4.27) is given in [124], with details contained in [122]. Results obtained with the two
approaches are different under dynamic conditions, but the same in thermodynamic
equilibrium.
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Some typical results calculated for the granular volume fraction, dimension-
less velocity for a gravity-flow problem down a inclined plate are shown in
Fig. 4.9 for various values of the dimensionless granular flow thickness L̄. If the
layer thickness is small (e.g. only several grain diameters), the shear can extend
from the bottom to the free surface, which behaves much like an incompressible
fluid, and the volume fraction experiences only a small change across the depth,
whereas for thicker grain flow the flow structure is far from an incompressible
fluid, in which in a large region near the free surface of the grain flow is similar
to that of a plug flow, with a nearly constant velocity and less changed volume
fraction, the shear layers close to the bottom, where dilatation has occurred,
may be very thin.

ȳ

L̄

ū

(a)

ȳ

L̄

ν

(b)

Fig. 4.9. Non-dimensional velocity profiles (a) and volume fraction profiles (b) of a
steady granular gravity flow down a rough inclined plate for various values of the
dimensionless flow thickness L̄ indicating the ratio of the flow thickness to an internal
length scale (e.g. the grain diameter): L̄ = 5 (A); 10 (B); 20 (C) and 30 (D). The inner
free energy ψ and the viscosity μ are chosen according to [90,91] and [100]. For details
see [122]

The results of the gravity shear flow problem indicate that the internal length
scale naturally provided by this model makes it possible to achieve blunt velocity
profiles in gravity driven shear flows. This is a property that is experimentally
corroborated. Nonetheless, the model is doubtful and the question of its appli-
cability to real granular materials has not yet been adequately answered. First,
as known from Bagnold’s work [5], T D should show quadratic dependence on
the shear rate. This problem can be rectified for instance by taking a dissipative
stress representation according to (4.16). Second, equilibrium results are ill be-
having, since nontrivial gradients in the volume fraction are needed in order for
nontrivial solutions to exist. Cowin and Nunziato [21] give examples. Third, at
very small flow rates, rate independent behaviour would be expected because in
this range of deformation dissipation is based on particle-to-particle rubbing. All
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these effects can, in principle, be incorporated, but the theoretical formulation
is very complicated.

4.3 Other Models Based on Additional Balance Laws
– Discussion

It was pointed out in the last section that microstructural effects in a granular
porous materials can be accounted for by introducing the solid volume fraction
ν as an additional field. The equilibrated force balance was the field equation
postulated to model its redistribution. There are other equations which have been
proposed to model microstructure properties, and here we briefly list these.

Models Using Other Kinds of Balance Equations for ν. Different authors
do not unanimously agree upon the form of the scalar equation to describe the
effect of the pore space. However, authors write balance laws of the form

ġ + g div v = div hg + πg (4.35)

where g is a scalar, hg its flux and πg its production. The following suggestions
have been made:

g hg πg Authors

ν 0 Cq Svendsen and Hutter [114], Hutter et al. [47]

ν Cq Cq Wilmanski [125]

γ Cq Cq Bluhm et al. [7]

Cq =̂ Constitutive quantity

In the first and second approach a balance of solid volume fraction (or porosity)
is formulated with and without flux term hg, in the third approach this balance
law is postulated for the true density. The energy equation in these proposals is
not altered by adding power of workings due to hg and πg as was done in the
Goodman–Cowin approach. Because ρ = γν the structures of the formulations
by Bluhm and Wilmanski are not really different; the first formulation in the
above table, however, yields different resulting theories, since the flux term hg is
set to zero ab initio. It may also be no big surprise that the essential differences in
comparison to the Goodman–Cowin approach will show in thermomechanically
coupled processes, since the essential differences arise in the energy equation.

The questions touched upon above are still open and form topics of today’s
research in granular media. A comparison of the thermodynamic formulation
of the Goodman–Cowin, Svendsen–Hutter and Wilmanski approaches has been
given by Kirchner [63], summarized in [64], but typical flow problems (e.g. gravity
driven shear) have not yet been compared.
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Model with an Additional Balance Equation for an Internal Variable
Describing Internal Friction. The behaviour of a granular material at low
volume fraction and high (kinetic) energy, i.e. in the grain inertia regime of Bag-
nold [5], appears to be modelled quite well by the application of Enskog’s theory
of dense kinetic gases (e.g. [53,73]). Unfortunately, the extension of this approach
to high grain density and moderate to low energy, where frictional interactions
become dominant, appears intractable (see discussion in [48]). Simple Mohr–
Coulomb-type phenomenological continuum models for the quasi-static frictional
behaviour of granular materials enjoy wide use in the continuum modelling of
granular flows [33,102]. Among the generalizations of the Mohr–Coulomb idea
one finds the viscoplastic model of Goddard [29], and more recently, the hy-
poplastic approach of Kolymbas [38,66,67,127]. The formulation of all these
models has been based up to this point on statistical mechanical and/or direct
phenomenological considerations. For materials whose quasi-static behaviour is
governed by internal friction, e.g. dry granular materials, the process of inter-
nal friction is represented phenomenologically with the help of a second-order,
symmetric-tensor-valued internal variable Z. This variable is by interpretation
associated with the effective contact stress in the granular material. In the phe-
nomenological setting, Z is modelled constitutively by an incremental relation
of the form

∇
Z= Φ , (4.36)

where
∇
Z is an objective time (e.g. Jaumann) derivative of Z and Φ represents the

constitutive part of (4.36). A choice recovering the hypoplastic material would be
Φ = αT , where α is a constant. Svendsen et al. [115] provide a thermodynamic
formulation for a granular continuum incorporating such quasi-static frictional
behaviour and Kirchner [63] extends it to a formulation of the Goodman–Cowin
type as presented in Sect. 4.2.4.

Other Effects Modelling Internal Structure. In the above the solid volume
fraction has been used as the kinematic variable describing the internal structure
of the pore space. Despite the mathematical complexity, this is a very simple
description of the porosity. It does not account for pore space anisotropy or tor-
tuosity which would require additional internal variables of tensorial complexity.
Furthermore other internal effects such as fragmentation and abrasion have not
been touched upon so far. The former is the fracturing of grains into parts of
comparable size, the latter is a grain-surface smoothening or roughening.

There is limited progress on these subjects. Kirchner [63] has modelled abra-
sion by a scalar variable a, having the dimension of a length and being a measure
of surface roughness of the grains. A balance law of the Goodman–Cowin type
is formulated for its time rate of change, ȧ, and a thermodynamic theory is for-
mulated to describe its effects macroscopically. First shear flow computations
show that roughness inhomogeneities may trigger localization phenomena. In-
duced anisotropies will develop in rapid flows of nonspherical grains such as rise
or lenticular peas. Theoretical formulations accounting for such effects are un-
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der way (H. Ehrentraut: personal communication). Concepts are very much like
those used in rheology to describe the flow of suspensions of long chain polymers.

How can particle size segregation be handled? One approach is mixture the-
ory which is not the subject of this article. The particles within a certain range
of nominal diameter will define one of the constituents of the mixture and the
segregation will be described by the different motions of these constituents. Such
an approach is taken by Kirchner [63] on the basis that each constituent is de-
scribed by a set of equations of the Goodman–Cowin type. Fragmentation could
also be described by a model of such a structure, but has not yet been done to
our knowledge. The disadvantage of this approach is that the particles in such
a mixture have discrete sizes; a better model would allow for a continuous dis-
tribution of particle size. How this should be done is not yet clear, even though
first steps have been done in a formulation of mixture with continuous diversity,
see [26].

4.4 Concluding Remarks

From a continuum mechanical point of view, in order to close the system of field
equations, constitutive equations must be introduced. These equations connect
certain mechanical or thermodynamic quantities via material-dependent coeffi-
cients which are determined by test observations. Furthermore, if new variables
are introduced, e.g. volume fraction as a measure of the microstructure to ob-
tain a model for a smeared continuum and describe behaviours such as dilatancy
or/and an internal variable for internal friction, additional equations must be
added to close the system of equations. It is, however, difficult to gain addi-
tional field equations since the new variables, such as volume fraction or internal
friction concern quantities of the microscale for which balance or constitutive
equations are not formulated and homogenizations to the macroscopic level of
the mixture theory are not performable. Therefore, much effort must be devoted
to overcome this lack of knowledge. This effort starts by introducing further
evolution equations for additional variables. This procedure solves – from the
mathematical point of view – the closure problem.

In the last decades great strides were taken in the formulation of constitu-
tive equations for dry and saturated granular materials. However, many of them
are rather complicated. Without any doubt, those constitutive equations may
closely describe the stress-deformation relations of the special mechanical be-
haviour of materials. However, in many cases this has only been achieved by
introducing many parameters and neglecting requirements due to mechanical
and thermodynamic principles. Those constitutive equations may, however, be
so complicated in explicit boundary- and initial-value problems to make their
use rather difficult. Additionally, entrainment and deposition processes, ignored
in this analysis may overshadow the role of the constitutive relation of stress.
Therefore, the future goal should be to formulate relatively simple constitutive
equations, but to account properly for boundary conditions.
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There is as yet still no rigorous theory, which can describe all essential fea-
tures of the flow of granular materials in the geophysical context. Depending
on the application, the shear stresses result from different mechanisms; in the
static case they are due to from dry interparticle friction and particle interlock-
ing whereas in the shear-flow case particles override other particles and inertia
associated with interparticle collisions becomes more important. In other words,
the static and flowing cases may be regarded as two different states, rather like
(metaphorically speaking) a solid and a liquid when viewed on the microscopic
scale. There may be no smooth transition from one state to the other as the strain
rate D → 0 and thus a constitutive equation suitable for flowing materials need
not necessarily be appropriate to describe the state of the static equilibrium.
Perhaps special constitutive relations should be separately developed that are
only suitable to special flow regimes.
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5.1 Introduction

It is now generally agreed that the Earth’s solid mantle is undergoing thermal
convection. Much of the evidence for this conclusion is derived from geological
and geophysical observations of the Earth’s surface, its relative horizontal mo-
tions and its topography. Direct consequences of the mantle flow include plate
tectonics, which refers to the relative motions of the continents, spreading of the
sea-floor, creation of new crust and mid-ocean ridges at spreading centres, and
subduction at ocean trenches, along with associated phenomena such as moun-
tain building and volcanism. The motion of the mantle over geological time scales
is driven by gravity acting on density differences, which result from loss of heat
from the Earth’s surface and, to a lesser extent, from transfer of heat from the
Earth’s core to the mantle. Mantle convection phenomena are reviewed here in
the context of geomorphology because they are responsible for producing much
of the large-scale topography (horizontally > 10 km) of the Earth’s surface. This
topography, in turn, imposes strong influences on the atmosphere and ocean cir-
culation patterns, affects precipitation, and provides the base on which erosion
and sedimentation processes act. The surface transport processes can also cou-
ple back to mantle flow and topography through redistribution of loading on the
mantle.

We briefly introduce the nature of the mantle, the behaviour of convection at
large Rayleigh numbers, and the mantle’s expected response to boundary heat
fluxes. We then outline convective instability of a boundary layer, several forms
of large-amplitude plume flows, and the formation and subduction of oceanic
lithosphere plates. We conclude with a discussion of the surface topographic
expressions of these phenomena. These phenomena are discussed in the context
of two main notions: 1) we paint a picture of the mantle as a convecting viscous
fluid in which heat lost from the Earth’s core drives blobs and continuous streams
of fluid to ascend from the core-mantle boundary to the surface as plumes, where
they create isolated morphological features such as island chains and flood basalt
plateaux; 2) the plumes, however, are relatively minor in the heat budget of the
mantle and they ascend through much larger-scale convective flows driven by the
cooling of the lithosphere. The surface cooling produces subducting slabs that
plummet downward and morphological features such as deep ocean trenches
and mid-ocean ridges. The article is concerned with a few of the dynamical
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phenomena in the mantle rather than with the geological evidence but it should
be recognised that the dynamical modelling discussed here must go hand in hand
with a range of observational evidence.

5.2 Some Basic Assumptions and Deductions

Before treating a number of specific problems in thermal convection we consider
three basic concepts which, explicitly or implicitly, enter into every physically
realistic discussion of convection in the mantle.

5.2.1 The Rheology of the Mantle

Seismic and petrological evidence indicates that the bulk of the mantle is a crys-
talline solid. However, imposed stresses can produce irreversible deformation or
creep. The two ‘flow’ mechanisms considered most relevant to the mantle are
‘diffusion creep’, in which the strain rate is proportional to the stress; and ‘dis-
location creep’, in which the strain rate is proportional to a higher power of the
stress [20]. Both these behaviours allow arbitrarily large strains, so that solids
with these properties have no long-term strength. This ensures that in both
cases an “effective viscosity” can be defined for mantle materials on geological
timescales (although this “viscosity” depends on the average stress level, if dis-
location creep is appropriate). Hence the mantle is treated as a viscous fluid in
analytical and numerical models of mantle convection, and laboratory experi-
ments directly relevant for the understanding of mantle dynamics (i.e. properly
scaled to duplicate the dynamics of the Earth) can be carried out with linear
viscous fluids.

Regardless of the details of the rheology, the effective viscosity is strongly
temperature-dependent. Assuming diffusion creep is the mechanism by which
deformation is accommodated, the viscosity η will be of the form

η = η0 exp(ATM/T ) , (5.1)

where TM is the melting temperature and A the activation energy. For a mantle
of olivine, A = 30 at the pressures of interest and η0 = 105 Pa s ([63] and
summarized by [61]). For η = 1022 Pa s (a mean value to order of magnitude
inferred from postglacial uplift) [38] T = 0.77TM and η changes by an order
of magnitude as T/TM changes by only about 5%. We will see below that this
strong dependence of η on temperature ensures that it adjusts to a value which
depends on the presence of mantle convection. That is, the value of this material
property is determined, through the temperature and within wide bounds set by
the microscopic mechanics of the mantle material, by the dynamics and motions
of the mantle. This conclusion contrasts with the view that whether or not
mantle convection occurs is predetermined by the viscosity. The viscosity will,
of course, vary from place to place within the convection system according to
the temperature variation, and further studies have considered the additional
effects of a probable pressure-dependence of the viscosity [16].
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5.2.2 Thermal Forcing and the Inevitability of Convection
in the Mantle

The Earth’s mantle is bounded above by the oceans and atmosphere, and below
by the outer core of liquid metal. The mantle is losing heat from the surface at
a rate of approximately 3.5 × 1013 W, mostly through the oceanic crust where
the fluxes are between 40 mW m−2 through old crust and 100 mW m−2 through
young crust. This heat originates largely from the radioactive decay of elements
distributed throughout the mantle (so called ‘internal heating’), with a small but
significant component (estimated to be approximately 10% of the total surface
heat loss, [17]) entering from the core. The latter flux represents a cooling of
the core through geological time and is expected to provide the driving force for
the geodynamo (through both thermal and compositional convection, the latter
resulting from the cooling and consequent solidification of components of the
outer core on to a growing solid inner core [5]).

Following the argument put forward originally by Tozer [62], and restated by
Stevenson and Turner [61], we consider the behaviour of the mantle when sub-
jected to a purely vertical temperature gradient, and begin by assuming that the
physical properties are uniform. The stability of such a fluid layer, heated from
below or cooled from above, is a classic problem in fluid mechanics and we quote
only the basic results. The onset of convection in this simplest approximation is
governed entirely by the Rayleigh number, Ra, which is essentially the ratio of
the driving force (due to thermal buoyancy and influenced by diffusion of heat)
to the retarding force (due to diffusion of momentum by viscous stresses). For a
fluid layer of depth H, with constant kinematic viscosity ν = η/� and thermal
diffusivity κ,

Ra =
gαβH4

νκ
, (5.2)

where g is the acceleration due to gravity, α is the coefficient of thermal expan-
sion, and β is the difference between the actual overall temperature gradient
(from top to bottom boundary) and the adiabatic temperature gradient. If Ra
exceeds a critical value, Rac, of about 103 (the exact value depending on the
boundary conditions) then convection will occur. For internal heating at a pre-
scribed flux and cooling from the top boundary the relevant Rayleigh number
can still be defined as in (5.2), except that β is now the (horizontally averaged)
superadiabatic temperature gradient that would be required for a conductive
steady state given the imposed rate of heat generation.

Rather than trying to evaluate Ra in the Earth using the poorly known
present values of the physical properties (β being a particularly large source of
uncertainty), the inevitability of mantle convection can be demonstrated by an
idealized thermal evolution calculation based on the strong temperature depen-
dence of viscosity (5.1). Consider again a horizontal layer of thickness H, but
now containing a uniformly distributed energy source, representing heating due
to decay of radioactive elements. The bottom boundary is supposed to be insu-
lated, and the top temperature is fixed at T = 0 ◦C. At time t = 0, we suppose
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that the temperature T = T0 everywhere and that subsequently, but before con-
vection occurs, the temperature distribution obeys the diffusion equation (with
a source term included) – that is, the heat generated is transported only by
conduction.

As discussed in more detail by Stevenson and Turner [61], the scale and con-
ductivity of the Earth are such that the heat generated cannot escape by con-
duction alone in the age tE of the Earth. The diffusion lengthscale l ≈ (κt)1/2 is
a few hundred kilometres when t = tE , so that a small body could lose most of
its heat by conduction as it is generated. However, the much larger model Earth
heats up, developing a temperature profile which is fixed at the surface but with
increasing temperature and temperature gradient at all depths. As T increases,
η given by (5.1) rapidly decreases, and a time is inevitably reached when Ra over
some depth interval exceeds the critical value for convection to occur, virtually
whatever the magnitude of the temperature gradient. The subsequent behaviour
is for all regions eventually to become convective (except possibly the outer-
most highly viscous layer, which is a boundary layer and will be discussed in
more detail below). This follows from the fact that any non-convecting region
must continue to heat up, because conduction is too small to remove the heat
generated, and so it must achieve a progressively lower viscosity until it takes
part in the convection. Given the large depth of the mantle and the expected
values of the constants in (5.1) and (5.2), a small enough viscosity is achieved at
subsolidus temperatures for convective heat transport to become possible before
melting occurs at any depth.

5.2.3 Boundary Layers in Convection at High Rayleigh Numbers

The above argument concentrates on the initiation of convection in the interior
of a progressively heated mantle. It is clear that the eventual steady state must
have a much larger heat transport than can be achieved by conduction, and that
the corresponding Rayleigh number will be much greater than the critical value.

Two other points are useful in understanding the finite amplitude flow in the
earth’s mantle. The viscosity ν is very large, effectively infinite, relative to the
thermal diffusivity κ (i.e. infinite Prandtl number Pr = ν/κ), and so the viscous
response to a perturbation is instantaneous relative to the thermal response.
Secondly, for large Rayleigh numbers the convective heat transport is much
more important than conductive heat transport over most of the depth (the ratio
uH/κ ≈ 103, where u is a typical flow velocity such as that of the tectonic plates).
Conduction remains important, however, in thin boundary layers through which
heat is transported to and from the interior, and which in fact determine the
magnitude of the flux which must be carried by the convection in the interior.

Some fundamental predictions can be made on the basis of dimensional rea-
soning, as follows. Suppose that the flux does depend only on the material prop-
erties and on conditions very near the boundaries, i.e. that it is independent
of the total depth H. It follows from their definitions that the Nusselt number
Nu, the ratio of the actual heat flux to the purely conductive flux down a lin-
ear (super-adiabatic) temperature gradient between the two boundaries, and the
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Rayleigh number are related by:

Nu = cRa1/3 , (5.3)

since this is the only form which gives a flux independent of H. The constant
c ≈ 0.1 but can depend on the boundary conditions. A phenomenological theory
due to Howard [36] suggests that the conductive boundary layer is inherently
unsteady, with cold (or hot) material breaking away intermittently. The mean
thickness δ of the boundary layer is such that the Rayleigh number based on δ,
Raδ say, is just critical (≈ 103). Thus

Nu = H/δ = (Ra/Raδ)
1/3 = 0.1Ra1/3 , (5.4)

in reasonable agreement with experiments [65] using large-Prandtl number fluids.
Expressions (5.2–5.4) have been written with the Bénard problem in mind (i.e.
with ΔT the temperature difference between the two boundaries and an equal
heat flux passing through both boundaries). However, they apply equally well to
the more general case in which the heat flux through the top boundary is equal
to the sum of the bottom flux and internal heat generation by radioactive decay.
In the limit of zero bottom flux, ΔT becomes the temperature drop across the
upper thermal boundary layer alone, and (5.3) remains valid.

The expression (5.4) allows one to make crude estimates of Ra and η for
the mantle. Using a (poorly constrained) temperature of 3500 ◦C at the base of
the mantle [4], at a depth H = 3000 km, an estimate of the overall temperature
gradient through the mantle is 1.2 K km−1. The measured temperature gradi-
ent near the Earth’s surface is of order 20 K km−1. Thus the conducting upper
boundary layer, the lithosphere, is very thin compared to H and (5.4) implies
that Nu > 10, hence Ra > 106. Inserting the depth and other properties 1 in
(5.2) we deduce that the average viscosity is less than η ≈ 6× 1022 Pa s. The av-
erage viscosity is thus determined by the heat flux and the efficiency of mantle
convection. These conclusions, which are based on the assumption of uniform
material properties, provide a first approximation to the mantle. As will be seen
below, there will be quantitative differences resulting from the temperature- and
pressure-dependence of viscosity and other material properties, but the basic
conclusions remain unchanged.

The above very robust general arguments show that the existence of a heat
flux through a boundary of a convecting region inevitably implies that there will
be an unstable conductive boundary layer. However, the two boundary layers
at the top and bottom of the Earth’s mantle are very different. Because of the
strong temperature-dependence of viscosity the upper cold boundary layer will
be stiff, and this property will affect the horizontal dimensions of the plates
1 The values substituted into (5.2) are α = 3 × 10−5 K−1, κ = 10−6 m2s−1, � =

3× 103 kgm−3 and β = 0.9Kkm−1. Remember that by definition β is the difference
between the overall temperature gradient over the whole depth, with or without
convection, and the adiabatic gradient of 0.3Kkm−1. In the convecting region the
gradient will of course be much closer to the adiabatic value.



116 R.W. Griffiths and J.A. Whitehead

and the behaviour of subducting slabs (Fig.5.1). If the plates are able to move
and sink sufficiently rapidly, as is apparently the case for the present oceanic
lithosphere, then they represent the unstable boundary layer. On the other hand,
it is possible that the surface layer could be so viscous (or strong) that it is
stable and does not take part in the underlying convection, instead forming a
thick stagnant lid which supresses heat transport, as suggested to be the case on
Venus over the past 500 Myr [54,59]. The behaviour in systems with very viscous,
non-convecting upper boundary layers (a problem that is relevant also in the
dynamics of cooling magma chambers) has been addressed through laboratory
experiments by Davaille & Jaupart [10,11].

Fig. 5.1. A rendition of the major active boundaries of tectonic plates on Earth, show-
ing the mid-ocean ridges (at divergent boundaries) and subduction zones (at convergent
boundaries). Also shown are many of the known “hotspot” plumes that create tracks
of volcanism across the moving surface plates. (Adapted from [64])

Since the Earth as a whole, including the core, is cooling, there will be a heat
flux out of the core and into the base of the mantle, estimated to be of the order
of 10% of the Earth’s total surface heat flux (see review by Davies and Richards
[17]). The resulting boundary layer of hot, less dense and less viscous material
behaves quite differently from the plates produced by surface cooling and may
give rise to upwelling plumes (as discussed below). In addition, if there are any
internal density interfaces in the mantle separating distinct convecting layers,
then boundary layers must form on each side of such interfaces.
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Important questions to be answered are: what aspects of the mantle motion
lead to topography at its top and bottom boundaries, and can material arising
at one boundary layer deliver a sufficient buoyancy force or thermal anomaly
to the opposite boundary such that it generates topography by virtue of the
buoyant support or the production and eruption of melts? The answer to the
latter is clearly ‘yes’ in the case of upwelling plumes, which are believed to be
the cause of surface phenomena such as chains of intraplate volcanos [21], uplift
of the seafloor surrounding hotspots by the order of 1000 m, and eruptions of
flood basalts sequences 10 km deep and covering millions of square kilometres
[53]. It is also clear that temperature (density) differences within the surface
boundary layer itself produce surface topography (noteably an increase in ocean
depth with distance from the spreading centres due to conductive cooling of the
lithosphere). At the opposite boundary, the sinking of lithospheric plates may
potentially affect the dynamical processes at the core-mantle boundary if they
are able to penetrate to sufficient depths.

5.3 Upwelling Thermals and Plumes

We now turn to a discussion of models of specific convective processes in the
mantle, starting from the core-mantle boundary (CMB) and working upwards.
First we need to consider the implications of a heat flux through the CMB
itself. It is also useful to keep in mind the application of these same concepts to
convection arising at an internal interface, heated from below.

5.3.1 The Initiation of Convection at the Base of the Mantle

There is a large density difference between the core and the mantle. The best
estimates of the temperatures of the outer core and the lowermost mantle (the
latter from extrapolation of the upper mantle temperature adiabatically to the
CMB), indicate that there is also a large temperature difference (approximately
1300 K; [4]), so that there is a conductive heat flux from the core to the base
of the mantle. This temperature drop must occur across a thermal boundary
layer. There is direct seismic evidence for a spatially inhomogeneous boundary
layer, the so-called D′′ layer, above the CMB, which in places is a few hundred
kilometers thick [37]. Although there may be significant compositional differences
within the D′′ layer, it is likely that it also contains the thermal boundary layer.

Because of the strong temperature-dependence of the effective viscosity, there
will be a gradient of viscosity through this boundary layer at the bottom of the
mantle, with a minimum at the CMB. This reduced viscosity will enhance the
flow of the boundary-layer material into any region which has begun to break
away from the boundary and convect upwards. An analysis of this lateral flow
[60], assuming steady conditions, showed that it will be concentrated in a rheo-
logical boundary layer which is much thinner than the thermal boundary layer,
and that the lateral flow can be replaced by a slow subsidence of the overlying
mantle. Davies [14] combined heat flux estimates with this theory to deduce the
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thicknesses of the two boundary layers. As a result of the viscosity variation,
the temperature of the rising plume material will be strongly weighted towards
the highest temperature in the thermal boundary-layer. However, Griffiths &
Campbell [28] noted that the temperature of the plume source material may be
much less than that of the core since a thin gravitationally stable conductive
layer may persist between a partially miscible or reactive mantle and the much
denser core. Such a dense stable layer (not to be confused with either the un-
stable boundary layer or the D′′ layer) will support a large temperature drop
without taking part in the boundary layer convection.

In this picture each plume draws boundary layer material from a horizontal
area determined only by the separation of unstable convective events. Presum-
ably, if plumes are too far apart, perturbations on the boundary layer between
grow to large amplitude and a new plume develops. There is as yet no pre-
diction of this separation distance for large amplitude motions, and hence no
prediction of the mean heat and buoyancy flux in each plume. However, we do
anticipate from theoretical stability arguments and a variety of experiments,
some described here, that the mean separation of plumes will be related to the
depth of the boundary layer and not to the overall depth of the convecting layer.

A relevant model here is the so-called Rayleigh–Taylor instability of a thin
horizontal layer of fluid beneath a deep fluid of larger density and viscosity. In
contrast to convective instability, the effects of heat conduction are removed,
the layer depth is prescribed and each layer is uniform. However, the result
gives a first estimate of the role of the viscosity contrast and of the horizon-
tal length scale for instability of a convective boundary layer. Figure 5.2 shows
a laboratory experiment that exhibits a Rayleigh–Taylor instability, which is
a candidate model of instability of the hot boundary layer at the base of the
mantle. A lower viscosity layer of dyed fluid lies under a clear deep immiscible
fluid of much greater viscosity in a transparent tank. After being left overnight
the tank is rapidly inverted and the results photographed. Four or five regularly
spaced protrusions were observed shortly after inversion. Within the confines of
the box, the protrusions arranged themselves quite uniformly throughout the
tank. The dyed fluid had developed long waves which allowed it to buoyantly
pass through a clear fluid of much greater viscosity. The wavelength was al-
most 10 times the depth of the thin layer. The wavelength of maximum growth
rate and the exponential time constant for growth have been theoretically and
numerically predicted for a number of geometries and boundary conditions for
problems like this [1,2,3,8,9,44,45,46], [47,48,49,50,56,70]. Demonstration experi-
ments with putty and non-Newtonian fluids have been extensively photographed
and compared to geological formations by Nettleton [41], Parker and McDowell
[43] and Ramberg [44,45,49]. There was no intercomparison between the labora-
tory experiments and theory owing to the unknown rheology of the laboratory
materials.

In general, if we have two layers of viscous fluid they obey the equations

∇ · ũ = 0 , (5.5)
(∂/∂t− ν∇2) ũ = −(1/ρ)∇p . (5.6)
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Fig. 5.2. A photograph of a laboratory experiment in which a thin bottom layer of
low-viscosity (dyed) fluid is placed beneath a deep upper layer of more viscous fluid
and denser clear silicon oil. Viscosity ratio is 43. The bottom layer is initially 5mm
deep and the tank is 18.5 cm2

Here ũ is the velocity vector of the fluid, ν is the kinematic viscosity, ρ is
density of the mantle and p is the deviation from hydrostatic pressure. These
equations can be expected to be valid only for a system in which inertia of the
fluid is negligible so that UmaxL/ν 	 1, where L is the largest length scale in
the problem (in this case it is either the depth of the layer, the wavelength of a
perturbation, or (ν2/g)1/3, where g is gravity). Since fluid velocity in a viscous
medium would be proportional to gΔρL2/ρν1, this criterion is easily met in solid
Earth geophysics for all the length scales above. We can immediately write down
a class of general solutions to these equations in two regions that correspond to
the deep mantle and the thin bottom boundary layer respectively. By taking the
curl of (5.6) and using (5.5), the equation for the vertical component of velocity
w is

(∂/∂t− ν∇2)∇2w = 0 . (5.7)

This equation can be applied in each region. At the boundaries correspond-
ing to the Earth’s surface and the core, z = h1, h2, we apply zero disturbance
boundary conditions. For example, the conditions of zero normal velocity and ei-
ther zero tangential velocity, or zero tangential stress might be applied. Thus no
external forces are driving the fluid at the boundaries. The general expressions
for velocity are

w1 =
[
Aekh1 +Be−kh1 + Ceq1h1 +De−q1h1

]
f(x, y)ent, (5.8a)

w2 =
[
Eekh2 + F e−kh2 +Geq2h2 +He−q2h2

]
f(x, y)ent, (5.8b)
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where q1 = [k2+(n/ν1)]1/2, q2 = [k2+(n/ν2)]1/2 and ∂2f/∂x2+∂2f/∂y2 = k2f .
To this order, the analysis admits a multiplicity of solutions, each one’s growth
rate depending on a two-dimensional wave number vector on the horizontal
plane. This degeneracy is reduced by finite amplitude effects (Sect. 5.3.2). At the
interface, horizontal velocities u, v, vertical velocity w, tangential stresses, and
normal stress must be matched. The linearized expressions of these matching
conditions are

w1 = w2 , (5.9)

∂w1

∂z
=
∂w2

∂z
, (5.10)

η1

(
∂2

∂z2
+ k2

)
w1 = η2

(
∂2

∂z2
+ k2

)
w2 , (5.11)
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(
∂2

∂z2
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)]
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ρ2
∂

∂t
− η2

(
∂2

∂z2
− k2

)]
∂w1

∂z
+ 2k2η2

∂w2

∂z
+ k2g(ρ2 − ρ1)ẑ . (5.12)

Equation (5.12) is a balance of normal stress, where the interface is slightly
distorted by an amount ẑ(x, y, t) = z − h so that a buoyancy force is produced.

The interface is swept along with the fluid so that

∂ẑ

∂t
+ u

∂ẑ

∂x
+ v

∂ẑ

∂y
+ w

∂ẑ

∂z
= 0 . (5.13)

For small distortions (5.13) can be expanded in a Taylor series

∂ẑ

∂t
+ u

∂ẑ

∂x
+ v

∂ẑ

∂y
= w(h) + ẑ

∂w

∂z
+ ... , (5.14)

where velocities and their derivatives are evaluated at the point z − h = ẑ = 0.
For arbitrarily small ẑ, (5.14) reduces to

∂ẑ

∂t
= w(h) . (5.15)

Using the solutions given by (5.8a, 5.8b) in (5.9)–(5.12) and using (5.15) we ob-
tain eight linear homogeneous equations for the eight constants. The determinant
of these eight equations must be zero.

The limit in which one layer is both thinner and of lower viscosity than the
other is particularly relevant to the geophysical context. The wavelength λ of
fastest growth is

λ = 4.6 d ε1/3 , (5.16)

and the growth rate is

σ = 0.232
(
g′d
ν2

)
ε1/3 , (5.17)
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where ε = ν2/ν1, ν1 is kinematic viscosity of the thin layer that is of depth d,
ν2 is viscosity of the infinitely deep fluid above it, and g′ = gΔρ/ρ is called the
reduced gravity.

The scaling law for a thin layer of relatively low viscosity fluid whereby the
wavelength is proportional to the viscosity ratio to the one-third power is very
commonly found, although it is not completely universal. The physical inter-
pretation of the 1/3 power law is that it is more efficient for the low-viscosity
fluid to flow large lateral distances up a gradual slope, and to accumulate in
massive diapers, than it is to push straight up through the stiff material with
shorter wavelength perturbations. This aspect of the dynamics will be illustrated
through the use of a scaling argument here; the complete mathematical deriva-
tions are available in the original papers.

Assuming long wavelength compared to depth of the fluid, for a small distur-
bance the force balance in the thin layer is between the lateral pressure difference
p and the viscous drag along the thin sheet, so

p

λ
= μ1

u

d2
. (5.18)

In the deep fluid above it the force balance is between the pressure, buoyancy
and drag from the vertical deformation of the interface so that

p

λ
=
g′η
λ

+ μ2
w

λ2 . (5.19)

This combines with (5.18) to give

μ1
u

d2
− μ2

w

λ2 =
g′η
λ
. (5.20)

Continuity (conservation of volume flux) is

u

λ
+
w

d
= 0 (5.21)

and the kinematics of the interface is linearized so that

dη
dt

= w . (5.22)

Growth will be exponential as w = w0eσt, where

σ =
g′

ν2

[
λ

λ3/(εd)3 + 1

]
. (5.23)

Maximum growth rate occurs at

λ

d
= 1.26 ε1/3 (5.24)

and the maximum growth rate is

σ =
0.42 g′d
ν2

ε1/3 . (5.25)
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Thus the wavelength of fastest growth for a thin layer of smaller viscosity
is much greater than the depth of the thin layer, but is unrelated to the depth
of the overlying very deep layer. The low viscosity fluid accumulates in pockets
that push their way into the more viscous fluid assisted by their relatively large
volume. One might expect that the hot lower boundary layer of large Rayleigh
number convection might exhibit blobs of fluid such as this, with the wavelength
again determined by the boundary layer thickness and viscosity contrast as given
by (5.16) or (5.24), and not by the overall depth of the convecting layer. We leave
predictions for the mantle until Sect. 5.4.

We next consider the large-amplitude structures that arise from boundary
layer instability. Experiments in which the buoyancy is due to temperature dif-
ferences inevitably include the effects of heat conduction and have identified
three basic forms of flow that may occur once convection has begun. First, a
blob may become detached from the source boundary layer to form an isolated
‘thermal’. Thermals are common in both experiments and numerical solutions of
very viscous high-Rayleigh number convection with uniform viscosity, forming
when flow sweeps away the feeding conduit or when nearby instabilities on the
boundary layer remove the supply of heat. However, it is not clear whether they
form in convection with large viscosity variations. Second, the boundary layer
instability may lead to an initial transient flow in which the convection forms a
mushroom-shaped ‘starting plume’ consisting of a large head and narrow tail,
the later acting as a conduit through which fluid continues to be supplied to the
head. Third, once a starting plume reaches the opposite boundary a more steady
conduit flow may persist. The starting plumes and conduits are likely to be the
dominant forms of motion when the viscosity is strongly temperature-dependent.
Solutions for each of these forms of convective flow are summarised below.

5.3.2 Isolated “Thermals”

When a volume of buoyant fluid breaks away from the boundary, the resulting
structure is known as a ‘thermal’, because of the superficial resemblance to
the turbulent atmospheric thermals sought by birds and gliding enthusiasts to
provide lift. During ascent of a ‘thermal’ heat can spread and warm up the
surrounding cooler material (by conduction in the case of the extremely viscous
mantle). However, the warmed material also becomes buoyant and begins to
take part in the convection, with the result that the heat is not lost from the
convecting region.

Consider first for comparison the case of a bubble of fluid for which the
buoyancy is a consequence of an essentially non-diffusive property as in the
Rayleigh–Taylor problem above (or a compositional difference in the mantle). In
this case the volume of the less dense fluid remains constant. It can be shown
that the bubble will become spherical and that the velocity of rise U for a bubble
of volume V and diameter D is given by Stokes law:

U =
(

B

2πDηm

)
f (η/ηm) , (5.26)
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where B = gΔ�V is the total buoyancy, ηm is the viscosity far from the bubble
and Δ� is the density difference. The factor f = 1 when the ratio of viscosities
inside and outside the bubble is small and the outer viscosity always has the
dominant effect on the rate of ascent.

Theory and laboratory experiments show that the balance of buoyancy and
drag (5.26) applies to the rise of thermals in which the density difference Δ� =
�mαΔT (where �m is the environment density and α is again the coefficient of
thermal expansion) is due to a temperature difference ΔT , despite the effects
of the conduction of heat [24,25]. Assuming that no heat is lost from a thermal
during its ascent, and that α is constant, conservation of heat implies that the
buoyancy B (where in this case B = gα

∫
ΔTdV ) is conserved. As heat diffuses

outwards into a thin boundary layer of thickness δ ≈ (κD/U)1/2 around the
thermal, the newly heated layer becomes buoyant (and less viscous) and is drawn
into the moving region, so increasing its volume V . The inward volume flux due
to this process of ‘thermal entrainment’ is of order dV/dt ≈ UDδ and the overall
flow is characterized by a Rayleigh number RaT = B/κνm, where νm = ηm/�m

is the kinematic viscosity of the environment.
A solution for self-similar flow can be derived using the above entrainment

flux, conservation of buoyancy and the velocity (5.26) [24,25]. We predict the
diameter D and height of rise z (above a virtual source at the point z = 0,
where D = 0 and t = 0) as functions of time t:

D = CRa
1/4
T (κt)1/2 , (5.27)

and
z = (f/πC)Ra3/4

T (κt)1/2 , (5.28)

where C is a similarity constant of order unity. The value of C can in principle
be predicted using numerical simulations capable of resolving details of the flow
within the boundary layer [15,22]. However, it has only been evaluated from
experiments (see below). Combining (5.27) and (5.28) shows that the diameter
increases linearly with height,

D = 2 ε z , (5.29)

with a half-angle of spread ε = (πC2/2f)Ra−1/2
T which is smaller for larger

Rayleigh numbers. Hence the thermal enlarges less before reaching a given height
for a larger temperature difference or smaller outer viscosity. The requirement
that δ 	 D implies that the analysis applies to cases where RaT � 1. In addition
to calculating the size and rate of ascent of a thermal, the above solution can
also be used to calculate the shape of particle paths in the fluid, determine which
fluid parcels will be entrained, and find the shapes of passive dye markers placed
in the flow (Fig. 5.3).

Experiments in which known volumes of heated viscous oil were injected into
a cooler environment of the same oil [24] showed that the behaviour was well
described by (5.27)–(5.29). Fitting both (5.28) and (5.29) to the data, the sim-
ilarity constant was found to be C = 1.0 ± 0.4. This laboratory value of C will
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Fig. 5.3. The particle paths (right) and deformation of material surfaces (left) near
a thermal with Rayleigh number RaT ≈ 1736, relative to a frame of reference that is
expanding with the diameter of the thermal. All fluid initially lying in a cone above the
thermal (and bounded by a dividing streamsurface) is eventually heated and entrained
into the thermal. The material surfaces illustrate the large vertical displacement of
surrounding fluid that does not form a part of the warm thermal (From [28])

also be applicable to thermals in the mantle, provided the underlying assump-
tions are satisfied, and allows predictions of ascent speed and plume properties.
The predicted shapes into which passive tracers are moulded by the flow com-
pare well with those found in experiments [25]. For example, at RaT > 200 the
internal circulation forms a torus into which all the material originally in the
thermal is eventually advected (Fig. 5.3). Since the entrainment process relies
on conduction, it is clear that the heat is distributed more widely through the
surrounding spherical volume. However, the details of the temperature distribu-
tion, which are expected to be of lesser significance for the overall evolution of
the flow, are not given by the above solution.

5.3.3 Starting Plumes

When a steady flux of buoyancy is suddenly supplied at the base of a region of
viscous fluid (by heating the boundary or by injecting hotter fluid), it produces a
nearly spherical volume of buoyant fluid that grows slowly until it becomes large
enough to leave the boundary. As the spherical volume rises it remains attached
to the source by a cylindrical conduit through which buoyant fluid continues to
flow, so increasing the buoyancy and volume of the plume ‘head’ [70]. When the
plume fluid has a relatively low viscosity, flow in the conduit (i.e. the hot plume
tail) can be rapid, whereas the motion of the ‘head’ remains slow as a result of
the larger outer viscosity.
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Analysis of a starting plume driven by thermal buoyancy [28] involves only
a simple modification of the theoretical treatment for isolated thermals. Con-
duction round the head again leads to warming and entrainment of surrounding
fluid but we must this time take into account the increasing buoyancy in the
head with time due to the source flux and the increase in volume due to both
the source flux and entrainment. We define an average temperature anomaly for
the plume head and, as a result of entrainment and cooling, this will be less
than the temperature of the source fluid arriving at the top of the plume head
through the axial conduit. The evolution of the plume head is governed by the
heat conservation relation

V ΔT = q0ΔT0(t− t0) , (5.30)

where V is the volume, q0 is the source volume flux and ΔT0 is the source
temperature anomaly. Along with (5.30), we have the momentum equation (5.26)
and the head volume

dV
dt
≈ q0 + UDδ . (5.31)

For large times, when entrainment has become important, the solutions for
the diameter D, velocity U and temperature anomaly ΔT of the head have the
asymptotic forms

D ≈ z3/5 , U ≈ z1/5 , ΔT/ΔT0 ≈ z−1 , (5.32)

where the constants of proportionality are functions of the plume Rayleigh num-
ber, defined in this case by Rap = gαΔT0q

3
0/κ

4νm [27]. Note that in deriving
the above solution we do not need to make any specific assumptions about the
form of the profiles of velocity or temperature either in the feeding conduit or in
the plume head. The essential assumption is that these profiles remain similar
as the flow develops; use of a mean temperature does not require an assumption
that the temperature is constant across the plume. But in each of the relations
such as (5.32) there is a similarity constant which depends on the real profiles,
and which has been evaluated experimentally (see below). In principle it could
also be found through finite-element numerical models such as those of Davies
[15].

Photographs of a hot starting plume in the interior of a laboratory tank are
shown in Fig. 5.4. This plume was produced by injecting hot, dyed syrup at
a steady rate into the same (but cold and very viscous) syrup [28]. There was
little cooling of the fluid flowing up the conduit until it arrived at the forward
stagnation point of the rising head, where it met the resistance of the overlying
fluid. There it spread laterally and axisymmetrically as a sheet, facilitating a
more efficient heat transfer to a boundary layer in the surrounding fluid, which
henceforth became part of the plume head. After the head had ascended a large
distance a continuous axisymmetric spiral of dyed material extended inward to
a toroidal focus.

Although experiments with continuously fed plumes have gone some way to-
wards determining the coefficient C [23], there are still considerable uncertainties
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Fig. 5.4. Photographs of a laboratory starting plume after it has left the source re-
gion, enlarges both by continued addition from the source through the conduit and by
entrainment, and eventually spreads beneath the free surface. The hot source fluid is
dyed. The temperature distribution is not seen. This is one of a series of experiments
designed to test the theoretical similarity solution and it illustrates the predicted na-
ture of newly forming mantle plumes. However, for scaling to the mantle it is necessary
to use the theory referred to in Sect. 5.3 [28]

in its value (which relates to the rate of incorporation of external fluid into the
rising plume head). Departures from self-similarity during the plume ascent in
the experiments (due to viscosity changes in the head, a finite volume in the
conduit, temporal changes in the head shape, and side-wall effects, all of which
are neglected in the simple formulation given here) make it difficult to determine
the coefficient to better than a factor of two. However, when the experiments are
compared with the solution after small correction terms are included in (5.26,
5.30, 5.31), the result is consistent with that for detached thermals (C ≈ 2) and
is robust enough to allow some firm predictions to be made about the scale and
ascent rate of plume heads in the mantle (summarised in Sect. 5.4). The quantita-
tive application to the mantle is also consistent with a range of geophysical data
and has been supported by more recent numerical modelling results [12,14,22].
Modifications of the plume behaviour in a mantle of power-law rheology have
been computed [67]. These show that plume heads may ascend more rapidly
than predicted for a Newtonian mantle, and reach farther into the base of the
lithosphere, but that entrainment and head size are not greatly changed.

The distribution of source fluid in the plume head, as seen in Fig. 5.4, does not
indicate the temperature distribution, which we can safely assume will be much
more smoothly distributed through the bulk of the plume head as a result of
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the nature of the ‘thermal entrainment’ process and continued dispersion within
the head. The axial conduit and the radial outflow near the top of the head will
be almost as hot as the source, and there may be some small remnant tempera-
ture maximum near the toroidal focus, whereas the remainder of the source and
entrained material in the head will be significantly cooler. Davies [15] and Far-
netani & Richards [22] have computed temperature distributions which confirm
these ideas, in particular the conclusion that there are only small temperature
gradients everywhere, except around the axial conduit and the horizontal outflow
at the top of the head. They show that the coupling of advection and conduction
is so effective at re-distributing heat between source and entrained material that
there is only a small temperature maximum near the toroidal focus of the flow.
The hot outflow layer at the top of the plume head and the axial conduit appear
as the dominant features in the temperature plots.

5.3.4 Long-lived Plumes

After the head of an (isolated) new plume reaches the top of the layer through
which it is rising, and if the source flux is constant, the flow in the trailing
conduit delivering material from the source tends toward a steady state. If the
surrounding fluid is otherwise at rest, the conduit will be vertical and axisym-
metric.

A similarity solution [39] for flow in the vicinity of a steady conduit shows a
very strong tendency for the vertical velocity within the conduit to be confined
to a thin low-viscosity core, along with a radial balance between the horizontal
diffusion of heat out of the conduit and a slow inflow driven by a radial pres-
sure gradient (low pressure in the hotter, lower density conduit). This in effect
produces an insulating sheath around the conduit flow. Another similarity so-
lution by Hauri et al. [34] incorporated a wide range of effects of temperature
and shear stress on viscosity along with depth-dependent viscosity and thermal
expansivity. For a wide range of plausible rheologies, and for buoyancy fluxes of
103–105 N s−1 (see Sect. 5.4.1), vertical velocities in the conduit predicted by this
solution range over 0.030–100 m yr−1 and conduit radii range over 30–250 km.
The extent of dilution by entrainment of surrounding mantle into the conduit
flow ranges from under 5% to over 90%, with small buoyancy flux associated
with the most entrainment. Most of the entrained material originates from the
lower half of the layer traversed by the conduit.

Since mantle plumes are expected to be produced by only a small fraction of
the heat flow at the top of the mantle, it is natural to expect the plumes to be
strongly influenced by mantle motion driven by movement of tectonic plates and
deep subduction (see Sect. 5.5). When there is a larger scale systematic motion
in the surroundings, such as a superimposed horizontal shear flow, the conduit
will be bent over in the direction of the horizontal flow. The relationship between
the shear velocity and the tilt can be simplified to a relation in terms of a vector
addition of the horizontal advection velocity and the vertical Stokes velocity of a
sphere. For example, with a linear shear profile (in which the horizontal velocity
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varies by u0 over a depth h) and a conduit of fixed diameter D, the formula for
deflection x(z) is [52]

x

h
=

u0

2kU

( z
h

)2
, (5.33)

where U is given by (5.26) for a sphere with f = 1. Laboratory results give
k = 0.54 [52]. This kinematic theory gives the tilt at the top of the sheared
region as

dz
dx

=
kU

u0
(5.34)

because the conduit is rotated by an amount that depends on the Stokes rise
time of a given conduit element through the depth of the shear zone. If the shear
is intense enough to rotate the conduit by more than about 55 degrees from the
vertical before it rises out of the region with shear, it will develop an instability
[31,52,57]. With instability present, a conduit that is fed steadily at its base will
not expel the material steadily at the top of the shear zone, but will develop a
chain of new plume heads [69], each rising to a different spot on the surface.

The most obvious application is to the Hawaii-Emperor seamount chain,
which not only has been actively producing volcanos for more than 80 Myr,
but also experienced a change in plate motion about 40 Myr ago. During this
change of motion, the trend of the hot spot track on the Earth’s surface changed
direction and produced a bend in its path with a radius of less than 200 km,
which implies that the upwelling conduit had a small horizontal deviation from
the plume source to the surface [31]. Using u0 = 0.1 m yr−1, and U = 0.05 m/yr,
corresponding to a density difference of 50 kg m−3, and a (somewhat arbitrarily
chosen) conduit radius of 70 km in (5.33)–(5.34) gives a lateral deflection almost
exactly equal to the depth of the mantle (which is unknown for the mantle),
and the conduit is tilted to 64 degrees. This does not fit the above observation
of the abruptness of the bend in the hotspot track unless the shear zone is
less than 200 km deep. However, a mantle flow underlain by a return flow gives
considerably smaller deflections which do satisfy the observations [31].

Plume conduit solutions based on measured plume buoyancy fluxes (see Sect.
5.4.1), rather than an assumed conduit radius, and which allow for effects of
tilting on entrainment have also been constructed [29]. These too predict small
horizontal deflections of conduits carrying the relatively large buoyancy flux of
the Hawaiian plume. Hence tilt angles for Hawaii are expected to be below the
critical angle. Thus strong plumes are expected to experience relatively small de-
flection and inject a steady flow of mantle material to the base of the lithospheric
plates. Weaker plume conduits will be deflected more and thus break up more
readily, setting the lower limit to the buoyancy flux that will generate significant
effects at the surface. Deep shear zones tend to produce more lateral deflection
and thus a greater tilt angle. Shear zones concentrated near the surface tend to
produce less lateral deflection and a smaller tilt angle. However, with continuous
variation of properties, and with two or three dimensional mantle convection,
these simple models must be considered a starting hypothesis at best.
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Another consequence of the tilting of plume conduits in a mantle ‘wind’
is enhanced entrainment of the surroundings. While hot material flows upward
along the conduit, each part of an inclined thermal-plume conduit must be rising
through and continually displacing its surroundings upward if it is to maintain
a steady shape, and therefore must contain a circulation in planes normal to the
axis of the conduit; the quasi-two-dimensional equivalent of that shown in Fig.
5.3 for the axisymmetric plume head. Surrounding material is again heated in a
boundary layer round the rising cylindrical region and is drawn into it, so increas-
ing the volume flux in the conduit. The source material is concentrated into two
cores, leaving a central strip which is relatively free of source fluid [53]. The solu-
tions referred to above for the thermal conduit flow [29] predict that entrainment
has a much greater effect on bent-over plumes when the temperature-dependent
viscosity in the plume is allowed to increase with distance from the source due
to entrainment and cooling, since in order to cope with the imposed buoyancy
flux the diameter of the conduit must then increase (with height) as the plume
cools. The solution also predicts that, as for starting plumes, the behaviour is
a function of the plume Rayleigh number Rap = gαΔT0q

3
0/κ

4νm, where q0 is
the source volume flux. Plumes with larger buoyancy fluxes will be less tilted
and entrain a volume flux from the surroundings that is smaller relative to the
source volume flux (i.e. they will be less diluted).

5.3.5 Surface Uplift

Experiments have also been used to help predict the surface topography gener-
ated by the arrival of a plume head beneath the surface of a convecting fluid or
the continued upwelling of a plume conduit. For example, capacitance [42] and
optical interferometric observations [31] give the maximum surface uplift and
the maximum rate of uplift over a rising spherical diapir

hmax = 0.27(Δ�/�m)D0 , (5.35a)
vmax = 0.16(Δ�/�m)U0 , (5.35b)

where Δ� is the density anomaly, �m is the surrounding density and D0 and
U0 are the diameter and velocity of the diapir when it is far from the surface.
The diapir or plume head spreads horizontally as it approaches closer than one
radius from the surface, but the rate of spreading decreases as D ∼ t1/5, so that
further spreading is very slow after the horizontal radius has doubled [30]. This
result is in agreement with theoretical scaling laws for the radial spreading of
a low-viscosity blob into a high-viscosity fluid. The surface reaches a maximum
uplift after which it slowly subsides and the width of the surface swell increases.
During this collapse a thin layer of more dense outer fluid remains above the
top of the plume and thins (according to a t−1/2 law) to around 0.1D0 when the
plume diameter has doubled. In the laboratory experiments, this layer becomes
gravitationally unstable at a time Ut/D0 ≈ 10 after maximum uplift is reached,
and overturning with the underlying plume fluid leads to either axisymmetric
convective flow or to irregular three-dimensional convection. This smaller scale
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of convection is able to more rapidly continue the release of potential energy and
enable the plume fluid to penetrate closer to the surface.

Similar behaviour is expected where a continuing conduit flow impinges be-
neath migrating oceanic crust. In this case, uplift of the surface occurs upstream
of and above the upwelling flow in the conduit, where buoyancy is being added
to the mantle beneath the crust, leading to the seafloor swell. Subsidence of the
swell and its associated volcanic island chain occurs with age downstream of
the conduit location, where horizontal spreading flow of the hot plume material
beneath the lithosphere proceeds to slowly redistribute the buoyancy across an
increasingly broad region.

5.4 Mantle Plumes and Surface Topography

In order to apply the theoretical, computational and laboratory results discussed
above to predict plume velocities and sizes in the mantle, one first needs to make
realistic estimates from geophysical data of the material properties (in particular
the viscosity), and also of the temperature anomaly and heat flux at the source.

5.4.1 Plume Fluxes from Hotspot Tracks

One of the most important inputs to quantitative predictions for plumes in
the mantle is the boundary condition on temperature or heat flux, or both, at
the base. The plume heat flux FH = q0�cpΔT0 (or, more precisely, the plume
buoyancy flux FB = gαFH/cp, where cp is the specific heat capacity and q0 is
again the source volume flux, as in (5.30)) has the primary control on the plume
flow. The temperature anomaly plays a lesser role through its influence on the
viscosity difference and partial melting. The range of plume fluxes to be found in
a convecting fluid with temperature-dependent viscosity is not yet understood:
it will be related to the plume spacing. However, we can understand individual
plumes by considering a single plume in isolation from other plumes and lateral
boundaries, and specifying both a source temperature anomaly and buoyancy
flux3 based on geophysical constraints.

We begin by applying the results for Rayleigh–Taylor instability of a thin
layer to the bottom boundary layer of the mantle in order to estimate the sep-
aration of plumes. Assuming the unstable layer is 50 to 100 km thick, and a
viscosity contrast ε ≈ 103 the wavelength (5.16) is of order 600–1200 km. This
wavelength is consistent with the separation of volcanic hotspots within the Pa-
cific Plate, where the separation is significantly smaller than the depth of the
mantle. The result indicates a strong effect of the viscosity contrast. The analysis
3 In most computer models of a convecting layer, only one of these is imposed, since

the other is then determined by the coupling of conduction and convection of the
bottom boundary layer. In numerical experiments [15,22] this was done by applying
a temperature anomaly over a finite area of the bottom boundary. In the laboratory
experiments described above the temperature anomaly and source mass flux are
prescribed.
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is expected to apply to the onset of instability on the boundary layer between
existing plumes, where new plumes may be initiated. However, it should be re-
membered that the linear stability analysis does not necessarily predict well the
separation of well-established plume conduits or the effects of large-scale convec-
tive flow driven by sinking of the cold surface boundary layer, which may advect
plumes into regions of convergence of the large scale flow.

Estimates of the plume buoyancy and heat fluxes in the mantle have been
made using observations of the surface effects of long-lived plumes in oceanic set-
tings, where the crust exerts relatively little masking compared to that of thicker
continental crust [12,58]. The size of the hotspot swell can be combined with the
velocity of the plate over the hotspot to obtain the rate of production of anoma-
lous topography, from which we infer the buoyancy flux carried by the plume. For
example, the existence of the Hawaiian swell, about 1000 km wide and 1 km high,
propagating across the Pacific plate at about 100 mm yr−1, implies a buoyancy
(or mass-deficit flux) in the plume of 7.3 × 103 kg s−1. This mass-deficit flux is
actually αΔTQ, where Q and ΔT are the mass flux and temperature difference
at any depth. This is related to the more physically meaningful buoyancy and
heat fluxes through FB = g(αΔTQ), and FH = (cp/α)(αΔTQ), respectively.
For the Hawaiian plume FB ≈ 8 × 104 N s−1 and FH ≈ 3 × 1011 W. The distri-
bution of plume mass-deficit fluxes (calculated by Sleep [58] and Davies [12] for
35 oceanic hotspots) therefore imply the buoyancy fluxes as plotted in Fig. 5.5
[32]. Although there are many uncertainties in such estimates, they do indicate
that plumes carry a range of fluxes, and that the distribution is (logarithmically)
centred about 104 N s−1.

An estimate of the volume or mass flux requires independent knowledge of the
temperature anomaly, which is usually obtained from the petrology of erupted
melts. However, the mass flux is not a conserved quantity in that it, like the
temperature, may vary with height along a plume. Nor is the mass flux well-
defined: on the one hand, the mass flux of hot material near the top of the
plume (the flux that is relevant to melt production) for the Hawaiian example
becomes Qtop = FB/(gαΔT ) ≈ 3×105 kg s−1 (assuming an average temperature
anomaly of 100 C and no large scale shearing); on the other hand, the movement
of the lithospheric plate over the plume implies, as we have already explained,
that upper mantle is continuously being displaced by the plume and that there
must be a vertical mass flux in the cooler surroundings. The upward mass flux
relevant to overall motion and stirring in the mantle is then made up of both the
slow broad motion of the surroundings (associated with the Stokes ascent of the
plume conduit in the presence of plate migration), and the Poiseuille-like pipe
flow (at relatively large velocities) of low-viscosity material upward through the
narrow conduit. Unpublished experiments (by RG) with stirring when a plume
conduit passes through a larger-scale overturning convection cell will not be
discussed here but show how the former of these two transport components may
be dominant and lead to a large vertical transport of the surroundings up toward
the surface, as well as to disturbance of particle paths in the large scale cell.
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Fig. 5.5. Plume buoyancy fluxes, adapted from Sleep’s [58] estimates of the fluxes for
35 oceanic hotspots [29,32]. The buoyancy flux is Sleep’s ‘mass exchange flux’ mutiplied
by g

5.4.2 New Plumes and Flood Basalts

Predictions can be made for new plume heads by assuming that the rate of supply
of buoyancy from the source boundary layer during this early stage in the life of a
plume falls in the same range as the buoyancy fluxes derived for currently active
hotspot tracks. In that case a mantle viscosity of 1022 Pa s implies that heads
will grow as large as 400–600 km in diameter at the core–mantle boundary before
their ascent speed is large enough to cause them to break away. Application of
the complete form of (5.32) [28] to the ensuing motions leads to the prediction
of a further doubling of the diameter (and an increase of volume by an order
of magnitude) as the plume heads ascend through 2800 km. Thus plume heads
that reach the lithosphere while still receiving a constant influx from their source
region are predicted to be extremely large: 800–1200 km in diameter. They will
also have incorporated a volume of lower mantle material comparable with the
total volume supplied from the source, though the ratio of these two volumes
depends on the source flux. The head size, however, is insensitive to the flux. The
diameter D is instead dependent primarily on the mantle viscosity (D ≈ η1/5

m ).
As a plume head approaches the upper boundary (the free surface in the

laboratory tank, or the stiff lithosphere of the Earth) it must flatten and spread.
Thus a spherical head, predicted to be of order 1000 km in diameter, should pro-
duce a pancake-shaped thermal anomaly about 2000 km across at the base of the
lithosphere. It should be remembered that the dimension given by the model is
the diameter of the equivalent sphere that would contain the plume head buoy-
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ancy at an average temperature, and that some of the head will be much cooler
while the top of the head will contain the hottest material supplied from the
source via the conduit. Similar head sizes and ascent times are predicted by nu-
merical experiments simulating mantle conditions [15,22], and the chronology,
tectonics and geochemistry of flood basalt provinces, believed to be attributable
to plume heads, are consistent with the 1000–2000 km scale. Furthermore, con-
tinental flood volcanism is known to be characterised by a sudden onset, with
most of the magmas erupted within a short period of 1 to 3 Myr [53] and over
a roughly equant region 2000–2500 km across, followed by slow subsidence. Use
of these comparisons to argue in the opposite direction provides evidence that
plume heads responsible for the major flood basalts had dimensions consistent
only with an origin deep in the lower mantle and therefore most probably in the
thermal boundary layer at the CMB.

5.5 The Upper Boundary Layer

We turn now to the cooled upper boundary, and the generation of the primary
motions of mantle convection. The total heat flux at the Earth’s surface, ap-
parently an order of magnitude greater than the flux carried by hot plumes, is
largely due to loss of the heat generated by radioactive decay. That is, the mantle
may be regarded as a layer of viscous fluid, largely internally heated, and cooled
from above.

Early notions about mantle convection regarded plate tectonics as the surface
reaction to an underlying pattern of convection occurring especially in the upper
mantle. This view required the plates to be dragged along by a faster motion be-
neath. When the observations (Fig. 5.1) were compared with laboratory studies
with this picture in mind, it was puzzling that the inferred convection cells are
so much wider than their depth (often presumed to be that of the upper man-
tle), and this led to many investigations of the effect of variable fluid properties
and different boundary conditions on the aspect ratio. A more consistent view
is that the buoyancy forces acting on the colder, denser plates are the primary
driving mechanism of convection, at least under the present tectonic regime, so
subduction and descent of lithospheric slabs is an active part of convection, not
a reaction to it. The plates are the upper thermal boundary layer. Those earlier
questions about the horizontal scale are then readily answered by 1) considering
that the convection may penetrate the full (2900 km) depth of the mantle and
2) noting that the strength of the lithosphere (which can yield and break only
at stresses greater than a few hundred MPa) can inhibit the initiation of sub-
duction and thus increase the horizontal scale of convection cells. In this view
cold material can break away from the upper boundary only at plate boundaries
where one plate may slide under the other. Near mid-ocean ridges there is a
compensating, passive ascending flow – this upwelling limb of the convection is
not a hot active plume. Thus much of the structure of convection in the mantle
is organized by the pattern of the plates, though the prediction of the criteria for
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formation and size of these plates, and for the initiation of subduction, remains
a major theoretical challenge.

The most significant topographic characteristics of plate convection are the
deep ocean trenches (up to 5000 m below the mean sea floor) at the subduction
zones and the mid-ocean ridges (standing 3000 m above the plate spreading
centres). The trenches are clearly the effect of the presence below the surface of
a larger mass of cold dense lithosphere (this negative buoyancy will pull down
the surface even in the absence of motion) as well as the downward motion of
the slab. The topographic high above the spreading centres and its steady fall-
off with distance from the ridge have been shown to be a simple consequence
of conductive cooling of the oceanic lithosphere and thermal contraction while
remaining in isostatic balance with the whole of the seafloor [18]. The plate
motion, driven by surface cooling and subduction, produces a pressure gradient
that “pulls” warm mantle material up to the surface at the spreading centre.
Close to the ocean floor this material proceeds to cool and hence increases its
density as it moves away from the centre. This produces an additional ocean
depth Δd which can be found from the buoyancy balance gΔ�Δd = g�mαΔTz,
where z = 2(κt)1/2 is the conductive thickness of the lithosphere, κ is the thermal
diffusivity of the lithosphere, t is the age of any section of the lithosphere, �m

is the density of the mantle, ΔT is the average temperature of the lithosphere
relative to the surface and Δ� is the density difference between the mantle and
seawater. The result isΔd = 2αΔT (�m/Δ�)(κt)1/2, which predicts about 3000 m
relief between old seafloor (100 Myr old and 100 km thick) and the ridge crest
(using α = 3 × 10−5 ◦C−1, �m = 3, 300 kg m−3, ΔT = 650 ◦C). This square
root of seafloor age relation explains most of the measured topography, which is
therefore consistent with a predominantly internally-heated mantle undergoing
convection due to surface cooling, and with a passive upwelling at normal mantle
temperature under the ridge.

5.6 Synopsis

The dominant large-scale morphology of the earth’s surface is a direct conse-
quence of the dynamics of thermal convection in the Earth’s solid mantle. The
two major topographic features of the ocean floor, ocean trenches and mid-
ocean ridges, represent active boundaries of the tectonics plates where the up-
per thermal boundary layer of the mantle convection system is foundering and
sinking into the interior or just beginning its thermal development, respectively.
The topography is dynamic, being produced by buoyancy differences within the
lithosphere. We have not discussed continents and their major mountain belts,
however these too are directly produced by mantle convection through plate col-
lisions (either of continent with continent, such as the formation of the Himalaya
by the collision of the Indian sub-continent with the Eurasian continent and the
formation of the European Alps by the collision of Africa with Europe, or of
oceanic plate and continent, as in the Sierra Ranges and Andes of the Ameri-
cas). Looking at more isolated structures, but still at a large scale, continental
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flood basalt provinces (such as the Deccan Traps of India) and oceanic plateaux
(such as the Ontong-Java plateau in the Pacific), each of order 1000–2000 km
across and 1000–2000 m high, and volcanic (‘hotspot’) tracks such as ocean is-
land chains and their accompanying, broader seafloor swells, are all thought
to be generated by the buoyancy of hot upwelling plumes. These most proba-
bly ascending from the core-mantle boundary. Plumes are also thought to have
been the cause of continental rifting and the initiation of the opening of new
ocean basins [35,68]. The role of mantle convection in the generation of surface
morphology has meant that knowledge of the surface topography has provided
important evidence about the way in which the mantle works. This topography
strongly influences ocean and atmosphere circulation patterns. It also acts as
major drainage highs, which are eroded during and after their formation, and
drainage lows, which capture vast amounts of sediment.
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6.1 Introduction

The Earth’s crust is shaped by a wide range of fluid flows and their characteristic
instabilities. Here we consider the flow of silicate melts, either within the crust
or as surface lava flows, and the way in which these flows are affected by vari-
able viscosity due to cooling or by a yield strength resulting from solidification.
These effects invariably lead to non-uniform or three-dimensional flow patterns,
particularly fingering and channelisation. In the case of solidifying free-surface
flows there is, in addition, a range of three-dimensional surface structures or
deformation styles depending on flow conditions. Parallels can be drawn with
channeling instabilities that occur in either the dissolution of a porous matrix or
precipitation reactions within a matrix during the percolation of an interstitial
fluid.

The flow of magma through the upper-most solid mantle and crust is fun-
damental to the formation and evolution of the crust, which is formed and re-
worked through geological time by the rise of melts towards the surface. The
melts, whether granitic or basaltic, do not ascend in a uniform and steady fash-
ion but are instead influenced by heat loss to the relatively cool surrounding rock
and consequent variation in viscosity. They rise through channels or, in some
cases, as diapirs. The channels, at least sills and dykes in the upper crust, where
temperature differences are larger, tend also to evolve from two-dimensional slots
to more focused three-dimensional channels [6,24]. Thus volcanic eruptions tend
to occur not through a uniform percolation of melt, nor through uniform two-
dimensional flow from a dyke, but from localised vents. We therefore begin with
a discussion of the fingering instability that causes the flow of cooling melts in
two-dimensional sills or dykes to become focused into three-dimensional chan-
nels. We then turn in Sect. 6.3 to the case of channelling of the flow of aqueous
solution through a soluble porous medium.

Much of the Earth’s surface, indeed much of the mass of the planet’s crust,
was at some time laid down by lava flows, whether submarine (from mid-ocean
ridges, seamounts or plume-related volcanic hotspots) or sub-aerial (from vol-
canism above subduction arcs or hotspots) (see Chap. 5). Hence we devote some
of this article to simple models of lava flows and the instabilities that shape
them, noting two factors in particular. First, that lava is not a simple Newto-
nian liquid but is generally a mix of silicate liquid, crystals and gas bubbles
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with complicated rheology that may vary from close to Newtonian in the case of
the hotter basaltic eruptions (e.g. Hawaiian channel flows) to a rheology having
a large yield strength in the case of the high crystal content andesitic lavas of
arc volcanoes (such as those of Japan and Indonesia). Second, that surface heat
fluxes from the lava flows are generally large enough to cause rapid quenching
of a thin surface layer [22], whereas the slower process of crystallization leads
eventually to complete solidification of the flow. The behaviour of lava flows,
their structure, rate of flow front advance and instabilities varies according to
the properties of the erupted magma, the effusion rate, the ground topography
over which it flows and the rate of heat loss (determined primarily by the en-
vironment) [22,42,47]. The flow front eventually comes to a halt as a result of
cooling or ground topography.

In Sect. 6.4 we analyse the spreading of a high yield strength material under
gravity as a free-surface gravity current on a sloping plane, but ignoring effects
of cooling. In Sect. 6.5 we discuss dimensional analysis and laboratory exper-
iments with cooling and freezing gravity currents on a horizontal base which
demonstrate many of the instabilities and morphological characteristics of real
flows. These show some similarities with the fingering instability due to viscosity
increase of Sect. 6.1, but are substantially different in that the cooling is confined
to a very thin surface boundary layer and in that a wider range of behaviour is
observed. We then turn in Sect. 6.6 to a discussion of experiments with freezing
flows on a slope. A more extensive review of work on cooling and solidifying
free-surface flows can be found in [22].

6.2 Viscous Fingering Instabilities

It is well-known that the intrusion of a less viscous fluid into a two-dimensional
slot (or a porous medium) containing a more viscous fluid leads to inter-fingering
of the two fluids as a result of the Saffman–Taylor instability [43]. This is an
isothermal phenomenon but relies on the viscosity contrast across the advancing
front. A more complex case, but one which is more relevant to the flow of hot
silicate melts in the earth’s crust, is that in which the flow involves only one
fluid but the viscosity is a function of temperature, so that the dynamics of flow
become strongly coupled with the heat flow.

Following [48] we consider a flow in a narrow slot with walls at temperature
TW (z) and which is fed from below by hotter fluid at temperature TH from a
two-dimensional chamber as sketched in Fig. 6.1.

The bottom of the chamber is fed by an initially uniform volumetric flux Q
propelled by pressure P . The slot gap width is d, the depth of the slot in the z
direction is L and the slot is infinite in the lateral (x) direction. Reynolds number
is small, so the flow is governed by a balance between viscous drag and pressure.
Following [23,52] the velocity is two dimensional and tangential to the slot walls,
so u′ = (u′, w′) where u′ is lateral velocity and w′ is out of the chamber. Primes
on velocity, pressure, and viscosity denote dimensional quantities. Corrections
due to three dimensional variations in temperature and velocity are developed in
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Fig. 6.1. Sketch of the idealized system for finger instability. Fluid comes in at the
bottom of a chamber. It flows through a slot whose sidewalls are cooler than the fluid

[51], but here we make a simple narrow gap approximation. If the dimensionless
number α = gρα′(TH −TW )L/P is small, where ρ is density in the chamber and
α′ is coefficient of thermal expansion, effects of gravity g are negligible [23]. The
basic equations are

12μ′(T )
d2

u′ = −∇p′ , (6.1)

∇ · u′ = 0 , (6.2)

and
∂T

∂t
+ u′ · ∇T = −π

2κ

d2
T . (6.3)

Following [23], we investigate two-dimensional flow in the slot. We use a
model where the temperature of the walls is uniform and viscosity obeys the law
μ′ = μH exp[λ′(TH−T )], which in nondimensional form is μ = exp[λ(1−θ)] where
μH and λ′ are constants. This introduces the dimensionless quantities μ = μ′/μH

and θ = (T −TW )/(TH −TW ), and the dimensionless number λ = λ′(TH −TW ).
In the scaling we also use L for a length scale, L/U for a time scale, and U =
Pd2/12LμH for a velocity scale. The dimensionless streamfunction defined by
(u,w) = (−ψz, ψx) (primes are dropped for dimensionless flow variables) obeys
the scaled vorticity equation

∇2ψ = −d lnμ
dθ

∇ψ · ∇θ . (6.4)

In the heat equation we neglect lateral conduction of heat in the plane of the
slot compared to conduction from the fluid to the walls, leaving

∂θ

∂t
+ J(ψ, θ) = −δθ . (6.5)
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Here, the second dimensionless number in the problem is δ = 12π2κμHL
2/Pd4.

This is the inverse of a modified Peclet number Ud2/κL [48]. Physically, δ is the
ratio of the time that it takes for hot fluid to traverse the slot length divided
by the time scale for the fluid temperature to respond to changes in wall tem-
perature. Typically, the usual Peclet number Pe = UL/κ will be quite large.
For example, for a fissure with U = 1 m s−1, l = 103 m and κ = 106 m2 s−1,
Pe = 109. However, the ratio d2/L2 is typically small and may span wide ranges
from 10−6 to 10−12, reflecting a variation in expected dike widths from 10−3 m
to 1 m. Thus the modified Peclet number δ can span a wide range of values both
greater and less than one. The dynamic boundary condition at the flow exit is
u = −∂ψ/∂z = 0 at z = 1. At the entrance, the condition is θ = 1.

The basic steady-state temperature and viscosity fields are readily found as
a function of imposed flow w0 and correspond to a multi-valued pressure drop
for λ > 3.03 (as shown in Fig. 6.2). Inspection shows that for sufficiently large
λ there are values of w0 that lead to a decreasing magnitude of the pressure
gradient for increasing w0. This happens because viscosity is small for the warmer
temperatures at higher flow rates and is larger for the cooler temperatures at
slower flow rates. For a balance between pressure gradient and steady flow, the
only recourse is for uniform flow to break down to spatially uneven flow. The
feedback mechanism, whereby a change in flow rate makes an inverse change in
flow resistance, is the essential factor that causes instability.

Fig. 6.2. Pressure difference across the slot as a function of steady flow rate. In this
example λ = 5 and δ = 0.1. The three circles show that there are three values of flow
rate for the same value of pressure difference. At the intermediate circle the flow can
be expected to be unstable since a faster flow makes less resistance

A linear stability analysis [23] reveals that, if the basic flow is set in the region
where pressure decreases with increasing flow, the flow becomes channelized.
The wavelength of most rapid growth is sensitive to the source conditions used
(Fig. 6.3). With constant source flux the wavenumber of most rapid growth is
of order one. With uniform source pressure the fastest growth is found for zero
wavenumber.
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Fig. 6.3. Growth rate as a function of wavenumber for two boundary conditions with
λ = 5. The values of w0 are varied rather than λ because the latter is not single valued.
On the left a constant source flux is imposed into the slot and on the right a constant
pressure is imposed

Numerical studies of the evolution of the temperature and streamfunction
field (Fig. 6.4) illustrate the formation of fingers, which represent channels of
enhanced flow. Similar channels have been viewed in syrup flowing between two
walls with one wall highly cooled [52].

Fig. 6.4. Isotherms (right) and streamfunction (left) at different times for the finger
instability. In this case λ = 5, and w0 = 0.0425 (δ = 0.075). The initial condition was
the linear solution for fastest growth

Experiments with liquid paraffin, and described in the following paragraphs,
demonstrate the transition from uniform flow to fingering flow as time progresses.
The apparatus consisted of a thick square aluminum plate placed horizontally
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and levelled carefully in a pan of ice water. Only the underside of the plate was
in contact with the water. The temperature of the ice water was estimated to be
approximately 5 ◦ C in contact with the plate, since the ice floated only around
the edges of the plate. A 11 mm thick square plexiglas plate 4.6 mm on a side was
clamped over the aluminum with spacers between the aluminum and plexiglas
leaving a narrow gap of 2.4±0.7 mm. A hole drilled in the center of the plexiglas
was connected by a heated hose to a reservoir containing melted paraffin. As
a run commenced, paraffin was delivered to the hole at a known constant rate
(5.5 ml/s) by gravity feed. The paraffin initially began to spread out in a growing
pattern that was close to perfectly circular. After 16 seconds there was a rapid
growth of radial finger-like bulges (Fig. 6.5a) with round tips. Ten or twelve
fingers grew within four seconds but many of them stopped growing during the
next four seconds. The only change in the pattern subsequently was that four
fingers reached the edge of the tank, the rest froze. At this stage oil soluble dye
was injected into the paraffin source and it was observed that most flux was into
the two largest fingers. Forty eight seconds later the flow was through only one
finger (Fig. 6.5b), fed by a single channel, in a flow pattern that then continued
indefinitely, with little apparent change.

Assuming that both the lid and the aluminum plate cool the paraffin as it
flows along the slot, the thermal time constant for the initial paraffin flow in
the gap is of order h2/4κ = 14.5 s (κ = 0.001 cm2 s−1), which is similar to the
observed time to instability of 16 seconds. Furthermore, the final channel (of
width approximately 1.5 cm) carried the full source flux from the source to the
edge of the plate at a relatively large velocity of around 15 cm s−1. Hence the
fluid at this stage spent less than 2 s in the slot, a time that is short compared to

Fig. 6.5. The evolution of paraffin flowing with constant volume flux through a cooled
annular slot from a small source. (a) Numerous fingers have broken out at 20 seconds
from an intrusion that was circular at a time of 12 seconds. (b) At 92 seconds dark
dye reveals that the fingers have all stopped except for one channel. The dark dye
was placed in the fluid earlier and it indicates a previous time when there were two
channels. Extended fingers also reveal that there was a time with four channel flow
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the time required for it to cool. In this manner the fluid adopted both a long and
a short length scale for the final flow. The long distance between the remaining
active channels led to faster and hence warmer flows in the remaining channels.
At the same time each channel became narrow enough to continue to support
rapid flow. Thus large channel spacing combined with narrow channels allowed
transit of fluid parcels without them becoming too cold.

Our aim here was to demonstrate the simple concept that the system estab-
lishes, through instability, a flow pattern that allows fluid to escape from the
slot before it cools enough to greatly increase its viscosity. It was found that
instability ocurred on the time scale for diffusion of heat through the width of
the slot, and it took on a large length scale. These results are probably relevant
to the flow of magma through conduits in the Earth’s crust [6]. Later in this
chapter we will see that free-surface gravity currents too, such as lava flows,
are unstable due to cooling, but that instability occurs on a very much shorter
time scale during which only a very thin superficial boundary layer is cooled and
solidified. Again, under some conditions, long narrow channels containing high
flow velocity are formed.

6.3 Dissolution Instability
and Channelised Flow in Permeable Media

A related problem, which in addition involves latent heat effects, is the melting of
a permeable matrix (or freezing of melt) during percolation in a porous medium.
We consider, as an example, the particular case of a liquid flowing uniformly
through a porous material where it encounters a material of lower permeability
which it can partially dissolve, and assume the flow is at a constant temperature.
Dissolution increases the permeability of the solid matrix. A similar fingering
instability that again leads, at finite amplitude, to the channelisation of flow
occurs in the percolation of a solvent, such as a hot hydrothermal solution,
through a partially soluble permeable matrix.

Following [32], the system to be analysed is sketched in Fig. 6.6.

Fig. 6.6. Sketch of the initial state for the model of liquid flowing upward through a
porous material which it can dissolve
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Let the interface lie at
η(x, t) = z , (6.6)

and the equation for the dissolution of the interface be

∂η(x, t)
∂t

= γw . (6.7)

In this model, dissolution causes the interface to migrate at a rate propor-
tional to the amount of fluid flowing through the interface. We assume that
dissolution at the interface immediately increases the permeability from the ini-
tial value above the interface to the higher permeability of the material below
the initial position of the interface.

For small times we let the total vertical Darcy velocity at the interface w
consist of a steady uniform component plus a small perturbation, and describe
the interface as a horizontal plane plus a small deviation:

w = w0 + w′(x, t) , (6.8)
η = η0(t) + η′(x, t) . (6.9)

The steady flow and the mean interface position are given by:

∂η0
∂t

= γw0 , (6.10)

η0 = γw0t = z , (6.11)

whereas equations governing the perturbations throughout the porous materials
are given by Darcy’s law:

kn

μ

∂pn

∂x
= −un , (6.12)

kn

μ

∂pn

∂z
= −wn , (6.13)

with velocity components

un =
∂ψn

∂z
, (6.14)

wn = −∂ψn

∂x
, (6.15)

where the streamfunctions ψn satisfy

∇2ψn = 0 . (6.16)

Here, μ is the dynamic viscosity, kn is the matrix permeability and subscripts
n = 1, 2 denote the region upstream or downstream of the interface.
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For a perturbation to the interface of the form

η′ = N(t)cos(lx) (6.17)

and, assuming firstly, that w0 � w′
n, secondly, that we start with t = 0 so the

unperturbed interface is at z = 0, and thirdly that N(t) is smaller than the
length scale l−1, we integrate (6.13) for w upward from a plane normal to the
bottom of the perturbed interface at z = −N to a plane normal to the top of
the perturbed interface z = N :

p2(N)− p1(−N) = − μ
k2

∫ N

η′
w0dz −

μ

k1

∫ η′

−N

w0dz

= −μw0

{
N

[
1
k2

+
1
k1

]
+N cos(lx)

[
1
k1
− 1
k2

]}
.(6.18)

A contribution to the above calculation for pressure from perturbation velocity
w′ is of order w′N and is assumed to be negligible. Equation (6.18) divided by
2N is the average vertical pressure drop in this region. Of primary interest is
the laterally varying component of pressure, which by symmetry, we take to be
zero at the origin, so that

∂p2
∂x

∣∣∣∣
N

= − ∂p1
∂x

∣∣∣∣
−N

(6.19)

and laterally varying pressure at z = N is

∂p2
∂x

=
μw0Nl

2

[
1
k1
− 1
k2

]
sin(lx) . (6.20)

Since N is indefinitely small, this condition will be assumed to apply at z = 0.
Using (6.12) and the streamfunction definition

u2 =
∂ψ2

∂z
= −k2

μ

∂p2
∂x

= −w0Nlk2
2

[
1
k1
− 1
k2

]
sin(lx) . (6.21)

A solution to (6.16) is

ψ2 = A(t)sin(lx)e−lz , (6.22)

which with (6.21) at z = 0 produces

A(t) = k2w0

[
1
k1
− 1
k2

]
N(t) . (6.23)

Using (6.7), (6.8), (6.10), (6.15), (6.17), and (6.23) results in

∂N

∂t
= −γlw0

[
k2
k1
− 1
]
N , (6.24)
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which has an exponentially growing solution for k1 > k2 (upstream permeability
greater than downstream). Equation (6.24) shows that the larger the wavenum-
ber l the faster the growth rate. Therefore, very small length scale perturbations
grow most rapidly.

The stability of an initially planar interface and the subsequent spatial dis-
tributions of permeability, porosity, solute concentration and water composition
were studied by Ortoleva et al. [38,39]. They found that the planar interface is
unstable with the fastest growing wavelength determined by matrix size, initial
modal amount of reactive mineral in the rock, initial porosity, the composition
and the velocity of the inlet fluid. In essence their result simplifies to the wave-
length of fastest growth being proportional to thickness of the front, which is
determined by the effective solute diffusivity divided by the fluid Darcy velocity.
Since the effective diffusivity (due to mechanical dispersion) of a solute flowing
through a porous material is proportional to the Darcy velocity times grain size,
this reduces to the simple result that finger width is proportional to grain size.
The purpose here was to present the essentials of such an instability in as simple
form as possible. Hence many of the elements included in the original analysis,
such as grain size, porosity variation, and change in volume of the solute, were
neglected.

The more complete theories of Ortoleva et al. [38,39] have shown that diffu-
sion processes limit the magnitude of the fastest growing wavenumber, so that
fastest growth is scaled by grain size. The first wavelengths to appear in exper-
iments with water percolating through salt agree with this [38]. They are small
but larger than grain size, which contrasts with the very long wavelength favored
in the viscous fingering case of Sect. 6.2. For longer times the short wavelength
distortions attained a finite size and stopped their exponential growth, while
longer wavelengths continued to grow. Flows produce drainage channels that
exhibit both coalescence and branching [32,49].

Finger instability may also be encountered in reaction–dissolution effects
upon the migration of melt. In order to describe the migration of melts to produce
magmas it is necessary to add the process of compaction (the driving of the
fluid by gravity acting on a viscous deformable solid matrix of different density).
For example, mid-ocean ridge basalts (MORB) are produced through pressure-
dependent melting (the melting temperature decreases with decreasing pressure)
coupled with compaction-driven flow. Melt accumulates around grain boundaries
and is squeezed upwards by the slowly deforming denser mantle crystals. The
composition of the mantle is such that rising mantle material undergoes partial
melting as it reaches lower pressures. Hence melt percolating upward will be out
of chemical equilibrium with the remaining matrix of mantle crystals and will
produce additional reaction that in general will reduce the permeability. In the
absence of compaction [1], the porous flow of a reacting fluid through a soluble
matrix with gradually changing solubility has growing finger instabilities over
the entire range of Damkohler numbers Da = l/Leq . Here Leq = φ0w0ρf/Reff
is the distance that a perturbation in chemical concentration will travel before
becoming chemically equilibrated, and thus it is the product of velocity and
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reaction time. (In this formula, φ0 is the porosity, ρf is density of the melt,
Reff is the reaction rate of the melt in contact with a crystal matrix, and the
other symbols are as above.) However, in a compacting matrix not all reacting
flows are unstable [1]. The criterion for instability is that Da > 1/Cn , where Cn
measures the effects of the change in solubility over one compaction length hcomp

multiplied by the ratio of compaction length to matrix depth. A compaction
length is the distance a change in matrix porosity can migrate in a compacting
flow before decaying. The stability criterion is also written as β′h2

comp/Leq > 1,
where β′hcomp is the change in solubility over one compaction length.

Finite amplitude effects of instability have been observed in laboratory stud-
ies without matrix compaction [32,49] and also in a number of computer stud-
ies [2,33,45]. In numerical studies the channels that break out as the result of
instability typically branch and coalesce again. Branching is also seen in the
related problem of Saffman–Taylor instability and may be simply a function of
the degree to which the stability criterion is exceeded. However, the thermal
channels in cooled laboratory viscous flows observed to date do not exhibit such
branching, and the exact causes of channel branching and coalescence are poorly
understood.

6.4 The Shapes of Free-Surface Yield-Strength Flows
on a Slope

Some lava flows, especially those having relatively high silica content, tend to
be erupted with high crystal and vesicle fractions that give them a highly non-
Newtonian rheology. This rheology is most simply characterised by the addition
of a large yield stress to the viscous stress in the stress-strain rate relation. There-
fore, a very useful (but highly simplified) flow to understand is the isothermal
flow of a yield-strength material as it is slowly extruded onto a sloping plane
from a localised source (or vent). This is the next step beyond an analysis of
the radial spreading of a viscoplastic fluid from a source on a horizontal plane
[3,5], where the flow is characterised (apart from significant viscous stresses in a
small neighbourhood of the source) by a static, or quasi-equilibrium, balance be-
tween gravity and yield strength at any distance from the axial source. A simple
parabolic height profile with radius results, and the dome remains axisymmetric
as it expands over the horizontal base, apart from a set of orthogonal spiral glide
planes on which the material achieves the deformation that is necessary for it to
spread radially.

Early realisation that the levee banks created by long basalt flows implied
non-Newtonian flow led Hulme [26] to consider the unconfined motion of a Bing-
ham fluid of yield stress σ0 down a slope. He considered long flows and assumed
that all quantities are independent of distance x down-slope. Near the edges of
a flow its depth h(y) becomes small and the lateral flow was assumed to cease
when the cross-slope pressure gradient is balanced by the basal yield stress, as
expressed in

∂P

∂y
= ρg

∂h

∂y
=
σ0

h
. (6.25)
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This model is based on the assumption that the fluid does not deform any-
where but at its base, where the pressure is greatest and (in order for the fluid
to have reached its current shape) equal to the yield stress. The solution to
(6.25), originally obtained in the context of icesheet dynamics [37], with h = 0
at y = W , is simply

h2 =
2σ0

ρg
(W − y) , (6.26)

which implies that the central height H = h(0) and the half-width W are always
related by H = C(σ0W/ρg)1/2, where C =

√
2. If the flow depth is assumed to

be constant in the down-slope direction at any value of y, then motion requires
ρgh(y) sinβ > σ0, where β is the slope of the base from the horizontal. Hence
there is a critical depth

hs =
σ0

ρgsinβ
(6.27)

below which there will be no down-slope motion. Substituting this depth into
the cross-slope balance (6.26) gives the width of the region of stationary fluid
along the edge of the flow:

ws =
σ0

2ρg sin2 β
=

hs

2 sinβ
. (6.28)

Between these two stationary regions there is free visco-plastic flow down-
slope, which Hulme approximated as the two-dimensional flow between a parallel
stress-free surface and no-slip bottom plane, leading to the depth-averaged ve-
locity [26,44]:

u =
ρg sinβh2

s

3η

[(
h

hs

)3

− 3
2

(
h

hs

)2

+
1
2

]
. (6.29)

An error in Hulme’s analysis is that, for the cross-slope motion to cease, it
is necessary to consider more than the cross-slope component alone of the basal
stress: the total stress σ = ρgh[sin2 β + (∂h/∂y)2]1/2 at the base (where the
down-slope thickness gradient might be neglected) must become equal to the
yield stress.

Laboratory experiments with kaolin–water slurry on a slope [26] revealed
the presence of stationary levees bounding long down-slope flows. The height
of the levees was consistent with the formula (6.27), which was then applied
to lava flows to find yield strengths for various flows (of order 103 Pa for low
silica contents to 105 Pa for higher silica contents) from the height of levees (5–
30 m) and the underlying topographic slope. This much of the behaviour of long
flows, and particularly the observed levees, can therefore be explained in terms of
isothermal flows having a yield strength. The levee-derived correlation between
silica content and strength for terrestrial flows, along with remote measurements
of levee heights, were even used to estimate compositions of lunar flows. In detail,
real flow levees are formed of cooled flow-front or surface material pushed aside
by the advancing flow front, so that only the levees are required to have a yield
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strength and the flow is not of uniform rheology. However, the principle and the
application of (6.27) are unchanged.

A more difficult problem is posed by domes of extremely ‘stiff’, high-silica
content, lavas erupted on to slopes; these are not the very long flows (or relatively
low-viscosity basalt) which motivated the previous work [21,22]. Instead, the
challenge is to predict the fully three-dimensional shapes, including the extent of
up-slope flow from the vent. A solution for the analogous problem of Newtonian
viscous flows was given by Lister [35]. The solution can also be found for the
three-dimensional case in the limit of slow flow or high yield strength (i.e. when
B → ∞, where B = σ0/ηε̇ = σ0hs/μU , with U a velocity scale and μ the
viscosity, is the Bingham number comparing yield stress to viscous stresses).
In this case, the extruded material causes a force that exceeds the yield stress.
This produces a flow that terminates as a new balance between yield stress and
hydrostatic forces is produced. Elements of this solution were given by Coussot
et al. [8,9], who thought the complete solution would be non-unique, but the
unique solution for emplacement from a small source was obtained by Osmond
& Griffiths [40]. This solution is summarised here and gives the three-dimensional
shape for static finite volumes. It also gives the final width of very long down-
slope flows (i.e. for large volumes), which turns out to be independent of the
viscosity.

We assume H/L 	 1, a hydrostatic gradient in the vertical and a static
balance between gravity and yield stress (as in (6.25) but this time in the plane
parallel with the base slope) and that the total stress at the base is equal to the
yield stress. We readily obtain an equation for thickness h(x, y) normal to the
base [40]: (

∂h

∂x
− tanβ

)2

+
(
∂h

∂y

)2

=
(

σ0

ρgh cosα

)2

. (6.30)

The axes x and y lie in the plane of the sloping base, the z axis normal to
the base. Assuming symmetry about the down-slope (x) axis through the source
implies [∂h/∂y]y=0 = 0 (except at x = 0, where ∂h/∂y must be discontinuous
in order to force radial flow from the vent). Then (6.30) can be solved for the
thickness profile h(x, 0). Scaling thickness h by hs (6.27) and distance x parallel
to the sloping base by hs/sinβ gives the thickness profiles (with all quantities
now dimensionless)

x = h−H + ln | (1− h)/(1−H) |, x ≥ 0 ,
x = h−H + ln | (1 + h)/(1 +H) |, x ≤ 0 , (6.31)

on the down-slope (x > 0) and up-slope (x < 0) sides, where h = H at x = 0.
The leading edges of the dome are found at h = 0 and from (6.31) we have

xd = −H − ln | 1−H | , xu = −H+ | 1 +H | (6.32)

(downslope and up-slope respectively) or a total dimensionless flow length L =
− ln | 1−H2 |. The cross-slope thickness profile of the dome can be approximated
by neglecting ∂h/∂x in (6.30) in the region of maximum width (down-slope from
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x = 0). The dimensionless maximum width is given by W ≈ 2(1 −
√

1−H2).
It tends to be more useful to describe these flows in terms of their volume V
at any time, where V is the extruded volume normalised by the volume scale:
σ3

0/[(ρg)
3 sin5 β]; the dome is not much influenced by the topography for V 	 1

but strongly influenced and displaced somewhat down-slope from the vent for
V > 1. When V � 1 (and the thickness H tends to 1) the down-slope length
of the dome tends to infinity. This reflects the fact that the critical thickness hs

(6.27) is the maximum dome thickness that can be supported on the slope in a
static balance; larger thickness would imply a basal region of dynamic viscous
flow. For V 	 1 (i.e. H 	 1 as a result of small volume, large yield strength,
small slope or reduced gravity) the dome is not influenced by the base slope, is
close to axisymmetric and (6.31) approaches the quadratic profile (6.26).

In order to obtain the complete locus of the dome perimeter and contour
plots of flow thickness as a function of H (or of V ) equation (6.30) was solved
numerically. Sample solutions are shown in Fig. 6.7 for the flow depth contours
at several values of the dimensionless volume. Miyamoto & Sasaki [36] treat a
similar problem through numerical simulation.
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Fig. 6.7. Contour plots of flow depth obtained from the numerical solutions (6.30) for
yield strength flow on a slope. Solutions are shown for four values of the dimensionless
central thickness H (or dimensionless volume V ). Note the change in scale on the axes
between the various plots. From [40]

The solutions compare well with isothermal experiments with slurries of
kaolin in polyethylene glycol wax as well as kaolin in water, both on a slop-
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a) b)

Fig. 6.8. Photographs of isothermal laboratory flows of Bingham fluid on a planar
slope. The fluid was extruded in many small volume increments from a 1 cm diameter
hole in the smooth base. The domes were static between increments. The black circle
shows the location of the source. (a) kaolin/water slurry, slope β = 12◦, volume 900 cm3,
σ0 = 92Pa, dimensionless volume V ≈ 0.8; (b) kaolin/PEG slurry, β = 18◦, 1000 cm3,
σ0 = 84Pa, V ≈ 12. ‘Leeves’ develop for V > 10, when further spreading is largely
down-slope. (From [40])

ing base (Fig. 6.8). In experiments with V ≈ 0.1 (H ≈ 0.7), the flow margin
begins to depart noticeably from circular and the down-slope length is more than
twice the up-slope length from x = 0. For V ≈ 1.5 (H ≈ 0.95), the down-slope
length is eight times greater than the upslope length and nearly twice the full
width. Two sets of slip planes again curve out from the summit as in Blake’s
[5] experiments on a horizontal base, but this time they are asymmetric in the
x-direction. The stationary levees of Hulme [26] are seen to form along the edges
of the down-slope laboratory flow at very large flow elongations (V > 10, H → 1;
Fig. 6.8b). In the analysis the assumption of a static balance everywhere implies
that the origin is to be identified with the vent from which the fluid was sup-
plied, and there is no implication that fluid volumes having histories different
from this will take similar shapes: the static shape will be different if the base
slope is changed after the volume is emplaced, or if the flow is rapid and partly
viscous for a time before taking on the quasi-static shape controlled by yield
strength.

One conclusion to be drawn from these observations is that complex flow
structure is not always the result of instability. The levee structures along the
edge of the flow form simply because the edges must be shallow and therefore
cannot move down-slope in the presence of the yield strength. A down-slope
channel is formed, somewhat like those that form in the cooled slot (Sect. 6.2)
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as a consequence of increased viscosity (or solidification). However, the detailed
texture of the surface and the structure of the intersecting yield surfaces have not
been addressed. In real lava flows, there are additional complications due to the
effects of cooling and varying rheology, which may greatly alter some flows while
leaving others, presumeably those emplaced relatively rapidly, less affected.

6.5 Instabilities of Solidifying
Free-Surface Gravity Currents

In the case of the spreading of a fluid on a plane under gravity the flow has a free
surface and hence additional freedom to respond to cooling and rheology vari-
ation. Isothermal gravity currents, both turbulent and very viscous, have been
studied extensively. However, the more complicated (and much richer) problem
of cooling gravity currents having temperature-dependent rheology or solidifica-
tion has barely been touched. Recent work in this area has been motivated by
modelling of lava flows, but is also relevant to some industrial problems such as
the flow of molten metals.

There are a number of styles and morphologies of lava flow, each presumably
reflecting a different dynamical flow regime. Some examples are shown in Fig. 6.9.
The style of flow is contolled by factors such as: lava composition and rheology,
eruption temperature, effusion rate, base topography and whether it flows under
water, air or a vacuum [12]. Initial heat loss is predominantly by radiation under
the relatively thin atmospheres of Earth and Mars (Earth’s atmosphere has
sufficient heat capacity that convection provides a comparable flux only after
the surface temperature has fallen to less than ≈ 200 ◦ C [18,22]). In contrast,
radiation is less important than convection for temperatures less than 900 ◦ C
under the dense atmosphere of Venus (where Ta ≈ 450 ◦ C). For eruptions under
water radiation is always negligible relative to the very rapid convective transport
[19].

The effects of cooling will depend on the rate of spreading of the flow relative
to the rate of cooling through a temperature range sufficient to cause rheological
change. It is therefore logical to first consider the role of a dimensionless pa-
rameter expressing this ratio. A comparison of the conductive transport of heat
within the lava to the advection of heat with the flow reveals that for almost all
lava flows the Peclet number Pe = UH/κ (U a velocity scale, H a flow depth
scale and κ the thermal diffusivity) is very large, ranging from 102 to 105 for
slow-growing lava domes through to > 106 for fast channelized basalts flows.
Thus cooling is confined to a very thin boundary layer at the free surface and, if
mixing is absent, the interior remains largely isothermal. In this thin boundary
layer regime surface solidification commences at a distance ds ≈ uts from the
vent, where u is the surface velocity and ts is the time taken for the surface
temperature Tc to cool from the vent temperature Te to the solidification tem-
perature Ts. Scaling distance by H and velocity by a suitable scale U one can
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a) b)

c) d)

e) f)

Fig. 6.9. Examples of some lava flow forms: (a) channelised basalt flow from Kilauea
Volcano, Hawaii (flow channel roughly 20m wide); (b) and (c) ‘ropy pahoehoe’ and
‘toey paheohoe’, respectively from Kilauea (‘ropes’ have wavelength ≈ 20 cm, ‘toes’ are
typically 30 cm across); (d) submarine pillow basalts, each approximately 1m across,
on the East Pacific Rise; (e) Little Glass Mountain rhyolite flow, northern California,
showing flow around an obstacle on a gentle slope and transverse surface ridges ≈ 5m
in height (image 2.8 km across); (f) a lava dome 850m across and 130m high in the
crater of La Soufrière, St Vincent, 1979. Photographs courtesy of J.H. Fink and R.
Embley
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define the dimensionless parameter [12,20]

Ψ =
Uts
H

=
ts
tA
, (6.33)

where tA = H/U is the time scale for lateral flow through a distance H. Equiva-
lently, ds/H ≈ Ψ . Here the velocity scale U and the advection timescale Ta will
depend upon the governing dynamics of the flow, as indicated below. The value
of ts depends on the surface heat flux and the dimensionless temperature of so-
lidification Θs = (Ts−Ta)/(Te−Ta), the proximity of the eruption temperature
Te to the solidification temperature Ts [12,20]. This time scale (and the surface
temperature Tc) must be obtained from a heat transfer calculation, accounting
for radiation and convection from the surface [18,19] matched to the conductive
heat flux within the lava. The surface solidification time was found to be of the
order of 0.1 s for submarine lavas, 100 s for sub-aerial basaltic lavas (on Earth
and Mars), and approximately 60 s for the cooler highly-silicic lavas under air.
Note that the parameter Ψ is defined for extrusions of constant volume flux Q in
terms of the advective time scale tA appropriate to the corresponding isothermal
Newtonian gravity currents. A similar parameter ΨB can be defined, again by
(6.33), when the flow is plastic [21].

For the Newtonian case (and point source) a global velocity scale U =
Q/H2 ≈ (ρgQ/η)1/2 and depth scale H = (Qη/ρg)1/4 are found for the isother-
mal flow [30] and give tA = (η/ρg)3/4Q−1/4, so that the dimensionless solidifi-
cation time becomes

Ψ =
(
ρg

η

)3/4

Q1/4 ts . (6.34)

For the plastic case U = Q(ρg/σ0)2 and H = σ0/ρg [21], and these lead to

ΨB =
(
ρg

σ0

)3

Qts . (6.35)

These definitions represent an attempt at describing a flow in a global sense,
recognising that the advection velocity at a given radius can vary with time (as
the depth changes or the flow becomes non-axisymmetric) and depends on dis-
tance from the vent. Thus there remains scope for time-dependence of the effects
of solidification within a flow having a fixed value of Ψ . Of course, variations of
source volume flux lead to changes in Ψ and this is explicit in (6.34, 6.35).

At distances from the vent greater than ds the layer of solid crust will thicken
in a manner that, again, can be calculated by coupling conduction in the lava
to the surface heat flux through the surface temperature Tc(t) [18,19]. Note
that in terms of the external dimensionless parameters, Ψ and ΨB provide a
general indication of whether the solid crust thickens quickly or slowly relative
to the lateral motion. These parameters are more relevant to the thickness of
the rheological boundary layer than is Pe, at least at early times, since the
latter relates only to the thickness of the thermal boundary layer (given by
δT ≈ (Ψ/Pe1/2)H at the location of the onset of solidification), and the thermal
boundary layer is not directly related to the presence or thickness of crust.
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Laboratory analog experiments serve to test the hypothesis that the primary
effects of cooling and solidification for slow laminar flows are captured by dif-
ferences in the parameter Ψ . The experiments used viscous polyethylene glycol
(PEG) wax, which freezes at a convenient temperature of 18–19 ◦ C, extruded
from a small circular (or narrow linear) vent under cold water onto a horizontal
or sloping base [12,13]. The cold water gave rise to a sufficiently large turbulent
convective heat flux and solidification times comparable to horizontal advection
times. The results revealed a sequence of distinct flow regimes (Fig. 6.10) and
these correlated with intervals of Ψ [13].

a) b)

c) d)

Fig. 6.10. Examples of solidifying gravity currents showing four flow types in labo-
ratory experiments with polyethylene glycol wax flowing over a horizontal floor. The
Newtonian liquid was extruded from a small hole onto the base of a tank of cold water.
Some of the surface subsequently solidified. (a) ‘pillow’ growth at Ψ = 0.11; (b) ‘rifting’
flow with separating rigid surface plates at Ψ = 2.7; (c) ‘folded’ flow at Ψ = 3.0; (d)
largely axisymmetric flow with weak cooling and solid confined to ‘levees’ along the
flow front at Ψ = 7.3 (these values of Ψ have been corrected for a previous numerical
mistake: all values reported in [12] must be divided by 102/3)
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At Ψ < 0.7, where cooling is rapid or extrusion is slow, the flow was fully
encased in solid and spread through many small bulbous outgrowths reminiscent
of submarine lava ‘pillows’; at 0.7 < Ψ < 2.5 thick solid extended over most of
the surface and formed rigid plates separated by divergent ‘rifts’, complete with
transform faults, where solid continued to accrete onto the plates; at 2.5 < Ψ <
6 solid became more widely distributed (except over the vent) but was thin
and tended to buckle or fold, forming many small transverse ridges and ropy
structure; at 6 < Ψ < 16 crust was seen only around the margins of the flows,
where it formed ’levees’; and at Ψ > 16 no solid crust formed before the flow front
reached the side walls of the container (the values of Ψ given here are smaller,
by a factor 102/3, than those originally reported in [12] because an incorrect
value for the water viscosity was originally used). In addition, for Ψ < 6, the
flows ceased to spread when the source flux was turned off, indicating control
of spreading by the strength of the solid (i.e. a balance of buoyancy and crust
yield strength). The forms of surface deformation and flow morphology observed
are similar to some of the main characteristics found on basaltic (low viscosity)
lava flows and traditionally used to categorise them. In particular, they include
submarine ‘pillow basalts’, submarine jumbled plates, sub-aerial ropy pahoehoe
and sheet pahoehoe flows where “pahoehoe” refers to a smooth glassy surface.

Experiments similar to the wax studies above but using instead a kaolin-
PEG slurry [21], which has both the freezing temperature of the PEG and a
yield strength, reveal a different sequence of morphologies (Fig. 6.11). Hence
the rheology of the interior fluid plays a role in controlling the forms of flow
and deformation, even though the rate of solidification relative to advection,
expressed in ΨB , again determined which of a sequence of morphologies occurred.
At ΨB > 15 (fast extrusion and slow cooling) the slurry spread axisymmetrically
almost as if there were no cooling; at 0.9 < ΨB < 15 there were strong rigid
plates over most of the surface and later upward extrusion of ridges with smooth
striated sides; at 0.12 < ΨB < 0.9 the flow commenced as a set of four to
six (most often five) radially moving lobes having a weak tendency to spiral.
Under rapid cooling or very slow effusion, ΨB < 0.12, the lobes were more like
vertical spines and were extruded upward only from the vicinity of the source.
In these experiments the transitions between regimes were more gradual than
those for the viscous fluid. These morphologies strongly resemble qualitative
characteristics of many highly-silicic lava domes [14].

There has been no adequate theoretical description of the above cooling and
solidifying flows and the various instabilities that lead to asymmetric spreading
and irregular structure. Only a gravitational instability in a density stratified lava
dome [16] and the surface buckling instability [11,15] have been analysed. There
is good agreement between the wavelengths of observed folds (both on ‘ropy
pahoehoe’ and on the laboratory wax flows) and that predicted for the buckling
of layers of differing viscosity or yield strength subjected to a compressive stress
[4].
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a) b)

c) d)

Fig. 6.11. Solidifying flows of a Bingham fluid using a slurry of kaolin in PEG. Apart
from the fluid rheology the experiments were similar to those of Fig. 8.7. (a) a ‘spiny’
extrusion at ΨB = 0.09; (b) a lobate extrusion showing a typical 5-lobe pattern at
ΨB = 0.79; (c) a flow without distinct lobes but surfaced by solid plates with curving
segments, ΨB = 1.3; (d) an axisymmetric flow almost unaffected by cooling at ΨB = 30.
(Heaviest grid lines are 5 cm apart; from [14])

6.6 Freezing Flows down a Slope

Experiments with solidifying gravity currents have also shown that the effects
of a sloping base are important, leading both to a flow elongation down-slope
and to greater channelisation of the flow (Fig. 6.12). The down-slope flow can
be channelised by solidified edges in the levee and surface folding regimes [17].
Hence we have flows that form their own channels, somewhat similar to the large-
amplitude flow following fingering in a cooled slot. In contrast to the formation
of narrow and fast flow in a small and decreasing number of channels in the
cooled slot which implies increasing pressure drop for an imposed volume flux,
the free-surface flow can only draw on the gravitational head (the height of the
flow) for its forcing. However, in free surface flows there are other mechanisms
that allow flow to continue. In particular, the formation of solid crust can lead
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a)

b)

c)

d)

Fig. 6.12. Laboratory experiments with PEG wax flowing from a small source on a
planar slope under cold water. The base slopes downward to the right and is covered
with mesh to make a rough floor. (a) ‘pillow’ flow; (b) ‘rifting’ flow; (c) ‘folded’ flow;
(d) ‘leveed’ flow. (The tank is 30 cm wide; from [17]). (c) and (d) are similar to ropy
pahoehoe and long channelised flows observed in Hawaiian lava flows
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to covered lava tubes at smaller Ψ and these tend to increase the insulation of
the flow against cooling and thereby further enhance the distance the flow can
travel without cooling so much that it solidifies. However, the regimes identified
in terms of surface deformation and overall morphology (aside from the down-
slope elongation) are not much different from those on a horizontal base, apart
from a shift of the regime transitions to smaller values of Ψ [17].

Turning to observations of long basalt flows that extend for many kilometres
from their vent (see e.g. [7]), the flow behaviour again reflects, albeit in ways that
remain poorly understood, differing vent fluxes, eruption duration, underlying
topography and whether they flow under air or water. Field evidence indicates
that surface cooling leads to the formation of a glassy crust while internal mixing
in these moderate Reynolds number flows can cause disruption or entrainment of
crust, cooling and rheological changes in the interior. The development of levees
removes mass from the advancing flow front and represents formation of a flow-
defined channel, whereas the solidification of crust to form lava tubes respresents
a major change in the cooling rate. There are so many processes involved that,
in past attempts to model these flows, some processes are approximated by
empirical parameterizations. A key factor which has proved particularly difficult
to model in a predictive manner is the effect of cooling, which depends on the
amount, and rate of disruption, of cooled surface crust. The disruption of crust
has been described in terms of a purely empirical parameterisation of the fraction
of the surface representing exposed incandescent fluid from the flow interior
[10]. Conditions for the disruption and mixing of surface crust under stresses
imposed by the underlying flow, and conditions for stable crust, also are not
known for either laminar or turbulent flows, yet they determine the distance
down-channel at which vertically-mixed flow gives way to stratified flow, the
onset of a thickening surface layer [34] and the formation of lava tubes [31,41].

The aim is again to predict factors such as the rate of cooling with distance
downstream, flow thickness, the speed of advance of the flow front, changes in
flow regime, and the final length of a flow as a function of erupted volume. Given
the complexities of long lava flows both simple theoretical results and complex
parameterised computational models will be valuable. Significantly, long cooling
flows without a prescribed channel have not received much theoretical attention.
In this case flow may spread across-slope, form levees or branch (as in numerical
experiments with complex distributary systems [36]).

An additional process that can contribute to the pattern of lava flow is melt-
ing and thermal erosion of the base underlying a flow. For example, thermal
erosion due to melting of underlying sediments or rock by basaltic lava flows was
investigated as the cause of sinuous rilles observed on the moon [25,27]. Theo-
retical modelling [28,29,46] suggests that much hotter and low viscosity melts,
called komatiites, which erupted on Earth some 2.7 billion years ago, flowed
for large distances as turbulent currents. These would have had high cooling
rates under seawater and could have produced thermal erosion 10–100 km from
their sources. The extent of melting may have led to significant contamination
of the flow by the assimilated melt. Further analysis [50] indicates that erosion
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is strongly dependent on the nature of the base material, with hydrous sediment
being fluidised by vaporised seawater and strongly eroded, whereas relatively
little erosion is predicted to occur for consolidated anhydrous sediment.

6.7 Conclusions

The dynamics of flows involving cooling and temperature-dependent viscosity,
a yield strength, freezing, melting, or dissolution pose many challenges. These
flows can form complex shapes and flow patterns, but they can also evolve toward
simpler active flow patterns such as a single channel. We have introduced several
simplified models which illustrate the nature of some of the underlying flow
instabilities. Along with laboratory experiments these models help to explain
many characteristics of geological flows. These models also serve as a basis of
comparison for more complex models.

Given that magmas in the upper crust and lavas erupted on to the surface
have temperatures up to 1200 ◦ C above those of their new environment, but
less than only 200 ◦ C above their solidus, it is not surprising that the effects of
heat loss can be large. The thermal effects and consequent rheological change
(or, in the extreme, solidification) often lead to the onset of a larger viscosity
or a yield strength in cooled portions of the flow. This influences the overall
flow depth and average spreading rate. In the case of free-surface flows, a yield
stress of a surface boundary layer is generally responsible for eventually halting
the advance of the flow front. The thermal effects and rheological heterogeneity
also lead to a range of complexity and instabilities such as flow fingering, lobes,
branching, channelisation, and the formation of surface deformation structures
such as folds, ‘ropes’, rifts and faults. Laboratory analog experiments have been
invaluable in relating these instabilities to flow conditions, especially the rate
of cooling relative to the rate of flow, and base slope. However, many processes
remain poorly understood and lacking a theoretical description. In the case of
free-surface flows, difficulties are introduced by a moving free surface that is also
the boundary at which the thermal and rheological changes tend to be strongly
concentrated, and where flow instabilities arise. In the case of melting, dissolution
or reaction in permeable media, theoretical difficulties are introduced by large
changes in the permeability, which feed back strongly to the flow structure.
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7.1 Introduction

In Chap. 2, we mentioned that lava was a non-Newtonian fluid, and discussed
a variety of state-of-the-art constitutive laws that crudely model some of the
properties of such fluids. In the current chapter, we go further in this direction
and describe more developments of a theoretical model for lava flows. Lava flows
have recently been the subject of a review by Griffiths [1] (see also Chap. 6).
Our aim here is to illustrate the use of viscoplastic rheological models in this
problem.

Viscoplastic fluid models are appropriate because silicic lava contains large
quantities of silicate crystals that provide a significant yield stress and crystallize
with temperature to produce highly temperature-dependent material properties.
Many lava formations are built from this material. For example, silicic lava forms
the bulk of the lava domes that emerged after eruptions on Katmai and Mount
St. Helens, and which are shown in Figs. 7.1 and 7.2. These structures were
gradually built up by the slow effusion of lava from a smaller vent. Other lava
flows contain less silicates, such as the basaltic lavas of Mount Etna and Hawaii.
These lavas generally have both a smaller yield stress and viscosity, with the
result that they flow much more easily and create morphology more like that of
rivers, see Fig. 7.3.

Although we have models from non-Newtonian fluid mechanics at our dis-
posal for roughly describing some of the rheology of lava, it is still a formidable
task to solve the resulting governing equations – we have a non-isothermal,
three-dimensional evolving fluid flow with a free surface and strongly varying
material properties. Though this does not rule out full-scale numerical simula-
tion as an option, it does mean that such an approach is far from straightforward.
Moreover, because we do not completely understand all the input physics, one
can justifiably question the usefulness of embarking on such a difficult exercise.
Fortunately, lava flows are often relatively shallow, and as in other fields of geo-
physical fluid dynamics, one is tempted to exploit this attribute to build simpler
theoretical models describing the phenomena. The construction amounts to an
asymptotic expansion of the governing equations, and furnishes a “shallow-lava
theory.” This is entirely analogous to theories developed for avalanches, ice, mud

N.J. Balmforth and A. Provenzale (Eds.): LNP 582, pp. 164–187, 2001.
c© Springer-Verlag Berlin Heidelberg 2001
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Fig. 7.1. The Novarupta dome that formed after the 1912 Katmai eruption in Alaska;
the dome has diameter 800 ft and is 200 ft high. This photograph is courtesy of the
USGS/Cascades Volcano Observatory and further details regarding this dome and
others can be found at http://vulcan.wr.usgs.gov/home.html

Fig. 7.2. The lava dome inside the crater of Mount St. Helens. Photographs courtesy
of USGS

and debris flows, as described in other chapters in this volume. Here we describe
elements of a shallow-lava theory.

Theoretical modelling of this kind can be complemented by laboratory ex-
periments: extrusions in the laboratory with fluids that act as analogues of lava
provide a controllable visualization of the important fluid mechanics. The most
commonly used analogue fluids for isothermal flows are kaolin–water slurries
[2,3], which, as we saw in earlier chapters, are approximately Herschel–Bulkley
fluids. Later in this chapter we describe some experiments with such slurries.
These experiments nicely demonstrate some of the fluid dynamical effects present
in lava flows and which can be understood with the theory. Moreover, detailed
comparisons verify that, in the simpler isothermal limit, the theory compares
quantitatively with laboratory analogues. Non-isothermal experiments have also
been conducted using wax, syrup and slurries of wax and kaolin [4,5,6] – as de-
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Fig. 7.3. Two Hawaiian lava flows. Photographs courtesy of USGS

scribed in Chap. 6, these experiments have many common morphological features
with real lava formations.

We open our discussion with the derivation of the shallow-lava theory for
axisymmetrical, cooling lava domes. Our main aim is to summarize the equa-
tions that one needs to solve for cooling domes; this theory is also relevant in
some entirely different subjects, such as spreading non-isothermal fluids in chem-
ical engineering [7]. But when we deal with explicit solutions and experimental
comparisons, we retire to the simpler isothermal limit. After discussing isother-
mal domes, we switch problems and turn to isothermal lava flows on slopes. The
mathematical formulation is much the same, and we focus on a specific geological
issue – the creation of “levees” bordering downslope flows.

7.2 Mathematical Formulation

7.2.1 Governing Equations in Axisymmetrical Geometry

Our vision of the problem (Fig. 7.4) is one in which there is a vent centred at
the origin of a cylindrical polar coordinate system (r, θ, z). The material (lava
or analogue fluid) is extruded through the vent and then spreads out laterally
over a horizontal plate located on the plane z = 0. Assuming axisymmetry and
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incompressibility, the governing equations consist of conservation of momentum,

ρ (ut + uur + wuz) = −pr + ∂rτrr + ∂zτrz +
1
r
τrr (7.1)

and
ρ (wt + uwr + wwz) = −pz − ρg + ∂rτzr + ∂zτzz +

1
r
τrz , (7.2)

continuity,
1
r
∂r(ru) + wz = 0 , (7.3)

and the heat equation,

ρcp (Tt + uTr + wTz) =
1
2
τij γ̇ij +K

[
1
r
∂r(rTr) + Tzz

]
+ S . (7.4)

In these equations, the fluid motions are described by the velocity field (u, 0, w),
the pressure p, density ρ, and temperature T . Also, g is gravity, cp is specific
heat, K is the thermal conductivity, and S denotes any latent heat release on so-
lidification or crystallization in the material. The subscripts (r, z) denote partial
derivatives, except in the case of the stress components, τij , and then we use the
notation ∂r, and so on. The material variables, cp, ρ and K, could, in principle,
be temperature dependent, but for simplicity we treat them as constants.

z=Y(r,t)

z

u(r,z,t)

r

r

θ

Top:

Pseudo-plug

Yielding region

Radial velocity

Fake yield surface

Plate

Vent

Cross-section:

z=h(r,t)

r = r
*

Thickness,

Fig. 7.4. Sketch of an expanding dome

For the cooling problem of interest here, the main source of latent heat release
is through a gradual process of crystallization: Lava is a cocktail of different min-
erals, each crystallizing at a temperature that depends upon the composition.
As a result, lava solidifies not at a single temperature, but over a range bounded
by the “liquidus” and “solidus” temperatures (where the material is completely
fluid and a crystalline solid respectively). The crystal content (expressed as a
volumetric fraction, φ) varies throughout this range, and the resulting fluid struc-
ture can be very complex. Here, we ignore the complicated physical details of
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the solidification process and opt for a simple model in which the crystal content
is a known function of the temperature alone: φ = φ(T ). Then,

S = ρL(φt + uφr + wφz) ≡ ρLφT (Tt + uTr + wTz) , (7.5)

where L is the latent heat of crystallization and φT = dφ/dT .
As discussed in Chap. 2, we adopt the Herschel–Bulkley model for the rhe-

ology of the fluid:

τij =
(
Kγ̇n−1 +

τp
γ̇

)
γ̇ij for τ ≥ τp (7.6)

and
γ̇ij = 0 for τ < τp , (7.7)

where τp is the yield stress, K is the consistency and n the power-law parameter.
Also required are the second invariants of the stress and strain rate:

τ =
√
τijτij/2 , γ̇ =

√
γ̇ij γ̇ij/2 . (7.8)

We allow for the temperature and crystal dependence of the material by allowing
the consistency and yield stress to vary: K → K(φ, T ) and τp → τp(φ, T ).
We leave the precise dependences arbitrary, but sensible choices include the
Arrhenius law and the Einstein–Roscoe relation (Chap. 2). To derive a thin
layer model, we prescribe K(φa, Ta) = K∗ and τp(φa, Ta) = τp∗ as the values
evaluated at the crystal content, φa, and temperature, Ta, relevant to the ambient
conditions.

7.2.2 Boundary Conditions for Cooling, Expanding Domes

On the plate beneath the fluid (z = 0), we impose no-slip on the velocity field.
At the vent, we must modify this condition to account for the extrusion. This
leads to the boundary conditions,

u = 0 and w = ws(r, t) on z = 0 , (7.9)

where ws(r, t) is the vertical velocity of material exiting the vent. For simplicity,
we also prescribe the heat flux on z = 0:

KTz = ρ(cp − φTL)(T − Te)ws on z = 0 , (7.10)

where Te is the “eruption” temperature. This means that the plate is insulating
away from the vent, but the arrival of hot fluid generates an incoming heat flux.

The surface of the dome, z = h(r, t), is stress-free, and so

ht + uhr = w (7.11)

and (
τrr − p τrz

τzr τzz − p

)
z=h

(
−hr

1

)
=
(

0
0

)
. (7.12)
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The thermal boundary condition incorporates surface cooling:

Kn · ∇T = −F (T ) , (7.13)

where n is the outward pointing normal. Various forms are possible for F (T ),
depending on the specific physical conditions. The simplest model is Newton’s
law of cooling: F (T ) = a(T−Ta), where a is a constant. For lava, if the dominant
heat loss is through thermal radiation, the Stefan–Boltzmann black-body law is
appropriate, although forced convection of heat by wind can also be appreciable
[8]. For the experimental slurries, domes are cooled by both conduction and
convection in overlying water, each characterized by some functional form for
F (T ) [6].

7.2.3 Thin-layer Theory

The full governing equations compose a system of coupled partial differential
equations with an evolving free boundary. One could embark upon a heavy
numerical simulation using, for example, finite element calculations. However,
given the relatively thin profiles of lava domes we are also primed for an asymp-
totic reduction using thin-layer theory. The aim of the theory is to reduce the
complexity of the equations, whilst still retaining the most important physics.

To perform the analysis, it is first expedient to non-dimensionalize the equa-
tions as follows: we take H, a characteristic thickness of the fluid layer, as the
dimension of the vertical coordinate, and L as a horizontal length-scale. We mea-
sure the velocities, u and w, by V and HV/L respectively, and time by L/V .
Then we set

r = Lr̃ , z = Hz̃ , u = V ũ , w = (V H/L)w̃ , (7.14)

t = (L/V )t̃ h = Hh̃ and p = ρgH p̃ ; (7.15)

the tilde decoration denotes the non-dimensional variables. The temperature
field is non-dimensionalized using the temperature drop between eruption and
ambient temperature:

T = Ta + (Te − Ta)Θ ≡ Ta +ΔTΘ . (7.16)

Now, given our non-dimensional units, we may measure the stresses by the
quantity, ρgH2/L. However, units for the stresses can also be given based on the
constants of the constitutive model. As a result, there is a relationship amongst
the various units that we may choose to have the form,

V n =
ρgHn+2

K∗L
. (7.17)

This relation also reflects a balance of terms in the momentum equations (the
horizontal pressure gradient with the force from the vertical shear stress) which
is standard in “lubrication theory”.
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Thin-layer theory proceeds by introducing the scalings above into the gov-
erning equations and then taking the limit, H/L = ε → 0, with a number of
non-dimensional numbers held fixed [9]. To leading order, the governing equa-
tions become

pr − ∂zτrz = 0 , pz + 1 = 0 , (7.18)

1
r
∂r(ru) + wz = 0 (7.19)

and
Θt + uΘr + wΘz = κΘzz , (7.20)

where

κ =
(

1− φTL
cp

)−1 KL
ρcpV H2

is a dimensionless, effective diffusivity (an inverse Peclet number) depending on
temperature. The acceleration terms disappear from the momentum equations
because the Reynolds number can be taken to be small (the flow is typically lam-
inar), and viscous heating can be ignored for lava and most laboratory analogue
fluids (the “Brinkman number” is small). The crucial parameter in the energy
equation is κ: If κ � 1, the diffusive term is dominant in the energy equation,
and further asymptotic simplification follows [9]. This limit corresponds to rapid
heat diffusion, and in the lava literature this is sometimes called the thermally
mixed limit. However, for lava and many analogue materials, κ is order one, and
heat diffuses relatively slowly. In this circumstance, we are faced with dealing
with the heat equation as a partial differential equation at leading order.

The rescaling of the constitutive equation leads to

τrz =
1
γ̇

[A(Θ)γ̇n + B(Θ)]uz for B(Θ) < τ , (7.21)

uz = 0 for B(Θ) > τ , (7.22)

where
τ ≡ |τrz| and γ̇ = |uz| , (7.23)

and, given that φ = φ(Θ),

A(Θ) =
K(φ, T )
K∗

, B(Θ) = B
τp(φ, T )
τp∗

and B =
τp∗L
ρgH2 . (7.24)

The “Bingham number”, B, is a dimensionless measure of the yield stress.
The boundary conditions become

u = 0 , w = ws , κΘz = (Θ − 1)ws on z = 0 , (7.25)

and

ht + uhr = w , τrz = p = 0 , Θz = −αΘ on z = h(r, t) , (7.26)
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where α denotes the non-dimensional “cooling law”,

α(Θ) =
H

KΔT F (T ) . (7.27)

The momentum equations (7.18) can be integrated once:

p = h− z , τrz = −hr(h− z) , τ = (h− z)|hr| . (7.28)

The magnitude of the shear stress is measured by τ . This decreases from a
maximal value of τ(r, z = 0, t) = h|hr| on the base of the fluid, to zero on the
stress-free surface. If h|hr| < B[Θ(r, 0, t)], the fluid is not stressed sufficiently to
yield anywhere over its depth, and the dome is stationary. But, when h|hr| >
B[Θ(r, 0, t)], the fluid near the base of the dome must yield and flow. In this
case, because τ decreases with z to zero, there is a surface, z = Y (r, t), on which
τ = B, given by

Y (r, t) = h+
B[Θ(r, Y, t)]

hr
. (7.29)

Above this surface, the stress apparently fall beneath the yield stress, and so
the fluid is predicted to flow like an unyielded, rigid “plug” with uz = 0. This
result is surprising given that the dome is expanding – such spreading flows
are divergent, and so the fluid cannot be truly rigid. In the past this apparent
contradiction has mistakenly led to the belief that lubrication-style analyses of
the sort described here are not self-consistent. The mistake is to identify the flow
in z > Y (r, t) as a true “plug flow” – a more refined asymptotic analysis shows
that this region is actually weakly yielding [10], and sufficiently so to account
for the spreading of the dome. A better terminology is to refer to the weakly
yielding region as a “pseudo-plug.” (One sees this feature also in Chap. 22).

Equations (7.21) and (7.28) can now be combined into

uz =
{
−h(1−n)/n

r [A(Θ)]−1/n(Y − z)1/nhr z < Y (r, t)
0 z ≥ Y (r, t)

(7.30)

(at least to leading order), which means that the flow is approximately parabolic
in the lower, yielding region and constant in the pseudo-plug (see the definition
sketch in Fig. 7.4).

We next integrate the continuity equation (7.19) in z, using the boundary
conditions at the surface and base, to obtain an evolution equation for the height
h(r, t):

ht +
1
r
∂r (rU) = ws , (7.31)

where

U(r, t) =
∫ h

0
udz = σh2|hr|1/n

∫ η

0

(1− ζ)(η − ζ)1/n

[A(Θ)]1/n
dζ , (7.32)

with σ = sgn(hr) and η = Y/h (ζ ≡ z/h). Because η depends on temperature,
we cannot integrate this equation without solving the energy equation (7.20),
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and we cannot evolve that equation without knowing h(r, t) and the velocity
field. Thus, our shallow-lava theory now grinds to a halt analytically, leaving a
coupled, integro-differential system for h(r, t) and Θ(r, z, t). Though this system
is still rather complicated, it is simpler than the original governing equations.

7.3 Isothermal Domes

7.3.1 Shallow Isothermal Domes

The shallow-lava theory simplifies significantly if the temperature dependence
of the fluid drops out of the problem. Such is the case if the fluid did not have
time to cool, or cooled to the ambient temperature immediately. Then we may
omit the heat equation and set A = 1 and B = B, leaving only a single evolution
equation for the height field:

ht +
1
r
∂r (rU) = ws , U = −nηh

2(1 + 2n− nη)
(n+ 1)(2n+ 1)

|hhrη|1/nsgn(hr) , (7.33)

where η = Max(1−B/|hhr|, 0).
Representative solutions of these equations are shown in Fig. 7.5 for n =

1 and an influx given by ws = 0.1 Max(r2∗ − r2, 0), where r∗ = 0.15 is the
dimensionless vent radius. We also pre-wet the plate beneath the dome (by
taking initial conditions with h(r, t) small but everywhere finite) in order to
avoid mathematical complications associated with contact lines at the rim of
the dome. Figure 7.5 shows the height and yield surfaces for three values of
the Bingham number B. Newtonian-like domes (with B 	 1, as in panel (a))
spread laterally much further than yield-stress-dominated domes (with B ∼ 0.1
or larger, as in panel (c)); the latter rise to greater heights due to the conspiracy
between the viscous and yield stress.1

For Newtonian domes (B = 0), η = 1, and one can find a similarity solution
to the thin-layer equations for point sources [11]. This solution predicts that
R(t) ∼ t1/2 and h(0, t) ∼ t0, which also follow directly from dimensional scaling
analysis of the full governing equations [4].

In yield-stress dominated domes, only a thin fluid layer near the base yields.
Hence, η → 0, giving h ≈ −B/hr, and then

h =
{√

2B(R− r) r < R
0 r > R .

(7.34)

1 Formally speaking, the thin-layer theory is not valid at the vent, where hr → 0, and
at the rim, where radial gradients become as sharp as vertical ones. The condition
hr(0, t) = 0 also leads to the curious behaviour of the apparent yield surfaces in Fig.
7.5 near r = 0. Neither problem is especially important to the overall evolution of
the dome. A similar difficulty arises in shallow-ice theory, and a later chapter by
Hutter is partly motivated by them.
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Fig. 7.5. Evolution of the height field, h(r, t), together with the “yield” surface, Y (r, t)
(shown by the dotted lines) for various values of B; snapshots of the solution are shown
every 500 time units. In panel (a), B = 10−5 and the dome is effectively Newtonian.
For panel (b) B = 0.01, and the dome in panel (c) with B = 0.1 is dominated by the
yield stress

The time rate of change of the radius, R(t), is dictated by the mass conservation
law,

d
dt

∫ ∞

0
h(r, t)rdr =

∫ ∞

0
ws(r, t)rdr . (7.35)

With a constant inflow rate, Q,

R(t) =
1

(2B)1/5

(
15Qt
8π

)2/5

, h(0, t) = (2BR)1/2 , (7.36)

an asymptotic result also deduced by Nye [12].
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7.3.2 Restoring the Dimensions

One convenient test of a theory is how it compares to experiments designed as
laboratory analogues. To generate such theoretical comparisons, we must first
restore the dimensions in our numerical solutions, thus reversing our earlier non-
dimensionalization. To do this we need to estimate the physical length scales, L
and H, and the characteristic velocity, V . In the experiments, we fix the vent
radius, R∗, and set the extrusion rate, Q. These values can be compared to
the dimensional vent radius, r∗L = 0.15L, and extrusion rate, 0.05πr4∗LHV ≈
8×10−5LHV , used in the computations. Hence, L = 1 cm andHV = 1.26×106Q
(with Q in mks units). We also have the relation (7.17), from which it follows
that

H =
(
KL

ρg

)1/(n+2) (
1.26× 106Q

)n/(n+2)
. (7.37)

This allows us to compute H, V and B given ρ, Q and the rheological parameters
of the fluid, and thereby reconstruct the dimensional radius, height and time.

7.3.3 Experiments

The experiments have an uncomplicated design consisting of a piston that ex-
trudes a controlled volume flux of slurry onto a horizontal plate. For the domes
that then form (which were always axisymmetrical), we record the radius and
height above the vent. The slurry is a suspension of kaolin (Dry Branch Kaolin
Company) in de-ionized water, and different mixtures of water and kaolin are
used in order to vary the rheological parameters. For each mixture, we fit the
rheological data using a Herschel–Bulkley model; the rheological properties of
the slurries are summarized in Table 2.1 and Fig. 2.2 of Chap. 2. A variety of
(time-independent) flow rates, Q, is also used; we quote results for the fastest
and slowest of these (0.18 cm3/s and 0.54 cm3/s).

The heights and radii are shown versus time in Fig. 7.6 and 7.7 for kaolin–
water slurries mixed in the ratio 0.6:1 and 0.8:1 by weight. The theoretical curves
from the shallow lava theory are added for comparison, and are in fair agreement.
The dome heights compare least favourably, but this should be tempered by the
fact that there were some experimental difficulties in taking this measurement.
The figures also show the asymptotic result for large yield stress (Nye’s theory),
which overestimates the radii and underestimates the heights (Blake [3] uses an
empirical correction to account for this error). More paste-like materials with
kaolin to water ratios of 1:1 and 1.2:1 were modelled with similar accuracy by
the thin-layer theory. Typically these had larger Bingham numbers, ∼ 0.19, and
were also adequately modelled using Nye’s solution.

In Chap. 2 we mentioned that kaolin slurries show some hysteresis in their
stress-strain-rate relations, suggesting that the fluid microstructure does not
reform in the same way as it is destroyed. In the extrusion experiments, the
microstructure disintegrates as the fluid is pushed up the vent, and then re-
forms as the dome spreads and the stresses gradually decline. This means that
the “down-curve” is most suitable for modelling the experiments. We illustrate
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Fig. 7.6. Experimental and theoretical comparisons of dome radii for kaolin–water
domes. The solid line gives the result found from shallow lava theory, the circles are
the experimental data and the dot-dash line is Nye’s result for large B. The values of
B are estimated as described in Sect. 7.3.2

the importance of this choice by using another material, Celacol (Courtaulds),
also described in Chap. 2, that shows pronounced hysteresis. The comparison
between theory and experiment for this material is shown in Fig. 7.8. The two
are in agreement only if rheological data from the down curve are used to fit
the parameters of the Herschel–Bulkley model; use of the data from the “up-
curve” leads to significant disagreement. Evidently, the best model for Celacol
would be one accounting for hysteresis, but if we insist on using a model like
Herschel–Bulkley we should exercise care in interpreting the rheological data.

7.4 Flows on Inclined Planes

7.4.1 Shallow Flow Dynamics

If the plate beneath the fluid is inclined, the circular symmetry of an expanding
dome is broken. Instead, the fluid slumps downslope, leading to elliptical domes
for low inclinations, and fully fledged channel flows on larger slopes. We now turn
to a theoretical consideration of these structures, again specializing to isothermal
conditions.

To generalize the theory it is first helpful to consider a new, Cartesian co-
ordinate system, (x, y, z), in which z = 0 again coincides with the base of the
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Fig. 7.7. Experimental and theoretical comparison of dome heights for kaolin–water
domes. The solid line gives the result found from shallow lava theory, the circles are
the experimental data and the dot-dash line is Nye’s asymptotic, large B, result

0 50 100 150 200
0

0.5

1

1.5

0 50 100 150 200
0

2

4

6

time, secs

R
ad

iu
s,

 c
m

(b) Celacol radius

Fig. 7.8. Experimental and theoretical comparison of dome evolution for a Celacol
dome. Panel (a) shows height measurements and in panel (b) we compare radii mea-
surements. The circles show the experimental data. The solid lines are the numerical
results using the rheological data from the down curves, and the dash-dotted lines show
the corresponding results using the up-curves
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fluid, which is now on an inclined plane. As shown in Fig. 7.9, we also take
the coordinate x to lie in the downslope direction, and φ to be the angle of the
plane’s inclination from the horizontal. From here we could again write down
the governing equations, non-dimensionalize, expand asymptotically, and finally
arrive at a relevant thin-layer model [10] (see also Chap. 22). We will not go
through the details here, and instead offer some simple arguments that indicate
how we should generalize (7.33).

Y(x,y,t)

h(x,y,t)

x
g

z

φ

y

x

Top view:

Cross-section:

Pseudo-plug

Yielding region

u(x,y,z,t)

v(x,y,z,t)

u(x,y,z,t)

Fig. 7.9. Sketch of a flow on an inclined plane. φ is the angle of inclination

The key feature of the thin-fluid dynamics is that thickness variations drive
a flow that is down-gradient with respect to the height field: U ∼ −|hr|1/n−1hr.
A natural generalization is therefore to introduce an analogous depth-integrated
lateral velocity, V, and take (U ,V) ∼ −s1/n−1(hx, hy), where s =

√
h2

x + h2
y is

the mean surface gradient. This naturally accounts for the shape of the fluid,
but not the background slope, which also forces flow in the x−direction. To take
account of the slope we make the replacement hx → hx−S, where S = ε−1 tanφ
is a measure of the slope relative to the fluid’s typical aspect ratio (assumed to
be order one, so that the slope must be sufficiently gentle). Thence, with other
dependences as before,

ht+Ux+Vy = ws ,

(
U
V

)
=
nηh2(sηh)1/n(1 + 2n− nη)

s(n+ 1)(2n+ 1)

(
S − hx

−hy

)
, (7.38)

with

η = Max
(

1− B

hs
, 0
)

and s =
√

(S − hx)2 + h2
y (7.39)

(once again, ws denotes the extrusion speed above any vents and Y = hη is the
fake yield surface), which also results from a proper expansion (see Chap. 22).
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7.4.2 Inclined Domes

Experiments illustrating how domes slump downhill and lose symmetry are
shown in Fig. 7.10. The slurry used in these experiments is a mixture of wa-
ter and “joint compound” (a commonly available, kaolin-based material). Some
more careful experiments with a true kaolin slurry are shown in Chap. 6 and
explored further in [15].

Fig. 7.10. Slumped domes on inclined planes. Shown are domes on slopes with in-
clinations of roughly 0, 10 and 20 degrees. The slurry, a mixture of water and “joint
compound” (a kaolin-based material that is commonly available at hardware shops), is
fed onto the plane through a narrow tube from a reservoir held just above. An inclined
mirror at the top of each pictures gives a side view of the domes. For the second two
domes, a marker indicates the position of the feeder from the reservoir

To compare with experimental images like these we solve the thin-layer equa-
tions numerically. As for symmetrical domes we take ws = 0.1 Max(0.152−r2, 0),
and use a numerical scheme: VLUGR2 [16]. One such computation is shown in
Fig. 7.11. This shows a dome with B = 0.01 and n = 1 on a slope with S = 0.5.
As indicated by the fake yield surfaces, this dome is not far from being New-
tonian. The yield stress has most effect upstream of the vent where the fluid
becomes almost stationary over longer times. The overall appearance of the
dome is similar to the experimental pictures.

When η → 0 (large B), and the dome is dominated by yield stress, the thin-
layer model simplifies substantially. From the condition, η ≈ 0, we obtain the
nonlinear first-order partial differential equation,

(S − hx)2 + h2
y = B2/h2 . (7.40)

This simpler equation determines the structure of domes that are either domi-
nated by the yield-stress, or slump to rest at the termination of an extrusion. We
can solve the equation using Charpit’s method [14]: First we scale the equations
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Fig. 7.11. Slumped domes on inclined planes, computed numerically using the thin-
layer model. The top row of pictures show three snapshots of the domes at times 333,
666 and 1000. Directly below are the corresponding height profiles and yield surfaces
along the midsection (y = 0). The lower panels show a sequence of curves showing the
dome’s edge (the curves show the edge every 6.66 time units), and the evolution of the
cross-stream half-thickness (Ys), the downslope and upslope lengths (Xl and Xu), and
the maximum height (H)

to eliminate some distracting constants; set

X = Sx/H , Y = Sy/H , h = Hu and b = B/(HS) , (7.41)

where H is the dome height at x = y = 0. Then,

(1− uX)2 + u2
Y =

b2

u2 . (7.42)
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Following the convention usually used for nonlinear partial differential equations,
we set p = uX and q = uY , and write the characteristic equations as:

Ẋ = 2(1−p) , Ẏ = −2q , u̇ = 2p(1−p)−2q2 , and
ṗ

p
=
q̇

q
=

2b2

u3 , (7.43)

in which the dot denotes differentiation with respect to the independent variable,
τ , the coordinate along each characteristic curve. Suitable initial conditions at
τ = 0 are u = 1 at X = Y = 0, together with parameterized conditions for p
and q that satisfy (7.40) at u = 1. Two relations follow straightforwardly from
the characteristic equations:

q = ap and aX − Y = 2aτ , (7.44)

where a is a constant of integration that parameterizes the initial data. We use
the second relation of (7.44) to eliminate τ = (aX−Y )/2a. Two further integrals
then provide the implicit solution,

X = −
∫ 1

u

[1− p(û)]dû
p(û)[1− p(û)(1 + a2)]

, Y = a

∫ 1

u

dû
[1− p(û)(1 + a2)]

, (7.45)

in which we can exploit the original equation (7.42) to write

p(u) =
u±

√
b2(1 + a2)− u2a2

u(1 + a2)
, (7.46)

The ambiguity in the construction of p(u) arises because there are two possible
solutions for u(X,Y ), one upslope and the other downslope of a special curve
on the (X,Y )−plane. The functions Φ(u, a) and Ψ(u, a) have analytical, though
convoluted, expressions that we shall not burden the reader with.

Explicit solutions follow for a = 0 and a� 1: For a = 0, Y = 0 and

X =
{
u− 1 + b log[(u− b)/(1− b)], X > 0
u− 1− b log[(u+ b)/(1 + b)], X < 0, (7.47)

as in [15] (see also Chap. 6 and [17]). For a� 1,

X = −1 + u− b

2
log
[
(b− 1)(b+ u)
(b+ 1)(b− u)

]
(7.48)

and
Y = ±

(√
b2 − u2 −

√
b2 − 1

)
. (7.49)

This second second curve is the junction dividing the two pieces of the solution
for u(X,Y ).

Sample solutions are shown in Fig. 7.12. As b→ 1, the domes are increasingly
slumped (b ∝ S−1, so a decrease in b corresponds to an increase of the slope).
The limiting solution for b → 1 is shown in Fig. 7.13. The solution does not
work if b < 1, indicating that the dome is no longer able to support itself against
gravity.
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7.4.3 Streams and Hulme’s Solution

When the slope is larger, the fluid flows downhill and forms a coherent stream
rather than a slumping dome. Such streams are often observed for basaltic lavas,
and, aside from explosive eruptions, are one of the most pictured volcanic phe-
nomena. Such observations prompted Hulme to write down an approximate solu-
tion for one-dimensional flow down an inclined plane [2]. Argued more from plau-
sibility than mathematical deduction, Hulme’s model assumes that the stream
is composed of a central flowing core flanked by stationary “levees”, as illus-
trated in Fig. 7.14; the flow is purely downhill, and there is no variation in the
downslope direction. By assuming that the levees were composed of fluid that
naturally came to rest as the flow settled to its asymptotic state, Hulme further
argued that the levees should be supported by stresses that were precisely at the
yield value. This leads to the important conclusion that one can use observations
of the shape of the levee to estimate the yield stress, a fact frequently exploited
by volcanologists. However, Hulme’s solution has lately been criticized [18], and
so we briefly consider its merits.

LeveeLevee Flowing core

Fig. 7.14. Sketch of Hulme’s solution for flow down an inclined plane

Because thin-layer theory is significantly simpler than the governing equa-
tions, one can easily look for solutions of the model that correspond to Hulme’s.
If we insist that the flow is purely downhill and varies only with y, then one
concludes that

V = hy = 0 , h = 1 , η = 1− B
S

and s = S , (7.50)

in regions where the fluid yields. That is, a uniform flow. In the levee, on the
other hand, the fluid is on the brink of yielding, which implies that η = 0, or

B = h
√
S2 + h2

y ≥ SHl , (7.51)

where Hl is the maximal thickness of the levee. Unless Hl < 1 (and the levee
is shallower than the core), this contradicts the flowing solution which requires
that η = 1 − B/S > 0. In other words, one cannot connect the central flowing
channel with the stationary levee. This difficulty is not simply a problem with
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thin-layer theory – even if one begins from the governing fluid equations, Hulme’s
construction still appears to be impossible for the same reasons.

The problem with Hulme’s construction is that it uses a one-dimensional
version of the Bingham fluid model, and consequently does not have the correct,
two-dimensional yield criterion: Hulme shapes the levee according to Nye’s so-
lution, B = |hhy|, which predicts a parabolic profile, rather than (7.51) (which
indicates the profile far downstream is semicircular – see Fig. 7.13). In other
words, one assumes that the lateral structure of the levee is the same as the
shape the fluid would take on a flat plane – the yielding induced by the down-
stream flow is ignored. When one takes the extra degree of yield into account,
one is led to the inescapable conclusion that, if the levees are to remain as thick
as the main channel, the shape of the levees forces lateral flow.

A simple demonstration that the downstream flow affects the lateral shape
is afforded by the following experiment with kaolin slurry: We allow a corridor
of fluid to slump laterally to a static equilibrium on a horizontal plate. We then
tilt the plate in the direction of the central axis of the fluid to create a channel
flow. As shown in Fig. 7.15, the main effect of the flow is to allow further lateral
spreading of the fluid (except near the upper end of the column, where the
thickness remains roughly the same, but some of the fluid drains away). Note
also the creation of streamwise flow dependence.

Fig. 7.15. Photographs from an experiment in which a column of viscoplastic fluid (a
mixture of water and joint compound) was first allowed to slump to rest on a horizontal
plane (first panel). The plane was then tilted at an angle of roughly 25 degrees and
as fluid flowed downhill, the column spread laterally and downstream (second panel).
The two photographs have the same scale

Because of the theoretical difficulties with Hulme’s model, Coussot & Proust
suggested another solution taking account of the true yield criterion: Let the flow
be independent of time, but not of the streamwise coordinate, x. The thin-layer
model equations then become

[F(S − hx)]x = [Fhy]y , F =
nηh2(sηh)1/n(1 + 2n− nη)

s(n+ 1)(2n+ 1)
, (7.52)

with η and s as before, and assuming no vertical mass flux (the source of fluid
is upstream). Because there is now streamwise variation, the free surface is not
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necessarily flat, and Coussot & Proust [18] construct solutions with some corre-
spondence with experiments (see also [19]). Actually, Coussot & Proust do not
use the full equation (7.52), but an approximation obtained by neglecting hx

and hy in comparison with S. Thus s becomes S and we arrive at the parabolic
equation SFx = [Fhy]y, with F as above and η = Max(1 − B/Sh, 0). This ap-
proximation cannot be accurate at the edges of the stream where the gradients
of h(x, y) diverge, but these regions are also where the thin-layer model breaks
down.

The analytical solution pictured in Fig. 7.13 shows similar features to Cous-
sot & Proust’s downstream spreading flows. Further numerical computations are
shown in Fig. 7.16. In this case, with B = 0.06 and S = 2, the fluid immedi-
ately slumps downhill without forming a dome, and creates a gradually widening
stream.

A laboratory illustration of a stream flow is shown in Fig. 7.17. This inclined
flow has well-defined levees bordering the flow but also spreads laterally with
distance downstream. Similar features can be seen in Osmond & Griffiths’s domes
(Chap. 6 and [15]). Thus, although Hulme’s “solution” is not actually a solution
of the equations, the image is not entirely wrong: the stationary levees supported
by stresses at the yield value do exist – Hulme’s precise construction is invalid
because the flow spreads downstream and the levees are not shaped according to
Nye’s solution. Thus Hulme’s image is qualitatively correct, if not quantitatively.

Although the final conclusion is that Hulme’s solution is in error, the ram-
ifications in geology regarding estimations of yield stress are probably inconse-
quential: Rheological measurements of lava are exceptionally difficult because of
its extreme temperature, and it is probably fair to say that actual values of the
yield stress are not known to within orders of magnitude. Hence, although the
correction to the shape of the levee given the slope S will certainly change the
inferred value of the yield stress by an order one amount, this is insignificant
in comparison to other rheological uncertainty. Osmond & Griffiths [15] discuss
further how to infer yield stresses given the proper yield condition.

7.5 Concluding Remarks

The purpose of a thin-layer theory is to reduce the full, governing fluid me-
chanical equations to a more manageable form. For non-isothermal lava flows,
because heat conduction occurs relatively slowly, the thin layer theory remains
fairly complicated, as in shallow-ice theories. However, the reduced equations
contain all the relevant physics in a concise form, and filter out any compli-
cating, but inessential details. The analogue experiments for isothermal domes
show that thin-layer theory is accurate over a wide range of extrusion rates and
rheological parameters. Some related experiments, with fluid flowing down an
inclined plane (and performed to test similar theory for mud flow), show a com-
parable degree of agreement [13]. Hence shallow-fluid theory appears to be a
useful route to take whilst modelling geophysical viscoplastic fluids.
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Fig. 7.16. A flow down an inclined planes, computed numerically using the thin-layer
model. The top row of pictures show three snapshots of the domes at times 333, 666
and 1000. Directly below are the corresponding height profiles and yield surfaces along
the midsection (y = 0). The lower panel shows a sequence of curves showing the dome’s
edge (the curves show the edge every 6.66 time units)

Fig. 7.17. Photographs from an experiment in which viscoplastic fluid (a mixture of
water and joint compound) was extruded onto a sloping plane (inclined by roughly
30 degrees). Shown is the final shape after the extrusion was terminated and the fluid
allowed to come to rest on the plane



186 N.J. Balmforth, A.S. Burbidge, and R.V. Craster

There are several extensions to the theory that must be pursued for a de-
scription of lava flows, and the subject is rich with problems to examine. For
example, it is essential to solve the non-isothermal problem outlined at the be-
ginning of this article. But there are several other issues that we have not dwelt
upon here, such as the detailed mechanics at the edge of the fluid where the
flow over-rides the substrate. Notably, the analogue experiments should also be
taken further, and theoretical computations should be compared systematically
with non-isothermal extrusions.

Beyond the formulation and testing of a shallow-lava theory lies the applica-
tions to real geological problems. The shallow-lava theory provides a computa-
tionally convenient tool to analyze lava flows in geological settings. For example,
one might wish to predict the direction of a lava flow over complex terrain and
assess possible hazards. Alternatively, the goal may be to predict which lava
domes are most likely to allow the internal build up of hot gas, which could
lead to structural failure, explosions and pyroclastic flows (Chap. 8). Of course,
we already have some answers to such questions, based on cruder theoretical
models (such as approximating the lava as an isothermal viscous fluid) or quali-
tative arguments (for example, if the lava has a yield stress, a dome can sustain
large internal pressures, thus trapping gas within the dome). The real question
is whether our more quantitative modelling has any advantage over these sim-
pler arguments, given the uncertainties, idealizations and approximations in the
theory. We cannot answer this particular question until we have fully formulated
a usable non-isothermal shallow-lava theory, but the hope is that the theory will
significantly improve our predictive capabilities, and place the modelling of lava
flows on a more solid foundation.
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8 Explosive Volcanic Eruptions
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8.1 Introduction

During explosive volcanic eruptions, up to 1014 kg of volcanic ash may be erupted
from a vent forming violent ash flows or towering eruption columns. This massive
amount of material is subsequently deposited on the ground, with much of the
coarser fraction of the flow being deposited within a few hundred kilometres of
the volcanic edifice. This may lead to a substantial regional change to the topog-
raphy, with ash flow deposits being tens to hundreds of metres deep and air-fall
deposits being several metres deep. In addition, the eruption of such a large mass
of material from a volcanic edifice may lead to collapse of the crust above the
sub-surface magma reservoir. This leads to the formation of calderas which are
large depressions in the surface topography, often extending tens of kilometres in
diameter and being several hundred metres deep. In summary, explosive volcanic
eruptions can produce major changes in surface topography owing to the very
powerful transport and redistribution of mass. In this contribution, we aim to
develop quantitative models to predict the dynamics and deposition patterns of
this erupted material, and where possible we compare this with field data.

To set the scene and understand the scale of these phenomena, it is worth
examining some of the key parameters which are involved in explosive volcanic
eruptions. During explosive volcanic eruptions, dense liquid magma, which is
stored in a crustal reservoir, at typical depths of 5–10 km, rises to the surface
and issues from a vent as a fragmented mixture of volcanic ash, pumice and gas.
This mixture may erupt at speeds of 100–300 m/s, with pressures in the range
1–100 Pa and with density in the range 1–100 kg/m3. Following eruption from
the vent, the mixture may rise as high as 30–40 km into the atmosphere as a
buoyant convective plume, or if it remains denser than the atmosphere, it will
form a dense, turbulent ash flow. These flows spread over the ground with speeds
as large as 100–200 m/s. Buoyant eruption columns shed large particles which fall
out to the ground in the vicinity of the volcanic vent, while the smaller particles
are carried high into the atmosphere, and may then spread over many hundreds
or thousands of kilometers before falling back to the ground. Dense ash flows, in
contrast, spread many 10’s of km over the ground, leaving a carpet of ash and
pumice particles which becomes progressively finer grained with distance from
the vent. In some cases, as the flow sediments particles and entrains and mixes
air, the residual material in the flow becomes less dense than the air and lifts
off the ground to form an ascending plume. The resulting cloud of fine ash can
then disperse the fine-grained material over a much wider area.

N.J. Balmforth and A. Provenzale (Eds.): LNP 582, pp. 188–208, 2001.
c© Springer-Verlag Berlin Heidelberg 2001
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Fig. 8.1. (a) Picture of the spreading ash flow during the initial blast of Mount St
Helens, May 18 1980. (b) Picture of the subsequent momentum jet issuing from the
volcanic vent at Mount St Helens (c) Picture of the umbrella cloud which formed at
a height of 34 km and spread over 1000 km. (d) Figure illustrating the radial extent of
the Taupo ash flow deposit

Several recent historical eruptions have provided much important new data
and observational evidence about the processes involved in explosive volcanism.
These include the May 18 1980 eruption of Mount St Helens. In this eruption,
an initial blast caused one flank of the volcano to fail, producing a dense flow
which spread over 15 km from the volcano before lifting off and rising 15–20 km
into the atmosphere (Fig. 8.1a). This initial blast was followed by a more sus-
tained eruption, in which a steady eruption column ascended directly above the
volcanic vent (Fig. 8.1b). As the eruption continued, the height of this steady
column gradually decreased [7]. Other important eruptions, which have con-
tributed to our understanding of the dynamics of explosive volcanic eruptions,
include the 1991 eruption of Mt. Pinatubo, in the Phillipines. In this eruption,
a buoyant eruption column was formed and ascended over 35 km into the atmo-
sphere, where it formed a neutrally buoyant cloud which spread radially about
1000 km (Fig. 8.1c). The fine ash in this cloud was then carried around the globe
by zonal winds. The 1994–2000 eruption of Soufriere Hills volcano, Montserrat
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involved the growth of a highly viscous lava dome at a rate of about 2–5 m3/s.
This dome was charged with gas at high pressure, and as it periodically failed
it shed small, dense ash flows around the flanks of the volcano. The eruption of
Taupo volcano, New Zealand, about 3500 BP, produced an enormous ash flow
deposit, which extended over 80 km radially from the volcanic centre (Fig. 8.1d).
This deposit has been extensively studied and shows a gradual waning of grain
size and thickness of the deposit with distance. This data is extremely useful
for comparing with dynamical models of the flow. Many other specific eruptions
have been documented and studied, and in a number of cases, field data can
be used to calculate both the height of rise of the eruption column and, using
independent data, the eruption rate (Fig. 8.2, [9]). Such data is of enormous
value in testing models, as we shall see later in the text.

Fig. 8.2. Relationship between the height of rise of the eruption column and the erup-
tion mass flux
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The controls on the style and intensity and magnitude of a volcanic eruption
are multifold, but perhaps the key parameters are: (i) the dissolved volatile gas
content, primarily composed of water, and the viscosity/rheology of the magma;
(ii) the geometry of the conduit from the magma reservoir to the surface; (iii) and
the depth/size of this reservoir [1]. At the high pressures of a magma reservoir, of
order 107–108 Pa, the volatiles typically remain in solution in the melt. However,
as the mixture ascends towards the surface, the pressure falls and volatile gases
(primarily water vapour) are exsolved. This decreases the density of the mixture
and causes the flow to accelerate towards the surface, owing to the exsolution
and expansion of the gas. In addition, the exsolution of volatile gases leads to
an increase in the viscosity of the residual magma. These effects set the stage
for an explosive eruption of the magma stored in the reservoir. Eruption will
occur if the material is able to decompress, with the volatile gases expanding
and the mixture accelerating to the surface. In order for this to occur, a conduit
or flow path to the surface is required. Once such a conduit has formed, owing
to the fracturing of the crust overlying the magma reservoir, an eruption can
commence.

Initially, the eruption occurs along a planar fracture or dike which intersects
the surface. However, as the eruption develops, the conduit to the surface tends to
localise spatially, becoming more cylindrical. This occurs possibly due to thermal
or mechanical instability: the faster moving magma remains hot, as there is less
time for heat transfer to the cold surrounding walls before the magma reaches
the surface, and therefore the continuing flow is able to erode the conduit walls,
leading to an increased flux. Any slower moving magma tends to cool more,
becomes more viscous and hence the flux decreases locally [2]. The larger the
conduit, the greater the flow rate, and hence the more intense the eruption.
Mechanical as well as thermal erosion may become important as the eruption
continues, and this can lead to an increasing eruption rate with time given a
uniform source of magma. However, eruptions also evolve with time owing to
changes in the magma properties in the reservoir. The reservoir may be stratified
or layered, as for example was the case during the AD79 eruption of Mt. Vesuvius,
and the change in magma properties may lead to abrupt changes in the eruption
style (and hence nature of the deposits) from column forming to flow forming
activity.

Although the processes described in the previous paragraph provide key
source conditions which ultimately determine the style of an eruption, here we
primarily focus on the dynamics of the erupted material once it issues from the
volcanic vent into the atmosphere. However, first we mention the key features
of models of magma ascent from a magma reservoir to the surface, in order to
illustrate the origin of the source conditions for the models of the flow above
the surface. We then move on to describe eruption column dynamics and this
naturally leads to the ideas of column collapse and ash flow propagation.
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8.2 Ascent of Magma to the Surface

To model the ascent of magma to the surface, we require a simple description
of the physical properties of magma. Although magma is a highly complex,
multiphase material, we can model the dissolved volatile content of the melt
using Henry’s Law,

ns = sP 1/2 , (8.1)

which is a good approximation for silicic magma, where s the solubility coef-
ficient, which is of order 4 × 10−6 Pa1/2 [9]. The viscosity of the residual melt
typically increases by about an order of magnitude for a change in volatile mass
fraction of about 0.01, and so we take

μ = μo10100(no−ns)f(φ/φo) , (8.2)

where n = no − ns is the exsolved gas mass, f is a function of the volume
fraction ratio φ/φo, and subscript o denotes the initial value in the magma
reservoir beneath the conduit. This dependence of the viscosity of the bubble–
magma mixture on the bubble volume fraction may be modelled by a law of the
form

f(φ/φo) = (1− φ/φo)
−5/2

. (8.3)

These physical properties are used in a model of flow along the conduit from the
reservoir to the surface. The detailed geometry and dimensions of the conduit are
poorly constrained from observations, and it is likely to be strongly influenced
by both the regional stresses as well as the properties of the rock, which are
often heterogeneous, layered and fractured. Therefore, for simplicity, we assume
a regular geometry for the conduit (Fig. 8.3), but recognise that this is a rich area
for future research. Since the conduit is long, of order 5–10 km, and relatively
narrow, of diameter 10–100 m, we expect that the pressure varies primarily along
the conduit. In that case, the flow along the conduit, averaged over the cross-
section, is governed by a law of the form

ρu
du
dz

= −dp
dz
− ρg − fu , (8.4)

where
f =

μ

12d2
+
ρCd u

d
, (8.5)

where f is a friction factor [11] for the conduit flow whose magnitude depends
on the Reynolds number of the flow, with typical value of the turbulent drag
coefficient being Cd ≈ 0.01. For low Reynolds number flow, the viscous friction
dominates, whereas for higher speed, high Reynolds number flow, which applies
primarily after the viscous liquid has disrupted or fragmented, the turbulent drag
law is the dominant source of frictional resistance. This dynamical law is coupled
with an equation for mass conservation, which accounts for the compressibility
of the mixture

ρuA = Q , (8.6)
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and the equation for the density of the mixture

ρ =
(

1− n
ρm

+
nRT

P

)−1

, (8.7)

where ρm is the magma density and R is the gas constant, T the gas temperature
and P the pressure, and n is the exsolved gas content, defined in terms of the
total mass fraction of volatiles and the mass of volatiles in solution, n = no−ns.

Fig. 8.3. Schematic illustrating the flow along the conduit as used for developing the
flow model

In order to solve these equations for a steady flux Q along the conduit,
originating from a magma reservoir at known pressure and depth, additional
boundary conditions are required at the surface, where the flow issues into the
environment. Either the pressure equals atmospheric, and the flow is sub-sonic
or the pressure is in excess of atmospheric and the flow is sonic or choked at the
vent, with the speed of sound being given by (dp/dρ)1/2. In the present context,
this speed of sound corresponds to the speed of pressure waves in the isothermal,
bubbly mixture, where it is assumed that the compressibility originates from the
compression of the gas phase. Choked flow corresponds to the situation in which
the flow speed matches this speed of pressure waves.

One complication to this picture is that once the gas volume fraction reaches
a critical value, the liquid films of melt surrounding the bubbles begin to disrupt
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and fracture, rather than flowing as a liquid. Ultimately, the mixture undergoes
a transition from being a bubbly liquid, with the liquid being the continuous
phase, to being a gas dispersion, with the gas being the continuous phase. At this
transition, the viscosity of the mixture decreases dramatically towards that of a
particle-laden gas. For simplicity, we take this point of transition to occur when
the gas volume fraction has value 0.7. However, there are more complex models
of the transition based on arguments about the balance between the fracture
strength of the material and the viscous stresses of an expanding bubble, but
owing to the complication of the range of bubble sizes present in the mixture,
and hence of the critical decompression rate at which liquid films rupture, we
take a fixed value of 0.7 in this model. For larger volume fractions, we effectively
set μ = 0 in (8.5) which parameterises the total frictional stress.

Figure 8.4 illustrates the typical variation of the flow properties as a function
of height in the conduit, from a magma reservoir to the surface. Note that
even if the pressure in the source magma chamber is the same as that of the
surrounding rock, the material can still rise to the surface owing to the release of
bubbles and hence the decrease of the magmastatic pressure in the conduit. Here,
magmastatic denotes the gravitational pressure gradient in a column of stagnant
magma and exsolved gas, assuming the gas does not separate from the liquid. The
difference between the lithostatic pressure and the magmastatic pressure is one of
the main driving forces in an explosive eruption, and is primarily associated with
the exsolution of gas bubbles. Only in very small eruptions are the conditions
at the vent subsonic; for most realistic eruption regimes, the flow is choked and
highly overpressured at the vent. The sharp change in the rate of change of
properties within the conduit is associated with the fragmentation transition
and the evolution from viscous drag of the connected fluid magma, to turbulent
drag of the connected gas phase which carries a dispersion of the liquid fragments
above the fragmentation horizon (see (8.5)). Figure 8.5 illustrates calculations
of the flow rate in a circular conduit as a function of the radius of the conduit,
for magma volatile contents in the range 1–5 wt%, corresponding to a mass
fraction of 0.01–0.05. The largest known eruptions, with eruption rates of order
109–1010 kg/s, require conduit radii of about 50–100 m, implying very substantial
erosion of the walls of the conduit during the initial stages of the eruption. There
is some limited field evidence from exposures of old volcanic conduits which
are tens of metres in dimension and which were associated with relatively mild
eruptions, which support the order of magnitude of these predictions (e.g. [6]).

Predictions of vent velocity and flow rate enable us to relate the different
possible flow regimes above the surface to the different source conditions. Since
the flow issues from the vent at an elevated pressure compared to the atmo-
sphere, there is an initial stage of decompression. One important observation is
that typically the scale of the flow above the surface is much larger than the
length-scale over which the flow decompresses. As a result we can model the de-
compression of the flow which occurs directly above the surface, using a localised
model based on the conservation of mass and momentum. This then gives the
actual source conditions for the eruption column model [14].
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Fig. 8.4. Variation of the velocity and pressure in the ascending mixture of magma and
volatiles as it ascends the conduit. Curves are shown for magma with initial dissolved
water mass fractions 0.03, 0.04 and 0.05. The chamber is assumed to be 3 km below
the surface and the conduit radius is 20m

8.3 Eruption Column Models

The dense, high speed mixture of ash and gas issuing from the volcanic vent into
the atmosphere produces a complex, time-dependent turbulent flow. With flow
speeds up to 100–200 m/s, and typical length scales (radii) of the column in the
range 100–1000 m, the time-scale for eddy turnover may be as much as 5–10 s.
In contrast, the time-scale of an eruption is of order hours or, in the longest
cases, even a few days. Therefore, in order to capture the main properties of the
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Fig. 8.5. Flow rate at the top of the conduit as a function of the conduit radius. Curves
are shown for magma with initial dissolved water mass fractions 0.01, 0.02, 0.03, 0.05
and 0.07. The magma reservoir is assumed to be 3 km below the surface

flow, we average over a time-scale longer than the typical eddy turnover time,
and develop a quasi-steady model of the flow, as illustrated in Fig. 8.6. We work
with the horizontally averaged properties of the flow, and in particular the mass,
momentum and energy fluxes. We denote the average velocity across the plume
as u. We draw from models of turbulent buoyant plumes in which the rate of
turbulent mixing between the plume fluid and the environment is parameterised
in terms of the mean upward velocity of the plume [8], so that the rate of change
of the mass flux with height in the plume is given by

dQ
dz

= 2π ε u ρab , (8.8)

where ρ denotes density, with ρa the ambient density, Q =
∫∞

o
2πurρdr = πρu b2

and ε is the entrainment coefficient, which has been measured experimentally to
have value of order 0.1, and b is the effective radius of the column.

The momentum flux

M =
∫ ∞

0
2π u2rρdr = πb2ρ u2

evolves as a result of the buoyancy force on the column

dM
dz

= g(ρ− ρa)b2 (8.9)

where g is the acceleration due to gravity. Finally, the steady flow energy equa-
tion has the form

d[Q(u2/2 + gz + Cpθ)]
dz

= 2πεub(gz + Cpθa) , (8.10)
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Fig. 8.6. Cartoon of a time-dependent turbulent eruption column and of the time-
averaged picture being used in the development of the quantitative model. In the
figure the bulk density of the material in the eruption column is denoted as β and this
corresponds to ρ in the model. The distance above the ground is denoted by h and this
corresponds to z in the model, the column radius is denoted as L which corresponds
to b in the model

where the term on the right hand side denotes the enthalpy of the material
entrained into the column, and θ denotes temperature, with θa the ambient
temperature, and Cp the specific heat of the mixture at constant pressure. The
model is completed by the equation for the density of the mixture,

ρ =
(
nRθ

P
+

1− n
ρm

)
, (8.11)

where R is the gas constant for the water vapour, with value 462 J/kg/K, and P
is the pressure in the mixture, and an equation for the conservation of the gas
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flux
d(nQ)

dz
= 2πεuρab . (8.12)

These five equations are sufficient to determine the averaged quantities b, u, ρ,
n and θ as functions of height above the source. R is calculated as the mass
average for the volcanic gas and the air in the plume.

Initially, the material is dense relative to the environment, and so the mix-
ture ascends driven by the initial momentum. However, as the flow entrains air,
the air is heated and expands, lowering the density of the mixture. Eventually
the bulk density of the mixture may fall below that of the air. In this case,
a buoyant eruption column develops. In contrast, if the upward momentum of
the mixture decreases to zero while the mixture is still dense, then a collapsing
fountain develops around the volcano, shedding dense ash flows. This transition
in behaviour may be seen in Fig. 8.7 which illustrates the variation of the ve-
locity and density of the mixture as a function of height in the column for three
different flow regimes. First, curves are shown for a relatively fast moving jet is-
suing from the vent. In that case, the mixture is indeed able to entrain sufficient
air to become buoyant. In the second case, with a smaller initial velocity, the
mixture velocity decreases to a much smaller value before the mixture becomes
buoyant. The buoyant material then accelerates upwards for some distance until
the stratification of the atmosphere causes the flow to come to rest and intrude
laterally into the atmosphere. Finally, in the third calculation of Fig. 8.7, the
initial velocity is so small that the momentum of the mixture falls to zero be-
fore the material is able to become buoyant. In that case, a collapsing fountain
develops.

The relationship between initial velocity and initial mass flux at which col-
umn collapse occurs is shown in Fig. 8.8. It is seen that as the mass flux increases,
the minimum velocity required for collapse also increases. This is because the
entrainment process occurs around the periphery of the column, and as the mass
flux increases, the mass of air required to generate a buoyant column increases
with the area of the column, while the mass of air entrained into the column
only increases with the radius of the column. The figure also illustrates that
there is only a relatively weak dependence between the collapse threshold and
the volatile content of the magma, owing to the very much larger mass of air
entrained into the column once it rises through the atmosphere.

The height of rise of the eruption column, assuming it does become buoy-
ant, depends largely on (i) the initial flux of the energy which is available for
conversion to potential energy through entrainment and heating of air, and (ii)
the stratification of the atmosphere, which tends to suppress the ascent of the
buoyant mixture. Dimensional analysis may be used to determine the scaling for
the height of rise of the column, following the classical models of the ascent of a
buoyant plume through a stratified environment

H = 5B1/4N−3/4 , (8.13)

whereN is the Brunt–Vaiasala frequency of the atmosphere,N2 = −gd(ln ρ)/dz,
and where B is the source buoyancy flux defined asB = Qg(ρa−ρ)/ρa. Figure 8.9



8 Explosive Volcanic Eruptions 199

Fig. 8.7. Variation of the flow velocity and density as a function of the height in the
eruption column. The three curves refer to three different initial velocities, 50, 75 and
200m/s for magma with an initial dissolved water content of 3wt%

compares the prediction of this simple scaling for the height of rise of the column,
with the full prediction from the numerical solution of the quantitative model
shown above. Also shown on the graph are a series of data points which denote



200 A.W. Woods

Fig. 8.8. Variation of the critical initial velocity of the erupting material such that the
eruption column is just able to develop. Values are shown as a function of the mass
eruption rate, for different values of the weight % of water originally dissolved in the
magma

historical eruptions for which there is independent data on the height of rise and
the eruption rate.

In the model presented in this section we have assumed that there is dynam-
ical and thermal equilibrium between the particles and the gas [15]. This is valid
for particles smaller than about 0.1–1.0 mm. With larger particles, some of the
heat is retained within the particle on the time-scale of ascent in the column. In
this case, if a sufficient number of particles retain their heat, then the ascending
column suffers a substantial loss of thermal energy. The bulk density of the col-
umn may not fall below that of the environment on order to become buoyant,
and instead column collapse ensues.

8.4 Ash Flows

We can develop a similar model to describe the propagation of ash flows. We
assume the mixture propagates as a dilute suspension of particles and gas, which
is sufficiently thin that the variation in pressure over the depth of the flow is
small relative to the hydrostat. As a simplification we assume that the flow
is highly turbulent and use depth averaged quantities, which is equivalent to
assuming implicitly that the turbulent fluctuations are sufficiently rapid to mix
the flow. We allow for sedimentation from the base of the flow using the Einstein
sedimentation model, in which we assume that particles fall into the base of the
flow and are not subsequently resuspended. Thus the rate of loss of particles
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Fig. 8.9. Height of rise of an eruption column as a function of the eruption mass flux,
as calculated by the theoretical model for both a mid-latitude (solid) and tropical
atmosphere (dotted). The mid-latitude standard atmosphere has the tropopause at
11 km while the tropical atmosphere has the tropopause at 15 km. Solid circles denote
historical data for comparison

is proportional to the fall speed divided by the depth of the flow times the
concentration of the flow. As well as sedimenting particles, such flows are likely
to entrain air as they propagate. Since the flow is horizontal, any mixing with the
air is limited by the potential energy required to movde the less dense ambient
downwards into the flow. This is expressed in terms of the Richardson number
of the flow, Ri = (ρ− ρa)hg/ρu2, with a fast, thin flow having more energy for
entrainment of the relatively light overlying air than a deep, slow flow.

Given these physical processes, a vertically averaged model of the motion of
a steady, isothermal, one-dimensional ash flow in a channel (Fig. 8.10) follows
the mass conservation relation

d(ρuh)
dx

= ε(Ri)ρau− vsC , (8.14)

where C is the particle volume concentration, h the flow depth, vs the particle
fall speed and u the current speed. Also, the particle flux conservation satisfies
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the relation
d(ρuhC)

dx
= −vsC . (8.15)

Also the gas flux conservation has the form

d(nρuh)
dx

= ε(Ri)ρau , (8.16)

where the gas mass fraction in the flow, n is given by

n =
(

1− ρsC

ρ

)
. (8.17)

On near horizontal terrain, momentum conservation has the leading order form

ρu
du
dx

= −gd(ρ− ρa)h
dx

. (8.18)

These equations may be solved, together with an empirical relation for the en-
trainment coefficient as a function of the Richardson number [3], to describe
the motion of ash flows [3]. Analogous equations may also be formulated for a
radially spreading flow, but we focus on channel flows in the present chapter.

Fig. 8.10. Schematic of a one-dimensional ash flow as used in the model developed in
Sect. 8.4

Numerical solutions of the equations are shown in Fig. 8.11, illustrating the
typical form of propagation of an ash flow. In these solutions, we impose the
initial velocity and depth of the current, as well as the initial gas mass fraction
and temperature. Two different kinds of behaviour may be recognised depending
on whether the initial velocity of the current is sub or supercritical relative to
the speed of gravity waves, (g′h)1/2. The supercritical currents have relatively
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Fig. 8.11. Variation of the velocity of an ash flow as a function of the initial conditions.
Curves may be seen for flows which are both subcritical and supercritical

small Ri and hence entrain air at a significant rate. As a result, the flow becomes
progressively less dense and eventually the density equals that of the environment
at which point the current lifts off forming an ash cloud. For sub-critical flows,
there is much less entrainment of air, and the currents propagate further before
becoming less dense than the air through sedimentation of particles. Figure 8.12
illustrates the difference in runout distance of both sub and supercritical currents
as a function of the eruption flux, for currents with mean particle size 3 mm.
The particle size is important in this calculation as it controls the fall speed
of particles. It is interesting to note that the initial stages of a flow, or the
propagation of a shortlived flow may also be modelled using a similar approach,
except that an additional boundary condition at the head of the current is then
also needed [5,13].

This model of ash flow propagation provides a plausible physical explanation
of the tremendous mobility of large ash flows, and also their ability to scale sub-
stantial topographic obstacles far from the source of the flow. The latter effect is
most easily understood by noting that as the flow propagates and sediments par-
ticles, it becomes progressively less dense. As a result of this decreasing density,
less work against gravity is required for the flow to scale topography of given
elevation. Figure 8.13 illustrates the height of a ridge which a typical flow can
scale as a function of distance from the source [16], adapted from classical ideas
of hydraulics, but including the evolution of the flow density with distance from
the source.

8.5 Analogue Laboratory Models

The models of the physics which control some of the key physical processes
involved in explosive volcanic eruptions may be tested using analogue laboratory
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Fig. 8.12. Variation of total run-out distance as a function of the mass eruption rate
for both sub and super critical ash flows. The difference in run-out arises owing to the
difference in entrainment rate between sub and supercritical flows. In both cases, the
mean particle size was set to be 1mm, and the mass fraction of water in the magma
was 0.01

Fig. 8.13. Height of a long ridge in the path of the flow which an ash flow may scale,
calculated from the channel ash flow model, assuming that the ridge inclination is
small. The different curves refer to eruptions with the different initial mass fluxes of
108, 2.5 × 108 and 5 × 108 kg/s

experiments. Here we review some of the experimental work aimed at testing
models of eruption column formation and collapse, and also models of ash flow
propagation and the associated particle sedimentation.

In order to simulate the dynamics of an eruption column in which the buoy-
ancy of a plume evolves with height and may even change sign, two approaches
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may be adopted. First, plumes of fresh, particle laden water may be injected into
a tank of saline water, to simulate the effects of particle fallout. Second, plumes
of MEG (Methanol and ethylene glycol) may be used – on mixing with water,
the density of methanol varies in a non-linear fashion, and so the density of a
MEG plume may change sign relative to that of the ambient water. This may
be used to simulate changes in density which arise owing to the heating of the
entrained air.

With particle laden plumes, a series of phenomena may arise as the density
of the injected fluid changes as a result of particle sedimentation. If a relatively
buoyant mixture of fresh water and particles is injected at the base of the tank,
this will rise through the ambient fluid to form a plume. The plume may then rise
to the top of the tank, where it spreads laterally and sediments its particles as
in an eruption column. However, as the plume rises through the tank, it entrains
the saline water, and therefore at some height its density may in fact fall below
that of the ambient fluid, owing to the presence of particles. As this happens,
the plume fluid will slow down and come to rest, with particles then falling back
to the base of the reservoir. This leads to an increase in the buoyancy of the
residual, relatively fresh plume fluid, which is then able to rise upwards, until
the continuing flow has carried sufficient particles upwards that the motion is
again arrested. In this way, an oscillatory motion develops from a steady source
of particle-laden fresh water ([13]; Fig. 8.14). In contrast, by injecting a relatively
dense mixture of particles and fresh water at the base of the tank, a collapsing
fountain forms, and spreads laterally around the source. However, as the flow
spreads and particles sediment from the flow, the residual fresh-water particle
suspension becomes less dense than the overlying fresh water, and separates from
the base of the tank to form a so-called coignimbrite ash cloud above the flow
[4].

With MEG plumes, the density of the MEG increases on mixing with water,
and so an initially buoyant mixture may become dense on mixing with water.
To simulate a volcanic eruption, a relatively buoyant jet of MEG is injected
downwards from a source at the top of a tank. As this mixes, it may then
become dense and forms a descending plume, thereby simulating the transition
in buoyancy of an eruption column. However, if the initial momentum of the
plume is too small, then the motion will be arrested before the plume becomes
dense, and in that case, the flow will rise to the surface of the tank, and spread
laterally. As it spreads, it continues mixing and will eventually become denser
than the water in the tank. At this stage it separates from the upper boundary
and sinks through the fluid as with a coignimbrite ash cloud [17]. The critical
momentum flux required to produce a buoyant plume, rather than the inverted
collapsing fountain may be predicted using a model which is analogous to that
of section 2, but replacing the steady flow energy equation with a relation which
specifies the MEG mass fraction in the plume. This may then be coupled with
a model of the density as a function of MEG content. Together, these relations
lead to the prediction of the critical flow rate for plume formation rather than
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Fig. 8.14. Series of photographs which illustrate the oscillation of a particle-laden
plume of fresh water rising through a tank of saline water

fountain collapse. Figure 8.15 illustrates the comparison between the model and
theory, which supports the modelling approach used herein (see [17]).

In order to model the motion of ash flows experimentally, a similar series
of experiments may be performed, using dense, particle laden suspensions of
water, but now advancing along the lower boundary of an experimental tank.
The deposition of particles from such a flow may be determined by measuring
the deposit in the experimental system. For a steady flow, the deposit is expected
to thin exponentially with distance from the source, and this has been confirmed
(e.g. [16]).

8.6 CO2-Charged Lake Eruptions

One closely related process is the overturn of CO2-charged crater lakes, such
as occured at Lake Nyos in 1986. As CO2 percolates through the crust from
degassing magma and into deep confined lake water, the CO2 may become dis-
solved in the water, since the solubility of CO2 in water increases with pressure.
As a result, the lake becomes charged with CO2. If the water at the base of
the lake becomes saturated with CO2, then any further input of CO2 will lead
to exsolution of bubbles and formation of an ascending plume of bubbles. This
ascending plume will entrain lake water, which is carried upwards, decompresses
and may itself then become saturated. If this occurs, then more bubbles are
released from the water, and a non-linear runaway process ensues, with a tur-
bulent bubble plume being produced. However, if the water higher in the lake
is unsaturated in dissolved CO2, then the CO2 gas may dissolve back into the
water, thereby removing the source of buoyancy in the flow. This may lead to the
arrest of the upward motion of the plume. The flow may be modelled in a similar
fashion to that of an eruption column, but the thermodynamic model for the
density of the plume is replaced with a model of the conservation of CO2 in the
plume and an expression for the density of the bubble-water mixture. This varies
with bubble content and gas density. Woods and Phillips [18] have modelled this
process using these conservation laws and find that for sufficiently small mass
fluxes of CO2 charging the base of the lake, then the motion is arrested and the
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ascending plume of CO2 intrudes into the lower part of the lake. However, for
larger fluxes of CO2, the plume becomes more vigorous and is able to ascend to
the lake surface, leading to a new degassing of CO2 from the lake.

Fig. 8.15. Comparison of the experimentally measured and theoretical prediction of
the critical flow rate above which a dense plume develops in the MEG experiments.
The critical flow rate is shown as a function of the magnitude of the initial negative
buoyancy of the source fluid

8.7 Discussion

In these lectures we have developed some simple modelling approaches to cap-
ture the dominant dynamics of explosive volcanic eruptions, focussing on the
dispersal of ash and fragmented magma on the Earth’s surface. The modelling
has identified conditions under which collapsing fountains develop to form high
speed, turbulent ash flows, and under which turbulent buoyant plumes develop
and rise several tens of kilometres into the atmosphere. We have also shown how
dimensional scaling arguments lead to accurate predictions of the height of rise
of volcanic columns. A series of analogue laboratory models have also been dis-
cussed, and used to test and validate the theoretical models. These phenomena
can have an important impact on the local topography around a volcano, espe-
cially in extremely massive eruptions which can deposit 1014–1015 kg of material
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onto the Earth’s surface. The models described for ash flows indicate that such
massive eruptions may disperse the erupting material over distances of order
100 km, with deposits tens of metres deep near the source, thereby have a ma-
jor geomorphological impact. Air-fall deposits from towering eruption columns
lead to a more widely dispersed ash blanket extending over 100’s or even 1000’s
of kilometres. Although this may have less impact on the surface morphology,
it has a more immediate impact on terrain, especially through agriculture and
building stability.
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9 The Dynamics of Snow and Ice Masses
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9.1 Ice: Land, Sea and Air

On Earth today we enjoy a relatively comfortable climate, which is a fortunate
consequence of the present extent of the global ice cover. Although more than
two-thirds of the surface of Earth is covered by water, it is the water to ice
conversion, and vice versa, that makes an important fraction of the globe habit-
able today. Hence, changes in the global scale dynamics of the ice cover capture
scientific and public interest principally because of their role in global warming
and ice-age events. It is in this sense that ice is the ultimate geomorphological
fluid mechanic.

Field observations [1] and modeling studies [19] of past and “future” climates
teach us that the ice cover is an extremely sensitive geophysical variable. Among
other things, the eccentricity, obliquity and precession index of Earth’s orbit,
the optical depth of the atmosphere, and the storage of heat in the oceans
underlie the present tropical-to-polar difference in mean surface temperature of
approximately 50 o C. Because water freezes near the middle of this range, the
suggestion of advancing or retreating ice extent is not hard to grasp. Indeed,
our contemporary polar oceans undergo dramatic seasonal variations in their
sea-ice covers, amounting to approximately 18 million square kilometers in the
Antarctic and 8 million square kilometers in the Arctic, where a perennial ice
cover persists. The swift ice streams of West Antarctica are believed to modulate
sea-level by influencing the storage of relatively slow inland (upstream) ice [2].
These contemporary observations give strength to the notion of rapid ice motion
with consequences for all of Earth’s inhabitants [3].

Most of what we study concerning the dynamics of the present ice cover
involves our interest in understanding how, and how fast, circumstances might
change. We study the past, as far back as 420,000 years, principally through the
analysis of ice cores from the great ice sheets [1], for they trap in their polycrys-
talline matrix particulate and chemical clues concerning the history of the state
of the Earth’s past environments. Deriving a truly quantitative understanding
of these environments constitutes a challenging inverse problem, for a host of
post-depositional dynamical processes can act to redistribute climate proxies.

An ice sheet is maintained by the deposition of snow on its surface. The
nucleation and growth of snow in the atmosphere occurs under chemical and
dynamical conditions that mirror important aspects of climate. Our common
experience tells us that a meter or so of snow can form a relatively loose ag-
gregate of granular material, a fact in strong evidence during an avalanche. As
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snow accumulates on an ice sheet or glacier it is compressed into “firn”, which
is less dense than ice and more dense than snow. In this layer, typically tens
of meters thick, some atmospheric gases are displaced by the advection of sea-
sonal meltwater or vapor transport through the connected network of air pockets
that separate individual ice grains. Eventually, deeper down, the air pockets are
sealed and the interfaces between the grains confine impurities. The persistence
of unfrozen liquid separating these grain boundaries is a basic aspect of the
phase behaviour of all polycrystalline material called premelting [24], [25]. But
at the cold temperatures that persist near the surface of the polar ice sheets,
such liquid is likely to be present only in small quantities. Hence, because of
the extremely slow solid-state diffusion through single ice grains, the impurities
are normally considered to be “frozen” in place. However, at higher tempera-
tures and solute concentrations, premelted liquid at grain boundaries provides
an alternative route for diffusive transport.

A proper accounting of the role of premelted liquid in the bulk diffusive prop-
erties of ice reveals that the interaction between compositional diffusion and the
phase relationships determining the fraction of unfrozen liquid causes advection
of the bulk-compositional signal towards warmer regions while maintaining its
spatial integrity [17]. We can illustrate the basic effect of how the migration of
such a climate signal evolves by modeling the diffusion of a single impurity such
as H2SO4. What theory predicts is that, under conditions representative of those
encountered in the Eemian interglacial ices of central Greenland, impurity fluc-
tuations may be separated from ice of the same age by as much as half a meter,
which is a distance comparable to the thickness of the apparent sudden-cooling
events detected in Eemian ices from the GRIP core [17]. Moreover, when con-
sidering the premelting-enhanced diffusion of two species, we find that features
of their evolution can mimic what has been ascribed to irreversible chemical
reactions. The theory should help guide the analysis of existing and incipient
deep ice cores. To the uninitiated it may seem paradoxical that a quantitiative
understanding of the past global climate hinges on an understanding of the basic
microscopics of ice, but it an unavoidable fact, and one that studies of future
climates must also come to grips with.

The future is dealt with principally through the speculative viewing glass of
prognostic global and regional models, which are initialized using various aspects
of the present and past record. Although such models emerge out of the rostrum
of geophysical fluid dynamics, they sacrifice the “rigor” of process studies to con-
struct “realism” on the large scale. Large scale models incorporate a plethora of
approaches which include various degrees of “realistic physics”, in order to study
the sensitivity of a prediction to particularly well known feedbacks. Because of
the sensitivity of the polar regions in model simulations and the recent changes
in the Arctic climate [11], [18], air/sea/ice interactions are at the forefront of
efforts to understand how the past climate has and can influence the future.
During approximately the last decade a dramatic weakening of the central Arc-
tic basin sea-level pressure, coupled with the European subarctic low pressure
cell, ascribed to a positive phase of the North Atlantic Oscillation [6], has driven
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changes in polar atmospheric circulation [23]. These phenomena are part of a
larger scale circulation pattern, called the Arctic Oscillation [22], with intrasea-
sonal, interannual, and interdecadal time scales, interpreted as modulations in
the strength of the polar vortex. Over the same time scales there have been
large scale increases in surface atmospheric temperature and the temperature
and salinity of the upper Arctic Ocean, the areal extent of sea ice has decreased
in the Arctic and increased in the Antarctic, and large areas of permafrost have
thawed [12].

These observed phenomena are difficult to model with entirely prognostic
methods that do not restore forcing to deep-ocean climatology and/or observed
atmospheric temperatures (e.g. [27]). The thermodynamic state of the atmo-
sphere and the ocean are more readily observed than that of the sea ice that
separates the two, and yet it is the change in the area of sea ice that drives
ice-albedo feedback. Sea ice grows and melts in response to atmospheric and
oceanic changes, it is redistributed by wind stress at its surface and it under-
goes deformation in which ice of one thickness becomes ice of another [20]. The
first thermodynamic models of sea ice developed for climate studies were one-
dimensional and hence avoided the complication of deformation [10]. It was rec-
ognized then that the two-phase, two-component nature of the sea ice matrix,
through its influence on the thermophysical properties of the layer, strongly in-
fluenced the agreement between model predictions and field observations. We
now understand that a complete treatment of the thermodynamic properties
of undeformed sea ice involves taking account of both diffusion and convection
within the layer [26], and yet one of the principal simplifications of the origi-
nal thermodynamic sea ice model [10] is to ascribe the same constant value of
salinity to all ice thicknesses no matter what their particular history. Moreover,
present day numerical models are not able to make an accurate accounting of the
space-time variation in the distribution of sea ice thickness, but progress is being
made [27], and when the observed trends and changes can be predicted reliably,
the future may reveal itself. An enduring question concerns just which ostensibly
small scale thermodynamic phenomena can be approximated to achieve a prac-
tical, computable scheme for making such predictions. Increasing computational
power is not always the solution to the problem, for we are often in a position to
make a “simplification” with the aim of enhancing computability, when in fact
“simplification” is simply a synonym for ignorance of the underlying process. It
is only years later, after that simplification becomes part of the fabric of the
modeling, that the physics is rooted out.

There are other ways of predicting change. So called low-order models can fo-
cus our attention on the dominant balances in a system thereby providing insight
on issues such as how sea ice responds to changes in poleward heat transport or
ocean temperature [21]. Some variations, such as wind speed, temperature and
atmospheric CO2 content are predicted to be fast, whereas others, such as ice
mass, are believed to respond more slowly, indicating a separation of time scales
in the climate system [19]. Such a separation is again distinguished in studies
of ice variations on daily, seasonal, decadal, millennial,...periods. The spatial ex-
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tent of geophysical ice forms, and the characteristic length scales of processes
controlling them, also provide natural divisions of ice research.

9.2 Ice Flow: As Clear as Mud

The essence of modern dynamical glaciology emerged out of basic considerations
of the flow of ice as a problem in plasticity theory [14], [13], and we now un-
derstand that the thermal history of a parcel of glacier ice can be influenced by
diffusion, advection and strain heating, and the temperature itself can modify
chemical and isotopic signatures. Ice flows under its own weight and, because it
builds up on, and creates, irregular landforms, understanding the dynamics of
large snow and ice masses constitutes a formidable task [15]. Even along ice di-
vides, which are the preferred drilling sites for ice cores because of their relatively
simple flow pattern, reconstructing thermal and mechanical states is ultimately
a computational undertaking [9].

In the present day, ice movements constitute one of the most important ge-
omorphological sculptors in colder regions of the Earth, and in the past they
were responsible for the landscape we presently observe in vast portions of the
globe that are ice free. The considerations employed to great advantage in un-
derstanding sediment dynamics in rivers, lava and mud flow, dune formation,
and the dynamics of ice masses, constitute a unifying theme for this volume,
tying together these seemingly distinct flow processes that shape features of the
Earth’s surface.

It is the aspect ratio of the important features of these diverse flows that
underlies their mathematical similarities. This is displayed in the generally shal-
low nature of glaciers and ice sheets, with depth to width/length ratios of about
10−3 [15], [7], [4]. A kind of minimal model of a glacier is depicted in Fig. 9.1.
The glacier has thickness h, much smaller than its length and width, overlying

x

h

z

0

α

Fig. 9.1. Schematic of a parallel-sided slab [15]
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a sticky inclined bed of slope α. In real glaciers, there is a difference between
the surface and the bed slopes, but the essential behavior is not changed when
this difference is small, except near margins, where the assumption tends to fail.
The aspect ratio allows the neglect of longitudinal stresses, an assumption which
breaks down in the vicinity of ice divides where the surface slope and basal shear
stress vanish.

Traditionally, when employing these assumptions, dynamical glaciologists
have referred to this treatment as the “parallel-sided slab” model (e.g. [15]),
but as these phenomena drew other scientists into the field it became known
as the shallow-ice approximation in analogy with the widely used shallow-water
equations of geophysical fluid dynamics [16]. In the latter case, the essential
notion is that the average fluid depth, which is the length scale characterizing
the vertical scales of motion, is much smaller than the scale over which hor-
izontal motions are important. Additionally, this approximation assumes that
the density is constant in the layer and that the fluid is incompressible thereby
decoupling the dynamics from the thermodynamics. The qualitatively similar
approach of the shallow-ice approximation is used to study the surface profiles
of ice sheets, to detect ice thickness changes and to reconstruct past ice sheets.

Ice sheets are rarely in steady state and hence mass conservation demands
that

ht + qx = S + B , (9.1)

where q is the ice flux and S and B are the mass per unit area per unit time being
added or removed from the surface and bed of the glacier. Typically, the mass
balance is dominated by the surface term. As in the case of lubrication theory
of thin viscous flows, or in the evolution of dunes, the specific dynamics of the
system resides in an understanding of the driving fluxes. Ice is often treated as
a “viscous” fluid, but in fact it is a non-newtonian material with a power law
rheology which for simple shear takes the form

ε̇xz = Aτxz
3 , (9.2)

wherein ε̇xz is the strain rate and τxz is the stress, A is an Arrhenius factor
modelling the temperature dependent creep of ice (treated as a constant here),
and the exponent 3 derives from Glen’s experiment [5]. The ice flows under its
own weight with a component of force parallel to the bed ρgh sinα which is
balanced by the resisting stress at the bed. At a given depth in the ice the shear
stress is τxz = ρg(h−z) sinα and therefore, because 2 ε̇xz ≡ uz +wx and wx ≈ 0,
we have

u(z) = us −
A

2
(ρgh sinα)3(h− z)4 , (9.3)

where us is the surface velocity. Because the ice is frozen to the bed, the ice flux
q can be written in terms of the depth averaged velocity ū as

q = hū =
2A
5

(ρgh sinα)3h5 , (9.4)
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and hence, neglecting transverse strain rate, the simplest shallow-ice model can
be written

ht + (hū)x = S + B , (9.5)

describing how the longitudinal strain rate varies with mass balance and thinning
or thickening; a sudden increase in snow fall in the accumulation zone must
result is a change in the ice thickness and a flux down glacier. Such simple
models show that the dynamics of glaciers and ice sheets have the signature of
climate variations encoded in them. Other examples wherein models of the form
of (9.5) arise appear throughout the volume; resulting from the combination of
conservation laws and shallow configurations.

9.3 Drumlins, Glaciers, Icebergs and Avalanches

In the section of the volume that follows, the authors discuss processes that span
many of the space and time scales of active interest. Kolumban Hutter focuses
on theories used to describe the dynamics of ice sheets and shelves such as the
shallow-ice approximation. Such approaches develop the asymptotic limits that
provide insight into the essential dynamics and often simplify the calculational
efforts required to make long term predictions. When an ice sheet retreats it
leaves geomorphological clues of its past existence in a region. One such clue
takes the form of a long ridge, or oval-shaped hill, called a “drumlin” by glaciol-
ogists. Andrew Fowler presents a theory of drumlin formation in which these
landforms emerge out of an instability coupling the interaction between the ice
flow and the properties of the till below it. He also employs a shallow-ice method-
ology. Much of the hype associated with global warming is fueled by the periodic
calving of gigantic icebergs from Antarctic ice shelves. An active area of present
research concerns the armada of icebergs believed to have been calved from the
Laurentide Ice Sheet during the last deglaciation [8]. The sinking of the Titanic
focused our attention on the practical aspects of icebergs – their drift and deteri-
oration – which is the topic of the chapter by Stuart Savage. A deeply aesthetic
aspect of the hydrological cycle is the freezing of atmospheric water vapor to
form snowflakes. The microscopics of this commonplace event have a plethora
of macroscopic consequences [24] ranging from stratospheric processes to the ski
slopes. Avalanche disasters in the Alps have a long history and yet a quantitative
understanding is in its infancy. Much of the research, as described by Christophe
Ancey, focuses on empirical correlations and modeling the dynamics like that of
a debris flow. A great deal of damage can be mitigated, but in the long term a
reliable predictive methodology is necessary.

As the present day snow and ice masses wax and wane, we think of the os-
cillations and their stability. Could an understanding of the qualitative mecha-
nisms associated with the bifurcations of past climates, analogous to the patterns
emerging out of convection in a layer of fluid, be sufficient to make progress in
understanding the future? Nevertheless, the present is peppered with ice prob-
lems of pressing importance; problems suggested by studies of the past, the need
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to understand practical issues in the present and to make our best guess at what
is ahead of us.
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10 Response of Italian Glaciers
to Climatic Variations

A. Biancotti and M. Motta
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10.1 Introduction

The glaciers of the southern alpine slope have been investigated using a variety
of different methods. The most common ones are:

a) glacial inventories, which consist of an overall description, the geograph-
ical location, the classification, and the area and volumetric measurements. Four
such inventories, all focussed on the Italian Alps, were carried out in 1925, 1958,
1976 and in 1989 [1,2]. The first one is the result of the consultation of I.G.M.
topographic maps, the second comes from measurements in the field, and the
latter two come from aerophotogrammetric observations. The data base for the
last one was provided by Italy Flight 1988;

b) annual glacial campaigns, during which snout variations of the ablating
tongue are measured. The operation, carried out by land surveys, refers to a
sample of about 15% of the total population of glaciers, and it includes almost
all the glacial bodies of major dimension and importance [3];

c) mass balances, with the calculation of the volumetric variation of the
glacier in time and its role in the local climatic evolution. Only a few sample
glaciers, located in different parts of the Alpine range, are taken into considera-
tion.

10.2 Glacial Inventories

The inventory of 1989 (Table 10.1) includes 706 glacial bodies with a surface
larger than 0.05 km2 (a dimension limit recommended by the World Glaciers
Inventory). Figure 10.1 shows the distribution according to the historical division
of the Alps. In addition to these bodies, there are others with a surface area less
than 0.05 km2, mostly of the type called glacionevato,1 and a collection of glaciers
that were extinguished during the past 100 years, but whose history is known.
From the comparison with the inventory of 1958, one concludes that the number
of minor and extinguished glaciers is increasing, while that of glaciers with a
surface area exceeding 0.05 km2 is decreasing. Moreover, the total glacial area
has shrunk by 8.2%. It should be noted that the comparison is only suggestive,
given the different methods adopted for the two inventories.
1 A glacionevato is “a more or less homogeneous and compact mass, formed by snow

and/or ice, of different extension and form, that lasts for two or more years and is
not in motion” [4]. It differs from a glacier because the latter moves slowly [5].
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Fig. 10.1. Percent distribution of glaciers in the historical segments of the Italian Alps,
according to number (left) and surface (right). Data from the inventory of 1989

Table 10.1. Variation of the number and surface of glacial bodies in the Italian Alps.
The comparison refers to the data of the inventory of 1967–68 (normal typeface) and
to those of the inventory of 1989 (bold)

Glacial Exting- Surface Surface Total Total area

bodies uished less than exceeding in km2

0.05 km2 0.05 km2

Western Alps 41 → 90 15 → 36 307 → 272 363 → 398 237.6 → 201.1

Central Alps 108 → 117 35 → 28 220 → 243 363 → 388 161.0 → 163.3

Eastern Alps 52 → 100 40 → 36 217 → 191 309 → 327 126.4 → 117.5

Apennines – 0 → 1 1 → 0 1 → 1 0.06 → 0.02

Total 201 → 307 90 → 101 745 → 706 1036 → 1114 525.0 → 481.9

10.3 Glacial Campaigns

The graph in Fig. 10.2 shows the glacial snout variations, expressed as a per-
centage of advancing glaciers, for the sample measured from 1925 to 1998. The
series contains an interruption of four years, from 1943 to 1946. The data show
that, until 1965, only about 10% of the measured glaciers were advancing, while
the great majority of glacial bodies showed a regression. Between 1966 and 1980
there were large annual variations, but in general the percentage of advancing
glaciers increased significantly, including about 80% of the observed bodies. In
the last twenty years, there was again an increase of the number of regressing
glacial tongues, that led to values comparable with those measured in the pe-
riod before 1965. Based on these measurements, and on the comparison with
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the behavior of glaciers in other sectors of the Alps and in other mountaineous
districts (Rocky Mountains, Himalayas), we conclude that the data indicate a
clear trend of glacial regression, that began at the end of the Little Ice Age.

Fig. 10.2. Percentage of advancing glaciers from 1925 to 1997 (data from [3])

Fig. 10.3. Annual average snout variations of the Lys glacier from 1927 to 1997. On
the y-axis is the distance (in m) from the initial position. The only significant advance
was in the years 1972–1986

The only exception to this trend was an advance that lasted from the be-
ginning of the 1970’s until the middle of the 1980’s. This exceptional behaviour
is well illustrated by the snout variations of two glaciers: the Lys glacier in the
Aosta Valley (Fig. 10.3), and the northern glacier of Locce in the Ossola Valley
(Table 10.2).

In Figs. 10.4 and 10.5 we show the snout variations in the period 1991–1997
of some of the most typical Italian glaciers. An overall regression is evident.
This regression, which is drawn as though it were a continuous smooth curve,
can in reality be either regular or irregular, as when the tongue is subject to big
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Table 10.2. Snout variations of the Northern Glacier of Locce (data analysed by
Mazza, [6])

Northern Gl. of Locce

1915–1934 About −200 m

1934–1968 About −250 m

1968–1979 Stationary?

1979–1982 About +30 m

1982–1985 Advance?

1985–1992 About −20 m

1992–1993 −7 m

1993–1994 −4 m

1994–1995 +0.5 m

1995–1996 −7 m

1996–1997 −6 m

and sudden fall phenomena. The latter situation occurred for the Forni glacier
(Fig. 10.5), whose snout, in the hydrologic years 1993–94, suddenly regressed
by about one hundred meters. This regression is five times larger than that
observed for any other glacier. The upper glacier of Coolidge behaved similarly:
it collapsed almost completely, on the northern side of the Monviso mountain,
on July 6, 1989 [7]. With the persisting tendency to regression, the probability
of an increase of traumatic collapse events in the Alps grows. As a consequence,
there is also an increase in the risk of accidents in the defrosted areas, which are
more and more frequently visited by tourists.

Snout variations can be used as climatic indicators only if they are compared
with one another, and are analysed in such a way as to eliminate irregularities
due to variations in local conditions. To compensate for such irregularities, it
is possible to express the trend of snout variations by using standardized time
series, in which the raw data, Xt, are replaced by normalized data, X ′

t = (Xt −
X̂)/σ, where X̂ is the mean of the signal Xt and σ2 is its variance. With this
normalization (also called standardization), the data sets for different glaciers
become more homogeneous, although there still remain intrinsic variations due
to differences in altitude and orientation of the individual glacial bodies. Clearly,
the standardized data indicate more accurately the actual climate variations in
the area under study. However, some anomalies persist (Fig. 10.6), such as the
ones of the Money and Tribolazione glaciers (signal BV1, central branch), which
are due to irregularities of these specific glaciers.
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Fig. 10.4. Relative annual snout variations from 1991 to 1997, measured in meters,
for four large valley glaciers in the Aosta Valley

Fig. 10.5. Relative annual snout variations from 1991 to 1997, expressed in meters,
for three large valley glaciers in the Central Alps

Other exceptional behaviours were noticed in glaciers near to extinction.2

Many small glaciers of the Italian Alps (at least 106 from 1959 to 1989, as shown
from the comparison of the corresponding inventories), have extinguished. The
process has often consisted of the arrest of the ice flux, caused by the reduction
of the glacial body because of climatic changes. To be considered a glacier, a
body of ice must necessarily be moving; however, when its dimensions are too
small, the weight of the overhanging mass is not enough to trigger the ice flux,
the body stops and must be considered extinguished as a glacier. In the years
immediately before extinction, snouts have been observed to advance relatively
quickly because melting leads to a reduction in the friction over the underlying
bed, and so the whole mass slides towards the valley (Fig. 10.7). It is obvious
that the snout advance recorded in such a case must not be understood as an
index in favour of glacial advance.
2 A glacier is extinguished when it is not “a large, slowly moving accumulation of ice

and firn resulting from consolidation and transformation of atmospheric precipitation
provided its perennial balance is positive” [5].
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Fig. 10.6. Trend of snout variation of the head glaciers in Valnontey (Aosta Valley)
expressed through a series of standardised variables. Measures surveyed at signals MA
(Gl. of Grand Croux), BV and BV1 (Gl. of Tribolazione), AM191 (Gl. of Coupè of
Money), MM (Gl. of Dzasset), ML (Gl. of Money), F1 and SC (Gl. of Lauson)

Fig. 10.7. Accumulated snout variations of the Colle of Valcournera and Fontanella
glaciers, expressed in meters, just before their transformation to motionless dead ice
masses. It is worth highlighting the glacial advance recorded in the years 1989–1991,
before the regression that has led to the extinction of these two glaciers in 1993. The
advance has occurred by a shift of the whole mass, and it was the same for the two
signals of the Valcournera glacier. The signal 89A was measured in front of the central
part of the glacier snout of Colle of Valcournera, and the signal 89B was obtained in
front of the hydrographic left side of the glacier. The signal 89C was obtained in front
of the left side of the snout of the Balanselmo glacier

These advances, that take place just before the interruption of the glacial
flux, do not occur only for whole glacial bodies, turning them from glaciers into
glacionevati, but also occur for the snout of glacial tongues that move indepen-
dently (from a dynamical point of view) from the main mass of an active glacier
[8]. This process explains some of the data indicating positive snout variations
for glaciers undergoing a significant contraction phase, but not yet extinguished.
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Fig. 10.8. Net glacial balance, in mm of water equivalent (WE), calculated for the
Careser glacier. Data reported by Zanon [9] and included in glacial campaigns for the
Triveneto sector

10.4 Mass Balances

As previously discussed, snout variations have a climatic value on alpine scale
only if they are considered globally. To study local climatic variations, the an-
nual quantitative data on ablation and accumulation are more reliable, and the
comparison of these data provides the mass balance.

The longest measured series in Italy is that of the Careser glacier, a glacial
body of limited size (4.241 km2 in 1989) in the eastern part of the alpine range
(Fig. 10.8).

This glacier experienced a phase of slight volume decrease from 1966 to 1980,
interrupted by extremely small volume increases in 1968, 1972, 1975 and 1977.
Following that phase there has been a relatively quick contraction, due to an
average increase in the altitude of persisting snow, which has been above the
maximum height of the glacier during the most recent summers [9].

The biggest glacial body (10.195 km2 in 1989) for which the annual mass
balance has been measured is the Lys glacier (Table 10.3). The data of this
balance appear to be consistent with the measurements of snout variations of
the same glacial body, although the variation of volume seems to change from
year to year much more than the snout position.

10.5 Morphologic Variations Associated
with the Regression

A glacier does not represent an isolated body in the scenery of high alpine valleys.
On the contrary, it is the centre around which the dynamics of the overhanging
sides develop as well as the centre of the territory used by humans. Significant
glacial variations cause noticeable changes in the landscape. This can be seen for
example in the glaciers of Val Ferret, such as the Triolet glacier, located in a deep
valley descending from the Grandes Jorasses (4206 m above sea level). The outlet
of the deep valley is obstructed by the high snout and the side moraines, which
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Table 10.3. Mass balance of the Lys glacier (data from Michele Motta, unpublished)

Accumulation Ablation Net balance

1993 2.5 · 109 kg 3.9 · 109 kg −1.4 · 109 kg

212 ± 42 mm WE 330 ± 42 mm WE −118 mm WE

1994 – 7.6 · 109 kg –

682 ± 50 mm WE –

1995 4.0 · 109 kg 3.5 · 109 kg +0.5 · 109 kg

367 ± 183 mm WE 323 ± 5 mm WE +44 mm WE

1996 9.8 · 109 kg 3.6 · 109 kg +6, 2 · 109 kg

900 ± 46 mm WE 334 ± 4 mm WE +566 mm WE

1997 2.7 · 109 kg 16.0 · 109 kg −13.2 · 109 kg

249 ± 46 mm WE 1465 ± 4 mm WE −1216 mm WE

were built during the advance in the Little Ice Age (mid nineteenth Century). As
in almost every alpine valley, these structures represent the more evident mor-
phological elements. At its bottom, this deep valley is characterized by glacial
moulding and it has been, for long time, subject only to the action of other
mountain geomorphological processes (running waters, landslides, avalanches).
On the top, the glacier has shrunk over the past few decades, and its moulding
action appears to be just finished. The vegetation is scarce or absent, and steep
piles of debris prevail, where masses of “dead ice,” isolated and currently mo-
tionless reminders of the glacier, are common. The continuous settling of these
unstable areas makes them difficult to manage and impossible to use for human
beings. These areas do indeed represent a significant source of danger for the
valleys below: Heavy rains can trigger landslide phenomena of such dimension
to reach the built-up areas. In the last decade, events of this kind often hap-
pened in the valley of the Gura Glacier, just over the built-up area of Forno
Alpi Graie, Italy. Dangerous collapses can happen also in active glaciers. In the
case of Triolet glacier, for example, the withdrawing snout hangs unstably on
the upper edge of steep rocky walls.

Less evident but possibly deeper changes affect the mountain sides over the
glacier. Once mainly snowy, these areas are now constituted by bare rock that
suffers from frost-defrost cycles contributing to its progressive disintegration.
This leads to a significant increase in fragment and block detachments from
the mountains overhanging the glacier. These changes indicate the need for a
complete revision of the use of the glacial areas by tourists and mountaineers.
The old itineraries to the top, that followed channels or snowy slopes and were
both less steep and easier to climb, are becoming increasingly dangerous and
often impassable. The indications given by old route descriptions and the lack
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of updated information can therefore increase the frequency of accidents. In the
Triolet basin, for example, the local tour operators (guides, hut managers) have
been forced to completely revise the trail maps, advising against old itineraries
and arranging for new routes entirely on rock.

10.6 Conclusions

The data discussed here confirm the current persistence of a defrost phase that
started around 1980, and has involved the whole alpine range. Local climatic
variations do not change significantly this picture, as they would under less
critical conditions. Most of the positive snout variations recorded during the
current period of defrost are due to peculiarities of the glacial dynamics and do
not derive from local microclimatic variations.

The phase of local advance or stationarity, observed for several glacial snouts
from 1966 to 1980, and confirmed by the mass balance of the Careser glacier,
represents the only interruption to the global negative trend that was recorded
since the end of the nineteenth Century and that restarted in 1980, continuing
until today.

More in detail, the snout withdrawal of the Lys Glacier (Fig. 10.3) measured
during the last few years appears to be weaker now than before 1966, suggesting
that the current phase of defrost could be less intense than the one recorded
before the interruption of 1966–1980. Other data, however (such as the percent-
age of advancing snouts), display a weaker negative trend in the first half of
the twentieth Century than in the last twenty years. It is therefore reasonable
to conclude that the current phase of defrost is a natural continuation of that
recorded from the end of the nineteenth Century to the years around 1966.

References

1. F. Porro: Boll. C.A.I., XLII, n. 75, 309–322, Torino (1925)
2. C.N.R.–C.G.I. Catasto dei ghiacciai italiani. 4 volumes, C.G.I., Torino (1959–1961)
3. The reports of the annual glacial campaigns by the Comitato Glaciologico Ital-

iano were published in the Bollettino del Comitato Glaciologico Italiano, printed in
Torino by the same institution. This magazine was also called, starting from the
third series, “Geografia Fisica e Dinamica Quaternaria”

4. F. Secchieri: Geogr. Fis. Din. Quat. 8 (2), 156–165, Torino (1985)
5. V.M. Kotlyakov, N.A. Smolyarova: Elsevier’s Dictionary of Glaciology (Elsevier,

Amsterdam 1990)
6. A. Mazza: Geogr. Fis. Din. Quat. 21, 233–244, Torino (1998)
7. F. Dutto, F. Godone, G. Mortara: Rev. Géogr. Alp. 79, 7–18, Lyon (1991)
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11.1 Introduction

11.1.1 Motivation

In climate dynamics of the Globe the atmosphere, hydrosphere and cryosphere
interplay with one another with various different time scales, typically from years
to several millennia. Ice sheets and ice shelves, which are the grounded and float-
ing components of the large ice masses such as Greenland and Antarctica and
the former Fennoscandinavian and Laurentide ice sheets are those subsystems
of the geosphere, which respond to and interplay with climate variations with
periods of 103 to 105 years. 100000 years ago the amount of water bound in
solid ice was so large that the ocean surface was about 120–150 m below its
present level; alternatively, the complete melting of the Greenland ice sheet or
Antarctica under a future Greenhouse scenario would raise the ocean surface by
approximately 7 and 65 m, respectively. Because the socio-economic impact of
the sea level rise due to an increase of the mean temperature of the Earth’s sur-
face is immense, it is absolutely vital that the nourishment and wastage of the
large ice masses are properly understood and transformed into sea level status.
This requires careful computation of the flow, phase change mechanisms as well
as geometric evolution of such ice masses.

Ice shelves, because they are floating, do not contribute to sea level rise
when disintegrating, but they hold the inland ice in its position; this stabilising
mechanism is lost when the ice shelves melt away (which one presently believes
might happen catastrophically in Antarctica). Much more inland ice will likely
flow thereby into the ocean and then contribute to sea level rise, another reason
why ice sheet – ice shelf dynamics is so crucial in future climate scenarios.

There is, however, also a further perhaps more technical reason why ice sheet
flow needs to be computed very accurately. This is dating of ice in ice sheets
at large depths. Ice cores have been and are being drilled both in Greenland
(GRIP, GISP, NORTH-GRIP) and Antarctica (VOSTOK, DOME C, EPICA)
for reconstruction of the past climate over 500000 years from CO2, O2, D2 etc.
isotope compositions trapped in the ice specimens of the cores. The climate
reconstruction requires knowledge of the depth-ice age correlation within such
ice cores amounting to determining the trajectories traced by the ice particles
through time.

Geometrically, ice sheets and ice shelves are shallow objects, with large hor-
izontal extent as compared to their thickness. Likewise, horizontal velocities are
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basically large and vertical velocity components much smaller, and topographic
variations in the horizontal extent are small. This suggests to introduce an aspect
ratio ε = “typical thickness to typical horizontal extent” as a scaling parameter
and to seek the mathematical description in terms of perturbation expansions
of ε . The lowest order approximations, in which all terms of order εm, m ≥ 1
are dropped in the governing equations, are called the shallow ice approximation
(SIA) for ice sheets and the shallow shelf approximation (SSA) for ice shelves.
These are zeroth order approximations and possess their inadequacies – they are
poor approximations e.g. exactly where ice cores are best drilled and therefore
must be improved, as we shall see to second order, O(ε2), for ice sheets and to
first order for ice shelves, O(ε), making the determination of the flow, tempera-
ture, geometry and ice age as functions of space and time a challenging problem
of mathematical glaciology.

11.1.2 A Descriptive View of Ice Sheet and Ice Shelf Flows

Ice sheets are large ice masses resting on the solid Earth; they are thus bounded
by the atmosphere along the free surface and by the rock bed on which they
rest, see Fig. 11.1. They grow or shrink according to as mass is added by solid
precipitation or subtracted by melting (and evaporation), and their thermal
regime is governed by the geothermal heat provided by the interior of the Earth
and the surface temperature described by the atmospheric temperature at the
surface of the ice sheet. The flow of such an ice sheet is much like the flow of
honey on the breakfast plate, only slower. Physically an essential difference is
that ice sheets may gain and loose mass from above or below so that steady
state configurations do exist if the accumulated mass equals the ablated mass,
whereas this is not so with the honey on the breakfast plate. The flow in such a
very viscous fluid is driven by gravity, and strong vertical shear develops, that
vertical profiles of horizontal velocities have belly-type shape with strong shear
close to the rockbed and almost none at the free surface. Of special significance
are the margin neighbourhoods, where the free surface touches ground, the free
surface and the vicinity of the summit, a dome or ice divide. It is plausible
to suppose that the flow is towards the sides from the position of the dome,
roughly in the direction of steepest descent of the free surface. This can easily
be demonstrated by experiment with honey on the breakfast plate. Thus at the
dome, where the tangent plane to the free surface is horizontal, the horizontal
velocity components must vanish, and there can only be a vertical velocity. The
dome location separates the ice flow from one direction to the other and therefore
is a true ice divide.

This behaviour is essentially described by the SIA mentioned above, i.e. the
zeroth order approximation in the aspect ratio ε of the thermomechanically cou-
pled dynamical equations of creeping flow of ice under the external action of
gravity. In fluid mechanics this approximation is also known as the “thin film
theory”; analysis shows that the SIA is capable of modelling ice sheet flow ad-
equately everywhere except in three local regions, in a marginal region, in a
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Fig. 11.1. Sketch of an ice sheet with vertical scale exaggerated 100–1000 times. The
arrows at the free surface symbolize the accumulation and ablation of ice mass via
precipitation and melting. The ice velocity in the vicinity of a dome or ice divide is
primarily vertical with a stagnation point at the base. Away from domes it is largely
horizontal with large shear at the base and practically none close to the surface

boundary layer close to the free surface and in the vicinity of ice divides. Unfor-
tunately, ice domes are the preferred locations where ice cores are drilled, since
the coring equipment is subject to least shearing, and obviously, the surface
near boundary layer is most easily accessible to observation. The reasons for the
inaccuracy of the SIA in the mentioned subregions are as follows:

Close to the margins the surface slopes are large – in some cases very close to
vertical, implying that the shallowness assumption is no longer satisfied. Hence,
the full equations would have to be solved, but fortunately, the region is so small
and the effects remain so local that in any numerical scheme of global ice sheet
dynamics these effects are of subgrid size, and the problem can formally be dis-
missed. The difficulties arising close to the free surface and in the vicinity of
ice divides are of a quite different nature. They are based on the fact that ice
behaves as a strongly nonlinear viscous fluid with an effective viscosity that is
infinitely large at zero strain rate or at least very large1. Thus, in the upper
parts of the ice sheet, perhaps 10 to 20% below the surface where the shearing is
practically zero (see the velocity profile in Fig. 11.1) the effective viscosity is very
(infinitely) large making the free surface very (infinitely) stiff against this shear-
1 In plane flow the thin-film or SIA approximation of a power law fluid operates with

a stress-strain rate relationship of the form γ̇ = A τ |τ |n−1 or τ = A−nγ̇|γ̇|1/n−1,
where γ̇ is the horizontal shear strain rate (shearing) and τ the shear stress and A a
constant. Thus, except for a constant factor, |γ̇|1/n−1 is the viscosity which for n > 1
becomes infinitely large when γ̇ → 0. This is what is meant by infinite stiffness; it is
not restricted to power laws but can be avoided by using a “finite viscosity law” as
we shall see.
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ing. Realistically this can not be, and so longitudinal and other stresses develop
which automatically enhance the effective stress and lower the effective viscosity.
This is an effect going beyond the lowest order shallow ice approximation.

In the vicinity of an ice divide it is rather obvious that the prerequisites of
the shallow ice approximation must fail. Here, the velocities are nearly vertical
from the free surface to the bed, diverting to the left and right close to the bed
in a stagnation-point flow manner. A formal singularity develops in the shallow
ice approximation when the no-slip condition applies at the bed and a power law
rheology is used, the reason again being infinite viscosity that develops. Finite
viscosity laws again regularize the formal solution procedure, but this does not
alter the fact that the constructed SIA solution close to the ice divide deviates
a large amount from the true solution of the stagnation-point flow.

This description makes it clear that the SIA generates reasonable solutions
everywhere except in the three mentioned regions. By using a finite viscosity law
the lowest order SIA can be regularized such that it becomes uniformly valid,
and an extension of a perturbation expansion to second order in ε will improve on
this SIA. We shall demonstrate in these lecture notes how the SIA is constructed
and in which way we improve it to eliminate the mentioned inadequacies.

Ice shelves are large ice masses which are floating on the ocean on most of
their parts, are fed by the ice from the inland ice sheet and may also occasionally
touch the ocean bottom, Fig. 11.2. They are connected to the inland ice sheet at
the grounding line where the discharging ice from the ice sheet becomes afloat.
The ice velocity is primarily horizontal and towards the front, where the ice sheet
looses its mass through calving into icebergs. In plan view they may be bounded
by mountain flanks, for instance when they move through a fjord-like narrow bay.
When they reach the ocean bottom, part of their weight is carried by the solid
ground, (the other by buoyancy [1]), generating basal frictional resistance and
enhanced free surface elevations. If this interaction through the ocean bottom is
weak the surface elevation above the very flat ice-shelf surface is small, say less
than 50 m, forming what is called ice rumples. The flow of the ice is slowed as
a result of the existence of these rumples, but the ice continues to go through
them, being perhaps somewhat diverted, but not to the extent that rumples
would be dynamically separated from the remaining ice shelf. In contrast, ice
rises are regions of an ice shelf of which a substantial part rests on the ground.
This results in higher surface elevations of the ice rises above the remaining ice-
shelf surface, perhaps 200 m or more. The flow of the ice-shelf ice is basically
around the ice rises, and the flow within the ice rises is reminiscent of that of
ice sheets, along the direction of steepest descent of their surface topography. In
other words, the dynamics of ice rises are disconnected from those of shelves.

Ice shelves tribute their existence to the strong mass flux of inland ice through
the grounding line, defined as a transition zone between an inland ice-sheet
and an ice shelf, but also precipitation from the atmosphere. At the ice–ocean
interface ice may melt or ocean water may freeze and the frazil ice suspended
in the cold ocean water may also contribute via accretion to the addition of
marine ice from the bottom. As a result, ice shelves consist of two sorts of ice,
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meteoric ice which is ice from fallen snow, fresh water ice from inland, and marine
ice, which is frozen ocean water. In these lecture notes we will limit attention
to locations where no marine ice exists close to the ice–ocean interface; in so
doing we will considerably simplify the mathematics (and restrict the physical
applicability). Nevertheless the essentials of the improved approximations of the
so-called shallow shelf approximation (SSA) will become apparent. The complete
theory is still under construction.
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Fig. 11.2. Plan view of an ice shelf. Such ice shelves are bounded by the grounding
line, the side flanks of the rising topography and the free side margins (front)

To write down the general three-dimensional equations for such a model is
rather complex; it involves establishing the balance equations of mass, momen-
tum and energy as well as the kinematic surface conditions and dynamic jump
conditions at the free surface, the ice ocean interface, the grounding line, the
side flanks of the rising topography and the free side margins (front). Among
the kinematic boundary conditions the evolution equation of the ice front is im-
portant, because it involves a dynamically significant variable, the calving rate,
i.e. the amount of ice mass lost per unit time along the ice front. This variable
must be parameterized, and its parameterization describes an important com-
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ponent of the temporal response of ice shelves to climate variations. This is still
one of the open problems of glaciology today.

Shallowness, i.e. small depth in comparison to the horizontal extent and pri-
marily horizontal motion, is the distinctive feature of ice shelves. The aspect
ratio ε is again the parameter motivating a perturbation solution procedure;
however, the stress scalings must be quite different from those of ice sheets. In-
deed, ice shelves are essentially a skin or membrane – despite their thickness of
200–1500 m – covering the ocean. So their deformations are essentially due to
membrane forces, tensions and in-plane shear, which generate in-plane velocities
which should largely be independent of the vertical coordinate where-ever the
ice shelf is floating. These membrane forces are made up of the normal stresses
txx, tyy and the shear stresses txy, if x, y are the horizontal coordinates, and these
contain the deviatoric contributions which depend on the material behaviour.
Thus, the longitudinal stress deviator effects are important lowest order quanti-
ties – much different from ice sheets where these stress components are of O(ε2).
The non-dimensionalization must be based on scalings which account for these
different orderings. On the other hand, the thickness variation in plan view acti-
vates through the water pressure at the ice–ocean interface the shear stresses txz

and tyz, which are O(ε) and eventually responsible for the weak bending effects
which, in turn, are responsible for the small, but measurable, differences of the
horizontal velocities between the free surface and the ice–water interface. Fur-
thermore, where ice rumples form, the ice shelf sits on the ground and is therefore
also subjected to the same shear forces txz, tyz. The non-dimensionalized equa-
tions are based on these a priori suppositions. It is found that to lowest and
first order ice shelves indeed behave like membranes; bending effects enter only
afterwards, i.e. at O(ε2).

11.2 Fundamental Equations for Cold Ice Masses

The continuum mechanical description of cold ice is a non-Newtonian, viscous,
heat conducting, incompressible one-component fluid. Neglecting the supply of
solar radiation in the energy equation (which is justified, since the radiation
depth is only a cm), we write the balance equations of mass, momentum and
energy as

divv = trD = 0 ,
ρ v̇ = −grad p+ div tD + ρg , (11.1)
ρ u̇ = −div q + tr (tDD) ,

where the stress tensor t = −p1+tD is decomposed into the constraint pressure p
and the viscous extra stress tD. Moreover, v is the velocity vector, ρ the density,
p the pressure, tD the stress deviator, g the acceleration due to gravity, u the
internal energy, q the heat flux and D = sym (grad v) the stretching or strain
rate tensor. These balance equations must be complemented by the material
equations which are given as

D = A(T ′)f(σ) tD , u̇ = c(T ) Ṫ , q = −κ(T ) gradT , (11.2)
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where c and κ are functions of the temperature T , known respectively, as the
specific heat and thermal conductivity 2. A is the rate factor, a function of the
homologous temperature T ′ = T − TM , defined here as the difference between
the true and the melting temperature TM ; f is a creep response function that
depends on the effective shear stress σ =

( 1
2 tr (tD)2

)1/2
=
(
IItD

)1/2, the root of
the second invariant of the stress deviator. Parameterizations for f and A are

f(σ) = σn−1 +
1
η
, n ≥ 1 (usually n = 3) ,

A(T ′) = A0 exp
(
− Q

R(TM + T ′)

)
,

(11.4)

where η is a dimensionless viscosity, η = ∞ characterizing an infinite viscosity
law; Q is the activation energy, R the universal gas constant and

TM = T0 − β
p

ρg
(11.5)

the melting temperature; β is the Clausius–Clapeyron constant, T0 the melting
temperature at normal pressure and p the pressure deviating from it. Upon
substituting the material equations in the energy balance equation, we obtain
the evolution equation for the temperature in terms of convection, conduction
and dissipation,

ρcṪ = ρc

⎧⎪⎨⎪⎩∂T∂t + (gradT ) · v︸ ︷︷ ︸
convection

⎫⎪⎬⎪⎭ = div (κ gradT )︸ ︷︷ ︸
conduction

+2A(T ′)f(σ)σ2︸ ︷︷ ︸
dissipation

. (11.6)

This equation together with the first two balance equations (11.1) and the con-
stitutive relation for the stress deviator (11.2) constitute the field equations for
cold ice.

The above field equations must be complemented by boundary conditions
at the free surface, the ice–rock interface and, at the floating portion, at the
ice–water interface. These comprise kinematic as well as dynamic statements,
relating to the geometry and the fluxes, respectively.

At the free surface z = h(x, y, t) the following conditions must hold:

1
Ns

∂h

∂t
+ v · ns = a⊥

s (x, t) , tns = 0 , T = Ts(x, t) , (11.7)

2 An inverse relationship to (11.2)1 is when the stress deviator is expressed in terms
of the stretching tensor tD = B̃(T ′)g̃(d/A(T ′))D where d :=

( 1
2 trD2)1/2, B̃(T ′) =

1/A(T ′) and g̃(ξ) = 1/f([F(ξ)]−1) and F−1 is the inverse of F(ξ) = f(ξ)ξ. One usually
absorbs the A(T ′)-dependence in the argument of g̃ into B̃(T ′) with a new B and
then writes

tD = B(T ′)g(d)D , d =
( 1

2 trD2)1/2
, (11.3)

but this cannot be an exact inversion of (11.2). This representation is used for ice
shelves.
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where the dot is the inner product of two vectors and

ns =
1
Ns

(
−∂h
∂x
,−∂h
∂y
,+1

)
Ns :=

(
1 +

(
∂h

∂x

)2

+
(
∂h

∂y

)2
) 1

2

(11.8)

is the exterior unit normal vector, expressed here in Cartesian coordinates, x, y
horizontal, z vertical. The accumulation–ablation rate function a⊥

s (x, t) is one of
the two climate input functions and describes how much volume of ice is added
per unit surface area by precipitation or melting; the free surface is therefore in
general non-material. The second of equations (11.7) prescribes the boundary
traction to be zero, so the atmospheric pressure and wind stress components
tangential to the surface are ignored. Finally, the third of equations (11.7) is
a prescription of the atmospheric surface temperature as a function of position
and time. The functions a⊥

s (x, t) and Ts(x, t) describe the climate driving input
from above into the ice mass. The other boundary for ice sheets or rumpled
ice shelf regions is the bed-rock, described by z = b(x, y, t). Here, the kinematic
boundary condition takes the form

1
Nb

∂b

∂t
+ v · nb = a⊥

b H(T − TM ) , (11.9)

nb =
1
Nb

(
∂b

∂x
,
∂b

∂y
,−1

)
, Nb :=

(
1 +

(
∂b

∂x

)2

+
(
∂b

∂y

)2
) 1

2

,

in which nb is the exterior unit normal vector to the basal surface, a⊥
b = a⊥

b

M +
a⊥

b

A is the volume of ice per unit surface area and unit time added to the surface
by melting (a⊥

b

M ) or by accretion (a⊥
b

A). H(·) is the Heavyside step function

H(T − TM ) =
{

0 , if T < TM ,
1 , if T ≥ TM ,

(11.10)

where T is the basal temperature; so melting is activated only when the basal
temperature reaches the melting point. Furthermore,

∂b

∂t
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 , if the base is rigid, as is the case for ice shelves

in rumpled regions ,

− 1
τv

[
b−

(
bst −

ρ

ρa
H

)]
, if the base moves vertically .

(11.11)

The parameterization (11.11) assumes a relaxation type response of the asthenos-
phere–lithosphere compound with a time lag τv ≈ 3000 [yr] for the isostatic bed
adjustment; bst is the steady state bed position for zero ice thickness H and
ρa ≈ 3000 [kg m−3] is the mass density of the asthenosphere. The first dynamic



11 Asymptotic Theories of Ice Sheets and Ice Shelves 235

condition comprises the no-slip/sliding law

vsl = −
[
Ct(‖ t‖ ‖2, p⊥)H(T − TM )

]
t‖ ,

vsl := (1− nb ⊗ nb)(v − vr) , vr =
(

0, 0,
∂b

∂t

)
, (11.12)

t‖ := tnb + p⊥nb , p⊥ := −nb · tnb ,

which activates sliding when the melting temperature is reached. Thus, vsl is the
tangential component3 of the difference of the velocity of the ice and the rock
at the interface. Ct(·) is the sliding coefficient; it depends on the shear traction
t‖ and the surface normal pressure p⊥, and vr is the velocity field of the rock at
the ice rock interface. The second dynamic condition,

κ(gradT · nb)− κr(gradTr · nb) =
[
δ − a⊥

b

M
(
ρL− ρ

ρw
p⊥

)]
H(T − TM ) ,

T = Tr (11.13)

is a Stefan-type energy jump condition that determines the melting rate a⊥
b

M

when sliding occurs. L is the latent heat of melting, ρw the density of water
and κr the heat conductivity of the rock. Moreover, the temperature Tr and its
surface gradient gradTr ·nb follow from solving a heat conduction problem in the
rock-bed and assigning the geothermal heat at a lower boundary. The quantity

δ = Ct(·)(t‖ · t‖) (11.14)

is the dissipation rate due to sliding friction. The sliding coefficient is commonly
parameterized as

Ct(‖ t‖ ‖2, p⊥) = c ‖ t‖ ‖ p · p−q
⊥ , p = 3 or 4 , q = 2 , (11.15)

where c is a constant. Physically, (11.13) states that the heat flow from the
interface into the ice minus that towards that interface from below is balanced by
the heat due to sliding dissipation minus that used up by melting. The boundary
condition of energy (11.13), also applies in floating regions of ice shelves. Tr is
then the ocean temperature at the ice–ocean interface, κr(gradTr ·nb) the heat
flow from the ocean into the ice and C(t‖ · t‖) the dissipation at the ice–ocean
interface due to the ocean boundary layer flow at the interface. The above field
equations and boundary conditions also apply for an ice shelf, its free and basal
surfaces where ice rumples occur. However, in regions where the ice is floating the
boundary conditions at the ice–ocean interface require the kinematic condition
(11.9) to be satisfied, where a⊥

b = a⊥
b

M +a⊥
b

A is composed of a contribution due
to melting, a⊥

b

M , determinable by (11.13), and a second contribution, a⊥
b

A, due
to accretion by frazil ice from the ocean; the latter is prescribed by an ocean
3 The operator (1 − n ⊗ n) is a projection on the tangential plane of the surface with

unit normal vector n.
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model and considered here to be given. The traction boundary condition,

tnb = −pbns + t‖ ,

pb =

{
psw ,

pgr ,
t‖ =

{
0 , floating region ,

τ gr , rumpled region ,

(11.16)

differentiates between floating and rumpled regions. In the former case, the trac-
tion exerted on the ice–water interface is given by the hydrostatic sea water
pressure4

psw = ρswg[zs(t)− b(x, y, t)] , (11.17)

where z = zs(t) is the sea water level (given function of time) and the shear
traction is ignored (note, however, that the dissipation due to viscous shearing
in the ocean boundary layer is accounted for in (11.13)). Over rumpled regions
the basal pressure is parameterized by

pb = psw + prump = psw + [ρg(h− b)− ρswg(zs − b)] = ρgH . (11.18)

The pressure due to the ice rumples, prump, equals the weight of the ice column
minus the buoyancy of the submerged portion, but the total pressure is larger by
that of the sea water; so together with the floating condition, (11.17) and (11.18)
are the same! At a rumpled portion τ gr is not prescribed but the outcome of the
model.

The thermal coupling of ice sheets and ice shelves in regions where the ice is
grounded is accomplished through a rock layer of approximately 5 km thickness
adjacent to the grounded portion of the ice. Here the boundary value problem
of heat

ρrcr

(
∂Tr

∂t
+ vz

∂Tr

∂z

)
= ∇2Tr , vz =

∂b

∂t
,

Tr = T , at z = b(x, y, t) ,

−κr
∂Tr

∂z
= Qgeoth , at z = br(= constant) ,

(11.19)

is solved, where br is the bottom boundary of the bedrock. Notice that the
horizontal motion is ignored in (11.19). This implies that for constant Qgeoth the
steady heat flow into the ice at z = b(x, y, t) is simply Qgeoth.

In summary, cold ice sheets and ice shelves are described by the field equa-
tions (11.1)–(11.6) and (11.12). Ice sheets are subject to the boundary condi-
tions (11.7)–(11.15); Ts, a

⊥
s and the geothermal heat Qgeoth are input quantities.

4 If the ice shelf and the sea water are locally in equilibrium then the floating condition
ρswg(zs − b) = ρgH applies which, when substituted in (11.17) implies psw = ρgH;
the sea water pressure at a point at the base equals the pressure due to the weight
of the ice column above it. Ignoring vertical accelerations this result will be shown
to apply in the ice shelf model deduced below.
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Table 11.1. Physical constants and values of parameters pertinent to cold ice sheets
and ice shelves

Quantities Values

Density of ice, ρ 910 kg m−3

Heat conductivity of ice, κ 9.828 e−0.0057 T [K] W m−1K−1

Specific heat of ice, c (146.3 + 7.253 T [K]) J kg−1K−1

Latent heat of ice, L 335 kJ kg−1

Clausius–Clapeyron gradient, β 8.7 · 10−4 Km−1

Density of sea water, ρsw 1000 kg m−3

Density of lithosphere, ρr 3000 kg m−3

Density × specific heat of the

lithosphere, ρrcr 2000 kJm−3K−1

Heat conductivity of the lithosphere, κr 3W m−1K−1

Thickness of the upper lithosphere layer

considered in this model, Hr 5 km

Time lag for bed adjustment, τV 3000 a

Density of the asthenosphere, ρa 3300 kg m−3

Gravity acceleration, g 9.81m s−2

Creep response function, f(σ) σ(n−1), n = 3

Viscosity, η (dimensionless) 10−3

Rate factor, A(T ) A0 e−Q/(RT )

with A0 = 3.985 · 10−13 s−1 Pa−3

Activation energy, Q 60 kJmol−1 for (T ′ < −100C)

139 kJmol−1 for (T ′ ≥ −100C)

Universal gas constant, R 8.314 Jmol−1K−1

Melting temperature at

normal pressure, pN = 105 Pa T0 = 273.10K

Melting temperature, at pressure p TM= T0 − βp/(ρg)

By contrast, ice shelves must obey the boundary conditions (11.7)–(11.10) and
(11.19), but (11.11) only at rumpled regions (since at floating portions ∂b/∂t is
left to be determined). Furthermore, (11.12)–(11.18) must hold. Input quantities
for shelves are a⊥

s and Ts at the free surface, a⊥
b

A, κr(gradTr ·nb), C(t‖ · t‖), i.e.
the accretion rate, the normal heat flow and the dissipation rate from the ocean
water and/or the base of the rumpled region into the ice. These quantities must
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either be parameterized or evaluated by coupling the ice sheet with an atmo-
spheric and/or ocean model. We close by collecting in Table 11.1 the physical
constants that are pertinent to this model.

PART A: ICE SHEETS

11.3 Scale Analysis and Perturbation Scheme

The scalings for ice sheets and ice shelves are different from one another; we
therefore separate from now on the two cases.

It will be assumed that the geometry of the ice sheet is such that its extent
in the horizontal directions is much larger than in the vertical direction, i.e.,
the ice sheet is presumed shallow. If [L] and [H] are such typical length scales
then ε := [H]/[L], called aspect ratio, is small, typically 10−2 to 10−3. The non-
dimensionalization of the physical quantities is now implemented by choosing
their typical values as suggested by the physical problem at hand. We will write
ψ = [ψ]ψ̃; the quantities in square brackets represent the respective typical
values, and those with the tilde are the corresponding dimensionless quantities.
All the typical values are chosen such that for the processes under consideration
the dimensionless quantities are likely to be of order unity. This is the reason
why in the list below certain scales are premultiplied by ε or even ε2, where

ε = [H]/[L] = [VH ]/[VL] . (11.20)

This choice for ε and the assumption to select the velocity ratio equal to the
aspect ratio expresses the fact that the motion is predominantly horizontal5. We
shall choose the following non-dimensionalizations:

(x, y) = [L] (x̃, ỹ) , (h, b) = [H] (h̃, b̃) ,
z = [H] z̃ , (a⊥

b , a
⊥
s ) = [VH ] (ã⊥

b , ã
⊥
s ) ,

(vx, vy) = [VL] (ṽx, ṽy) , A(T ′) = [A] Ã(θ̃′) ,
vz = [VH ] ṽz , f(σ) = [f ]f̃(σ̃) ,
t = ([L]/[VL]) t̃ , Q⊥

geo = [Q⊥
geo] Q̃

⊥
geo ,

T = T0 + [ΔT ] θ̃ , c(T ) = [c] c̃(θ̃) ,
T ′ = [ΔT ] θ̃ , cr = [cr] c̃r ,
p = ρg[H] p̃ , κ(T ) = [κ] κ̃(θ̃) ,

(tDxz, t
D
yz, σ) = ερg[H] (t̃Dxz, t̃

D
yz, σ̃) , κr = [κr] κ̃r ,

(tDxx, t
D
yy) = ε2ρg[H] (t̃Dxx, t̃

D
yy) , Ct(t⊥, . . .) = [Ct] C̃t(t̃⊥, . . .) ,

(tDxy, t
D
zz) = ε2ρg[H] (t̃Dxy, t̃

D
zz) , W = [W]W̃ .

(11.21)

Whereas most selections of the scales are “natural”, those for the deviatoric
stress components are special insofar as they involve prefactors ε and ε2 which
5 The readers may easily show that with the choice (11.20) the continuity equation is

scale invariant.
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implicitly say that the horizontal shear stresses tDxz and tDyz are of order ε smaller
than the overburden pressure and that the longitudinal stress deviator compo-
nents tDxx, t

D
yy, t

D
zz and tDxy are of order ε2 smaller than the overburden pressure.

These estimates are not obvious and have been so selected because any other
choices do not allow a proper balance of the momentum equations. With the
above scalings the following independent dimensionless products can be formed:

ε =
[H]
[L]

=
[VH ]
[VL]

∼ 10−3 , F =
[VL]2

g[L]
∼ 10−18 ,

D =
[κ]

ρ[c][H][VH ]
∼ 0.34 , Ft =

ρg[H]2[Ct]
[L][VL]

∼ 6× 10−3 ,

α =
g[H]

[c][ΔT ]
∼ 0.25 , B =

β[H]
[ΔT ]

∼ 0.04 ,

αt =
g[H]
L[W]

∼ 2.98 , Dr =
[κr]

ρr[cr][H][VH ]
∼ 0.473 ,

K =
ρg[H]3[A][f ]

[L][VL]
∼ 0.38 , Nr =

[H][Qgeoth]
[κr][ΔT ]

∼ 0.7 ,

Tr =
τV [VH ]

[H]
∼ 0.3 , [W] ∼ 0.01 ,

[κr]
[κ]

∼ 1.5 ,
ρr

ρ
∼ 3.29 ,

ρa

ρ
∼ 3.62 ,

(11.22)

where F is the Froude number, D the heat diffusion number, α the ratio of
potential energy to internal energy for cold ice,K the fluidity number, αt the ratio
of potential to thermal energy, Ft the sliding number, B the Clausius–Clapeyron
number, Dr the heat diffusion number of the lithosphere, Tr the time-lag number
for isostatic bed adjustment, and finally Nr the geothermal heat number in the
lithosphere. The numerical values assigned to these dimensionless products are
obtained from the values of the physical constants in Table 11.1 and the typical
scales listed in Table 11.2. The reader is urged, by choosing his/her own values
for [ ]-variables, to acquire a feeling for the above orders of magnitude.

11.3.1 Scaled Equations

If the field equations and boundary conditions are non-dimensionalized with the
scalings (11.21) then they take the following forms (tildes are everywhere omit-
ted)

(i) Field equations in the ice

∂vx

∂x
+
∂vy

∂y
+
∂vz

∂z
= 0 , (11.23)
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Table 11.2. Typical and constant values of the ice-sheet scales which are required, in
addition to the values given in Table 11.1, for estimating the dimensionless parameters
as shown in (11.22)

Quantities Values

Vertical dimension, [H] 1 km = 103 m

Horizontal dimension, [L] 1000 km = 106 m

Vertical velocity, [VH ] 0.1ma−1

Horizontal velocity, [VL] 100ma−1

Water content, [W] 1% = 0.01

Temperature difference, [ΔT ] 20K

Homologous temperature, T ′ −10K to − 30K

Geothermal heat, [Qgeo] 0.042W m−2

Density of the lithosphere, ρr 3000 kg m−3

Heat conductivity, [κ(T = 273K)] 9.828 e−0.0057 T [K] W/(mK) ≈ 2W/(mK)

Specific heat, [c(T = 273K)] (146.3 + 7.253 T [K]) J/(kgK) ≈ 2000 J/(kgK)

Creep function, [f(σ) = (ερg[H])n−1] 912 × 104 kg2 m−2 s−4; for n = 3

Rate factor, [A(T ′)] 1.6 × 10−24 Pa−3s−1; for T ′ = −50 C

Sliding function for temp. ice, [Ct]

= (Csl ‖ t‖ ‖p)/(ρg(ρgH)q ‖ t‖ ‖) 2.12 × 10−12 m2 s/Kg; for p = 3, q = 2

and ‖ t‖ ‖≈ ερg[H] ≈ 91 × 102 kg m−1 s−2

F
ε

dvx

dt
= −∂p

∂x
+ ε2

∂tDxx

∂x
+ ε2

∂tDxy

∂y
+
∂tDxz

∂z
, (11.24)

F
ε

dvy

dt
= ε2

∂tDxy

∂x
− ∂p
∂y

+ ε2
∂tDyy

∂y
+
∂tDyz

∂z
, (11.25)

Fε
dvz

dt
= ε2

∂tDxz

∂x
+ ε2

∂tDyz

∂y
− ∂p
∂z

+ ε2
∂tDzz

∂z
− 1 . (11.26)

∂θ

∂t
+ vx

∂θ

∂x
+ vy

∂θ

∂y
+ vz

∂θ

∂z
=

D
c(θ)

[
ε2
∂

∂x

(
κ
∂θ

∂x

)
+ ε2

∂

∂y

(
κ
∂θ

∂y

)
+
∂

∂z

(
κ
∂θ

∂z

)]
+ 2

α

c(θ)
KA(θ′)f(σ)σ2 . (11.27)
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∂vx

∂z
+ ε2

∂vz

∂x
= 2KtDxzA(θ′)f(σ) , (11.28)

∂vy

∂z
+ ε2

∂vz

∂y
= 2KtDyzA(θ′)f(σ) . (11.29)

∂vx

∂x
= KtDxxA(θ′)f(σ) , (11.30)

∂vy

∂y
= KtDyyA(θ′)f(σ) , (11.31)

∂vz

∂z
= KtDzzA(θ′)f(σ) , (11.32)

∂vx

∂y
+
∂vy

∂x
= 2KtDxyA(θ′)f(σ) , (11.33)

σ =
√

(tDzx)2 + (tDyz)2 + 1
2ε

2
[
(tDxx)2 + (tDyy)2 + (tDzz)2 + 2(tDxy)2

]
. (11.34)

These are, in order, the continuity equation, three components of the momen-
tum equations, the energy equation, the six components of the stretching-stress
relations (whereby those for tDxz and tDxz are separated from the others) and the
expression for the effective stress σ. These equations involve ε and some other
dimensionless products defined in (11.22) will further be simplified.

(ii) Boundary conditions at the ice surface. These apply at z = b(x, y, t)
and are given by (11.7) and (11.8), and their dimensionless counterparts are

∂h

∂t
+ vx

∂h

∂x
+ vy

∂h

∂y
− vz =

√
1 + ε2

(
∂h

∂x

)2

+ ε2
(
∂h

∂y

)2

a⊥
s , (11.35)

−
(
−p+ ε2tDxx

) ∂h
∂x
− ε2tDxy

∂h

∂y
+ tDxz = 0 , (11.36)

−ε2tDxy

∂h

∂x
−
(
−p+ ε2tDyy

) ∂h
∂y

+ tDyz = 0 , (11.37)

−ε2tDxz

∂h

∂x
− ε2tDyz

∂h

∂y
− p+ ε2tDzz = 0 , (11.38)

θ(x, y, z, t) = θs(x, y, z, t) . (11.39)

These comprise of the kinematic surface equation, the three components of the
zero traction condition and the prescribed surface temperature.

(iii) Transition conditions at the basal surface. These conditions apply
at z = b(x, y, t) and involve (11.9)–(11.13). Their dimensionless counterparts
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read

∂b

∂t
+
∂b

∂x
vi

x +
∂b

∂y
vi

y − vi
z = Nb a

⊥
b H(θ − θM ) ,

Nb =

√
1 + ε2

(
∂b

∂x

)2

+ ε2
(
∂b

∂y

)2

,

(11.40)

θM = −Bp , (11.41)

∂b

∂t
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 , if the base is rigid ,

− 1
Tr

(
b− bst +

ρ

ρa
H

)
, if the base moves vertically by

isostatic adjustment .

(11.42)

The worked-out forms of (11.12) are lengths but need be derived in a system-
atic perturbation approach. They are relegated to the Appendix and are listed
there as (11.184) to (11.189). Even more cumbersome is the systematic deriva-
tion of the energy jump condition (11.13); for this reason, its dimensionless form
is equally deferred to the Appendix where it is listed as (11.191).

Equations (11.40) comprise the kinematic boundary condition describing the
temporal evolution of the basal surface, (11.41) is the dimensionless Clausius–
Clapeyron equation, (11.42) determines the basal deformation of the bed due to
the lithosphere–asthrenosphere reaction; the sliding law and energy jump con-
dition being stated in the Appendix. All these equations are exact and hold for
arbitrary values of the shallowness parameter ε.

(iv) Lithosphere relations. These follow by non-dimensionalizing (11.19).
This yields the boundary value problem

∂θr
∂t

+
∂b

∂z

∂θr
∂z

=
Dr

cr

[
ε2
∂

∂x

(
κr
∂θr
∂x

)
+ ε2

∂

∂y

(
κr
∂θr
∂y

)
+
∂

∂y

(
κr
∂θr
∂z

)]
, (11.43)

θr = θ , at z = b(x, y, t) , (11.44)

−κr
∂θr
∂z

= NrQ
⊥
geoth , at z = br . (11.45)

defining a parabolic initial boundary value problem with mixed boundary con-
ditions.

This completes the formulation of the boundary value problem for ice sheets
in dimensionless form. Scrutiny of all these equations shows that the aspect ra-
tio ε arises only in even powers ε2 and ε4 except on the left-hand sides of the
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momentum balances (11.24)–(11.26) in combination with the Froude number.
These terms will now be omitted, so that the momentum equations reduce to
force balances. With F = 10−18 and ε = 10−3 this omission is well justified as
long as powers of ε no larger than ε4 arise6. This is the case because no equations
involve even larger powers of ε. We conclude with the

Formal statement 1: Stokes flow is a justified approximation of ice sheet flows
as long as formal perturbation expansions or equivalent iterative schemes are not
pushed farther than to terms of O(ε4).

11.3.2 Perturbation Scheme

Given the above form of the non-dimensionalized equations it is, of course tempt-
ing to seek solutions to all field variables in the form of a regular perturbation
expansion, e.g.

F =
∞∑

ν=0

ενF(ν) = ε0F(0) + ε1F(1) + ε2F(2) + ε3F(3) + ... , (11.46)

where F(ν) are the ν-th approximation to F in the formal asymptotic series
(11.46). The zeroth order equations, i.e., the restriction of all variables F in the
expansion (11.46) to the lowest order F(0) is well known, has been derived or
postulated several times in the literature and is known as the Shallow Ice Ap-
proximation (SIA). Full expansions to the second order are for the first time given
in [1] and [2]. In these references (and in some of the literature quoted there),
it is shown that this expansion would formally break down, i.e., the perturba-
tion expansion would not be regular but singular if the creep response function
f(σ), see (11.4), would possess the property f(0) = 0, which is equivalent for
the material to having infinite viscosity (η = ∞). This was the reason for us to
postulate a flow law with finite viscosity (η =∞)7.

We will not show here the complete expansion to second order, because it is
more adequate to use a perturbative-iterative procedure. We limit ourselves to
illustrating the procedure to the integration of the momentum equations (11.24)–
(11.26) subject to the boundary conditions (11.36)–(11.38). Substituting for the
stress components expansions of the form (11.46) and collecting like powers of ε
in the emerging equations yields the following chain of boundary value problems:

6 More generally, if expansions are restricted to second order terms in ε, the left-hand
sides of (11.24)–(11.26) can be ignored if F < ε3. In this case Stokes flow is justified
if approximations are restricted to O(ε2)-terms.

7 This conclusion can easily be inferred from (11.30) to (11.33). Indeed, if the stretch-
ings ∂vx/∂x etc. are known (left-hand sides of the equations) and the deviatoric
stress components tD

xx, etc. (right-hand sides) computed, then division by f(σ) must
be performed, which is singular whenever f(0) = 0
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(i) The zeroth order equations are

− ∂p(0)
∂x

+
∂tDxz(0)

∂z
= 0 , −∂p(0)

∂y
+
∂tDyz(0)

∂z
= 0 , (11.47)

− ∂p(0)
∂z

− 1 = 0 , (σ(0))2 = (tDxz(0))
2 + (tDyz(0)

)2 . (11.48)

subject to the boundary conditions

p(0)(·, h(0)) = tDxz(0)(·, h(0)) = tDyz(0)
(·, h(0)) = 0 , at z = h(0)(x, y, t) .

(11.49)
The third of these equations expresses hydrostatic equilibrium – sometimes
called, since ice is involved – cryostatic equilibrium. Once p(0) is determined
subject to the top boundary conditions, the shear stresses tDxz(0) and tDyz(0)

may
be determined by integration subject to the remaining boundary conditions.
Subsequently, the effective stress σ(0) may be computed. The solutions are

p(0) = h(0) − z , (11.50)

tDxz(0) = −∂h(0)

∂x
(h(0) − z) ,

tDyz(0)
= −∂h(0)

∂y
(h(0) − z) ,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ τ = −(h(0) − z)∇Hh(0) , (11.51)

σ(0) = (h(0) − z)

√(
∂h(0)

∂x

)2

+
(
∂h(0)

∂y

)2

. (11.52)

It should be noticed that the pressure p(0) and the shear stresses, tDxz(0), t
D
yz(0)

could be determined without even using any information about the material be-
haviour of the ice. Furthermore, the zeroth order effective stress is determined
by those two shear stress components alone.

(ii) The first order equations take the form

− ∂p(1)
∂x

+
∂tDxz(1)

∂z
= 0 , − ∂p(1)

∂y
+
∂tDyz(1)

∂z
= 0 ,

∂p(1)

∂z
= 0 , (11.53)

which must obey the boundary conditions

p(1) = h(1) , tDxz(1) = −h(1)
∂h(0)

∂x
, tDyz(1)

= −h(1)
∂h(0)

∂y
, (11.54)

at z = h(0)(x, y, t). These equations are also easily integrated; the solutions are

p(1) = h(1)(x, y, t) , (11.55)

tDxz(1) = −∂h(0)

∂x
h(1) −

∂h(1)

∂x
(h(0) − z) , (11.56)

tDyz(1)
= −∂h(0)

∂y
h(1) −

∂h(1)

∂y
(h(0) − z) . (11.57)
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These solutions show, that the first order corrections to p, tDxz, t
D
yz are likewise in-

dependent of the material behaviour and that still hydrostatic conditions prevail.
Indeed, by adding (11.55)–(11.57) to (11.50)–(11.52) we obtain

p = h(x, y, z, t)− z +O(ε2) , (11.58)
τ = (h(x, y, z, t)− z)∇Hh(0) +O(ε2) , (11.59)

where h = h(0) + εh(0). The material dependence of p and τ must necessarily
manifest itself in the O(ε2) terms. This is an interesting property of the SIA.

(iii) The second order equations can be written as

∂p(2)

∂x
−
∂tDxz(2)

∂z
=
∂tDxx(0)

∂x
+
∂tDxy(0)

∂y
, (11.60)

∂p(2)

∂y
−
∂tDyz(2)

∂z
=
∂tDxy(0)

∂x
+
∂tDyy(0)

∂y
, (11.61)

∂p(2)

∂z
=
∂tDxz(0)

∂x
+
∂tDyz(0)

∂y
+
∂tDzz(0)

∂z
, (11.62)

and are subject to the boundary conditions

p(2) = (h(2) − tDzz(0)) , (11.63)

tDxz(2) = −∂h(0)

∂x
h(2) −

∂h(1)

∂x
h(1) − (tDzz(0) − tDxx(0))|h(0)

∂h(0)

∂x
+ tDxy(0)

∂h(0)

∂y
,

(11.64)

tDyz(2)
= −∂h(0)

∂y
h(2) −

∂h(1)

∂y
h(1) − (tDzz(0) − tDyy(0)

)|h(0)

∂h(0)

∂y
+ tDxy(0)

∂h(0)

∂x
,

(11.65)

at z = h(0)(x, y, z). These equations contain new ingredients. First, the force
balances (11.60)–(11.62) have now a nontrivial right hand side, comprising those
zeroth order stress deviator components which so far were not computed but are
computable when the zeroth order velocity field is known, see (11.30)–(11.33).
An anologous statement holds true for the boundary conditions (11.63)–(11.65).
We now momentarily regard these stress deviator terms as known. Then the
above equations can be integrated but computations are no longer easy. The
reader may check that the expressions

p(2) = 1
2

(
h(0) − z

)2
ΔHh(0) +

(
h(0) − z

)
‖∇Hh(0)‖2 + h(2) + tDzz(0) , (11.66)

tDxz(2) = − ∂

∂x

(
1
6

(
h(0) − z

)3
ΔHh(0) + 1

2

(
h(0) − z

)2 ‖∇Hh(0)‖2
)

−∂h(0)

∂x
h(2) −

∂h(1)

∂x
h(1) −

∂h(2)

∂x

(
h(0) − z

)
− ∂

∂x

h(0)∫
z

(
tDzz(0) − tDxx(0)

)
dz′ +

∂

∂x

h(0)∫
z

tDxy(0)
dz′ , (11.67)
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tDyz(2)
= − ∂

∂y

(
1
6

(
h(0) − z

)3
ΔHh(0) + 1

2

(
h(0) − z

)2 ‖∇Hh(0)‖2
)

−∂h(0)

∂y
h(2) −

∂h(1)

∂y
h(1) −

∂h(2)

∂y

(
h(0) − z

)
− ∂

∂y

h(0)∫
z

(
tDzz(0) − tDxx(0)

)
dz′ +

∂

∂y

h(0)∫
z

tDxy(0)
dz′ , (11.68)

satisfy both, the differential equations (11.60)–(11.62) and boundary conditions
(11.63)–(11.65). ∇H and ΔH are the horizontal gradient and Laplace opetators.

We note that the above equations are only computationally useful in the form
they are given, if h(0), h(1), t

D
xx(0), t

D
yy(0)

, tDzz(0) and tDxy(0)
are known. This is not

so without a full expansion, but we will see below that they form an important
cornerstone in the process of generalizing the SIA.

11.3.3 Second Order Stress Formulas

If the above stress formulas for p, tDxz, t
D
yz are combined according to (11.46),

their second order accurate expressions are obtained as follows:

p =
(
h(0) + εh(1) + ε2h(2) + ..− z

)
+ ε2

(
1
2

(
h(0) − z

)2
ΔHh(0) +

(
h(0) − z

)
‖∇Hh(0)‖2

)
+ ε2tDzz , (11.69)

tDxz � tDxz(0) + εtDxz(1) + ε2tDxz(2) + ... = − ∂

∂x

(
h(0) + εh(1) + ε2h(2) + ..

)
×(

h(0) − z
)
− ∂

∂x

(
h(0) + εh(1) + ..

)(
εh(1) + ...

)
− ε2 ∂h(0)

∂x
h(2)

−ε2 ∂
∂x

(
1
6 (h(0) − z)3ΔHh(0) + 1

2 (h(0) − z)2‖∇Hh(0)‖2
)

−ε2
(
∂

∂x

h(0)∫
z

(
tDzz(0) − tDxx(0)

)
dz′ − ∂

∂y

h(0)∫
z

tDxy(0)
dz′
)
, (11.70)

and where tDyz is obtained from tDxz by replacing x- and y-derivatives. If the free
surface level is identified with h = h(0) + εh(1) + ε2h(2) + ..., then the above
formulas may be replaced by the more suggestive formulas

p = (h− z) + ε2
(

1
2 (h− z)2ΔHh+ (h− z) ‖∇Hh(0)‖2

)
+ε2tDzz +O(ε3) , (11.71)

tDxz = −∂h
∂x

(h− z)− ε2 ∂
∂x

(
1
6 (h− z)3ΔHh+ 1

2 (h− z)2‖∇Hh‖2
)

−ε2
(
∂

∂x

h∫
z

(
tDzz − tDxx

)
dz′ − ∂

∂y

h∫
z

tDxydz′
)

+O(ε3) , (11.72)
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and analogously,

tDyz = −∂h
∂y

(h− z)− ε2 ∂
∂y

(
1
6 (h− z)3ΔHh+ 1

2 (h− z)2‖∇Hh‖2
)

−ε2
(
∂

∂y

h∫
z

(
tDzz − tDyy

)
dz′ − ∂

∂x

h∫
z

tDxydz′
)

+O(ε3) . (11.73)

Here alterations relative to (11.69) and (11.70) have errors of O(ε3) or smaller,
which explains the order symbols arising in (11.71)–(11.73). We emphasize that
variables above are without indices (·)(ν), i.e., (11.71)–(11.73) are written in
terms of the unperturbed fields; this is also correct with an error of O(ε3) or
smaller.

For later use we will write these formulas as

p(., z) = (h(.)− z) + pcorr(., z) , (11.74)

tDxz(., z) =
∂h(.)
∂x

(z − h(.)) + tDxz

corr
(., z) , (11.75)

tDyz(., z) =
∂h(.)
∂y

(z − h(.)) + tDyz

corr
(., z) , (11.76)

pcorr(., z) = ε2
(

1
2 (h− z)2ΔHh+ (h− z) ‖∇Hh(0)‖2

)
+ ε2tDzz , (11.77)

tDxz

corr
(., z) = −ε2 ∂

∂x

(
1
6 (h− z)3ΔHh+ 1

2 (h− z)2‖∇Hh‖2
)

−ε2
(
∂

∂x

h∫
z

(
tDzz − tDxx

)
dz′ − ∂

∂y

h∫
z

tDxydz′
)
, (11.78)

tDyz

corr
(., z) = −ε2 ∂

∂y

(
1
6 (h− z)3ΔHh+ 1

2 (h− z)2‖∇Hh‖2
)

−ε2
(
∂

∂y

h∫
z

(
tDzz − tDyy

)
dz′ − ∂

∂x

h∫
z

tDxydz′
)
. (11.79)

The above representations of the pressure and the shear stresses on horizontal
planes have for the first time appeared in [2] and can be physically interpreted.

The first terms in (11.71)–(11.73) are the well known pressure and shear
stress formulas of the SIA, the bracketed terms in the middle describe the influ-
ence of the variation of the surface topography and have a quadratic and linear
z-dependence, respectively, are largest at the base and smallest at the free sur-
face (namely zero); so topography affects the pressure by the mean curvature
ΔHh and the norm of the slope ‖∇Hh‖ of the free surface. These contributions to
the dominant stresses can be very accurately computed, since satellite-altimetry
measurements allow a very high resolution of the surface topography. Alterna-
tively, in time-dependent evolutions of ice sheets under climate variations accu-
rate determination of the surface geometry is required. The terms on the second
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line describe the stress-deviator effects of which the determination we address
below. Thus, higher order corrections to the SIA are due to two sources, (1) to-
pography effects, not related to material behaviour, and (2) stress deviator effects
ignored at the SIA level. To call these effects simply “longitudinal stress deviator
effects” is at best misleading and at worst simply wrong.

The above correction terms are important additions beyond the SIA where
the latter proves to yield results that are inaccurate; this is the case close to
the ice divide and near the surface as explained already in the Introduction. On
lengthscales of the total ice thickness surface topographies are smooth and so
the topography effects are in most cases much smaller than the stress deviator
effects, which, as we shall see, are due to the material behaviour of the ice.

11.4 Second Order Shallow Ice Approximation (SOSIA)

Basic idea of the ensuing solution scheme for the ice sheet equations is an iterative
approach using the exact equations except for the momentum balance laws which
are replaced by the second order stress formulas (11.71)–(11.73). This iteration
procedure is very much motivated by the classical SIA and will for this reason be
called SOSIA – despite small changes in the solution approach. In pursuing the
analysis, the fact that the stress-stretching relationship exhibits finite viscosity
at zero stretching or zero stress deviator is very significant.

Consider the field equations and boundary conditions of Subsect. (11.3.1)
but replace the momentum balance equations (11.24)–(11.26) and the trac-
tion boundary conditions (11.36)–(11.38) by the stress formulas (11.71)–(11.73).
This set of differential equations and boundary conditions consists of terms of
O(ε0),O(ε2) and O(ε4)8. Writing formally in each equation the terms of O(ε0)
on the left-hand side and those of O(ε2, ε4) on the right-hand side, and supposing
that the terms on the right-hand side are known, all fields can be determined.
This scheme requires initialization namely zero right-hand side, which is equiv-
alent to the SIA, but in so doing an iteration scheme is started which improves
on the SIA. For this innovative scheme, the mechanical fields are decoupled from
the thermal fields and the free and basal surfaces, i.e., we initially prescribe the
geometry and the temperature field.

Given these, the stress and velocity fields are determined. With them at hand,
a forward step is performed to find the new geometry and the new temperature
field at t = t0 + Δt. This forward stepping in time can be used, in principle
to follow ice sheet dynamics through ice ages, e.g. from inception to maximum
extent to disintegration.

11.4.1 Velocity and Stress Deviator Fields

We start with the determination of the velocity field vx, vy, vz. To this end,
(11.28) and (11.29) are integrated over z̄ from z̄ = b to z̄ = z and subject to the
8 Actually all O(ε4)-terms can be dropped as the stress formulas possess only O(ε2)-

accuracy.
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sliding boundary conditions (11.184)–(11.190) (stated in Appendix A1). This
formal integration yields

vx(., z) = 2K
∫ z

b(.)
tDxz(., z̄)A(., z̄)f(σ(., z̄))dz̄ − ε2

∫ z

b(.)

∂vz(., z̄)
∂x

dz̄ + (vb)x(.) ,

(11.80)

vy(., z) = 2K
∫ z

b(.)
tDyz(., z̄)A(., z̄)f(σ(., z̄))dz̄ − ε2

∫ z

b(.)

∂vz(., z̄)
∂y

dz̄ + (vb)y(.) ,

(11.81)

vz(., z) = −
∫ z

b(.)

(
∂vx(., z̄)
∂x

+
∂vy(., z̄)
∂y

)
dz̄ + (vb)z(.) , (11.82)

in which (vb)x, (vb)y and (vb)z are the components of the sliding velocity at the
base which can be determined from the conditions (11.184)–(11.190) and are
given by

(vb)x(.) = v+x +
FtCt

Nb

(
p
∂b

∂x
+ tDxz +

1
N2

b
p
∂b

∂x

)
+ (vsl)corrx −Δvcorrx , (11.83)

(vb)y(.) = v+y +
FtCt

Nb

(
p
∂b

∂y
+ tDyz +

1
N2

b
p
∂b

∂y

)
+ (vsl)corry −Δvcorry , (11.84)

(vb)z(.) =
(
1− 1

N2
b

)−1
{
v+z −

1
N2

b

[ (
(vb)x(.)− v+x

) ∂b
∂x

+
(
(vb)y(.)− v+y

) ∂b
∂y

+v+z

]
+ FtCt

(
tDxz

∂b

∂x
+ tDyz

∂b

∂y

)
+ (vsl)corrz

}
; (11.85)

Nb =

√
1 + ε2

(
∂b

∂x

)2

+ ε2
(
∂b

∂y

)2

,

σ2 = (tDxz)
2 + (tDyz)

2 + 1
2ε

2 [(tDxx)2 + (tDyy)2 + (tDzz)
2 + 2(tDxy)2

]︸ ︷︷ ︸
σ2
corr

,

v+x = v+y = 0; v+z =
∂b(x, y, t)

∂t
= − 1

Ta

(
b− bst +

ρ

ρa
H

)
. (11.86)

The expressions (11.83)–(11.86) define the sliding velocity at the base. The cor-
rective terms (·)corr are in full length listed in the Appendix; they are boundary
corrections beyond the SIA and are significant in those places where, on length
scales of the ice depth the variations of the basal topography are not small. In
addition, the pressure and the shear stresses on horizontal planes are given in
(11.74)–(11.79), whilst tii (no sum over i, i = x, y, z) and tDxy are evaluated from
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(11.30)–(11.33), viz.,

tDxx =
1

KAf(σ)
∂vx

∂x
, (11.87)

tDyy =
1

KAf(σ)
∂vy

∂y
, (11.88)

tDzz = −(tDxx + tDyy) , (11.89)

tDxy =
1

2KAf(σ)

(
∂vy

∂x
+
∂vx

∂y

)
. (11.90)

Notice that to O(ε), Nb = 1 and all (·)corr variables vanish. So to zeroth or first
order the velocity components may formally be evaluated as in the SIA using
the effective stress evaluated by using σ2 =

(
tDxz

2 + tDyz
2
)
, thereby ignoring the

terms of O(ε2). This, of course, requires the use of a finite-viscosity creep law
to guarantee regularity at the free surface and ice divide9. To this order the
integrand variables in the quadratures (11.80)–(11.82) also need to be known
to order zero only. This level of computation is needed to evaluate the stress
deviator components (11.87)–(11.90) in order to determine the pressure and the
stresses, tDxz and tDyz, (11.74)–(11.79), to second order. With all stress compo-
nents at hand the velocity components vx, vy, vz can be calculated in a further
iteration, now with all stress components evaluated to second order. Only in the
second quadrature formulas on the right-hand sides of (11.80) and (11.81) the
lower-order formulas must be substituted for the vertical velocity component vz.

It is of course not mandatory that this scheme is initiated with Nb = 1 and
all (·)corr variables set to zero. In fact it is likely advantageous to keep the O(ε2)
terms wherever possible. However, it is presently not known whether and how
much the convergence can be accelarated. For a suggested numerical procedure
see [3].

11.4.2 Updating the Geometry and Temperature Field

In the last Subsect. 11.4.1 it was assumed that the geometry and temperature
distribution of the ice sheet are known. At the initial time they are prescribed,
later they are known from the previous computational step.

The new geometry of the ice sheet at time t+Δt can be best determined by
integrating the continuity equation (11.23) from z = b(x, y, t) to z = h(x, y, t)
and using the kinematic boundary conditions (11.35) and (11.41). This yields

∂H

∂t
+
∂

∂x

h∫
b

vxdz +
∂

∂y

h∫
b

vydz =

√
1 + ε2

(
∂h

∂x

)2

+ ε2
(
∂h

∂y

)2

· a⊥
s

9 In the SIA, σ is computed using tDxz and tDyz only. Both are zero at the free surface
and at all depths at the ice divide, (τ is proportional to ∇Hh(= 0) and so σ(0) = 0).
Thus, with f(0) = 0 the formulas (11.87)–(11.90) could be singular.
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−

√
1 + ε2

(
∂b

∂x

)2

+ ε2
(
∂b

∂y

)2

· a⊥
b H(θ − θM ) , (11.91)

where H = h− b and a⊥
b = −(w− v) ·n. Additionally, (11.42) must hold. Both

equations are first order differential equations in time; using a forward Euler
step, the new positions of the free surface and the ice–rock interface can be de-
termined. The presence of the ε-dependent terms does not affect the integration
procedure and no precautions need to be taken because of the non-SIA terms in
the equations.

A similar updating is also needed for the temperature distributions in the
ice sheet and the rock layer. Here, (11.27) and (11.43) must be solved subject to
the boundary conditons (11.39) at the free surface, the continuity requirement
(11.44) and the energy jump condition (11.45) at the ice–rock interface and the
flux boundary condition (11.191) at the lower boundary of the lithosphere. It is
possible to determine an SIA-like first order approximation to these equations
by integrating them with the terms premultiplied by O(ε2) evaluated with the
old temperature field and iterating on corresponding corrections. As such, the
equations in their entirety are fully parabolic advection–diffusion-reaction equa-
tions for which a large body of reliable commercial software is available. Future
will show which technique will win.

11.5 Some Results

The zeroth order theory has found its application in a wealth of climatological
applications of the Greenland and Antarctic Ice Sheets and other sheet flows.
More than fifty contributions are referenced in [2]. These essentially discuss ve-
locity and temperature fields in an ice sheet of given geometry or follow these
fields plus that of the geometric evolution through entire ice age cycles. The fal-
lacies of these zeroth order models is known to most authors of such papers, but
corrections such as those presented here, have so far hardly ever been analysed
in detail. An account is again given in [2].

The complete second order model has still not been implemented in a soft-
ware program; such an endevour is presently under way. However, the second
order stress formulas (11.77)–(11.79) have been computed for the Greenland Ice
Sheet in a computation from the past to the present using the geometry and
temperature field of the zeroth order approximation. The results are discussed
in [2]. Probably the most important finding in this regard is that the topog-
raphy effects in (11.77)–(11.79) are very much smaller than the stress deviator
effects. This is, of course, only so because the spatial step in the zeroth order
surface discretization was too large to disclose any significant contributions. A
more local analysis will most likely alter this. A second inference implied by
such calculations clearly pointed at significant contributions of the second order
stress effects close to the Summit region, as one would have expected.

To illustrate the potential of this theoretical formulation we show in Fig. 11.3
the results of a computation of the change of the geometry of the Greenland ice
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sheet when it is subjected to a sudden rise of surface air temperature by 10◦C.
The left panel illustrates the surface topography as of today and computed by
integration from the past 250.000 years, the panel on the right shows the small
ice cap left after 1000 years of Greenhouse scenario.

Future analyses will have to incorporate the improved model equations in
ice sheet models simply because without them dating the ice at depth will be
fraught with large errors and thus of little use in climate reconstructions from
ice core analyses.

Fig. 11.3. Surface topography of the Greenland ice sheet as of today computed by
integration from the past 250.000 years (left) and after 1000 years subjected to a rise
of surface air temperature by 10◦C (r ight) (Courtesy of R. Greve)
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PART B: ICE SHELVES

11.6 Scale Analysis and Perturbation Scheme

As for ice sheets shallowness of the geometry and the velocity field is the out-
standing feature of ice shelves. If [L], [H] and [VL], [VH ] are typical horizontal
and vertical length and velocity scales, then, as for ice sheets, we require the as-
pect ratio ε to satisfy the conditions of the shallow-shelf approximation (SSA),
i.e.

[H]
[L]

=
[VH ]
[VL]

= ε	 1 . (11.92)

However, this property is the only one shared with the SIA. Since ice shelves
float on the water except at the few grounding areas, the shear stresses tDxz and
tDyz cannot be large, because they vanish at the free surface and are practically
zero at the ice–water interface. On the other hand, the longitudinal stresses tDxx,
tDyy and the shear stress tDxy are of principal importance, i.e., of O(ε0), because
they respond to the horizontally diverging and converging flow conditions. We
will assume that tDxz and tDyz are of O(ε) smaller. The quantities subscripted in
the list below as (·)gr are scaled to account for the ice rumples due to the ocean
bottom contact. These quantities are τgr, the shear traction at the “rumpled
bed”, and a⊥

gr, the melting take there, they are absent at floating points of the
ice shelf base; they are of O(ε0) in the SIA and should be smaller at ice rumples,
so it is tempting to postulate them to be of O(ε2) small. By taking a⊥

gr of O(ε2)
smaller than the ocean melting-freezing-accretion rates, we explicitly account for
the fact that melting rates at the grounding portions are considerably smaller
than at the floating parts. There is some indirect observational evidence for this.
The shallow shelf scales, as chosen by us, and motivated in greater detail in [1],
are given as follows:

(x, y) = [L](x̃, ỹ) , z = [H]z̃ ,

(vx, vy) = [VL](ṽx, ṽy) , vz = [VH ]ṽz = ε[VL]ṽz ,

t = [t]t̃ =
[L]
[VL]

t̃ =
[H]
[VH ]

t̃ , d =
1
[t]
d̃ ,

pgr =
ρsw − ρ
ρsw

ρg[H]p̃gr , p =
ρsw − ρ
ρsw

ρg[H]p̃ ,

tDxx =
ρsw − ρ
ρsw

ρg[H]t̃Dxx , psw =
ρsw − ρ
ρsw

ρg[H]p̃sw ,

tDyy =
ρsw − ρ
ρsw

ρg[H]t̃Dyy , τgr = ε2
ρsw − ρ
ρsw

ρg[H]τ̃gr ,

tDzz =
ρsw − ρ
ρsw

ρg[H]t̃Dzz , tDxz = ε
ρsw − ρ
ρsw

ρg[H]t̃Dxz ,

(11.93)
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(tDxy, σ) =
ρsw − ρ
ρsw

ρg[H](t̃Dxy, σ̃) , tDyz = ε
ρsw − ρ
ρsw

ρg[H]t̃Dyz ,

(zs, b) = [H](z̃s, b̃) , τoc = ε3
ρsw − ρ
ρsw

ρg[H]τ̃oc ,

a⊥
b = [VH ]ã⊥

b , A(·) = [A]Ã(·) ,

a⊥
gr = ε2[VH ]ã⊥

gr , f(σ) = [f ]f̃(σ) ,

B(·) = [B]B̃(·) , δoc = [δoc]δ̃oc ,

g(d) = [g]g̃(d) , δgr =
[δoc]
ε
δ̃gr ,

(q⊥oc, q
⊥
gr) = [q⊥](q̃⊥oc, q̃

⊥
gr) , κ(T ) = [κ] κ̃(θ̃) ,

c⊥ = [VL]c̃⊥ , κr = [κr] κ̃r ,

T = T0 + [ΔT ] θ̃ , c(T ) = [c] c̃(θ̃) ,

T ′ = [ΔT ] θ̃ , cr = [cr] c̃r ,

Q⊥
geo = [Q⊥

geo] Q̃
⊥
geo .

(11.94)

Some of these scales are the same as for sheets in (11.21), but those typical of
ice shelves are collected in Table 11.3. From the above scalings the independent
dimensionless products

ε =
[H]
[L]

∼ 10−3 , α =
g[H]

[c][ΔT ]
∼ 0.125 ,

B =
β[H]
[ΔT ]

∼ 0.02 , D =
[κ]

ρ[c][H][VH ]
∼ 0.069 ,

� =
ρsw − ρ
ρsw

∼ 0.09 , αs =
g[H]
L

∼ 0.014 ,

KS =
ρg[H]2[A][f ]

[VH ]
∼ 19249 , K′

S =
[B][VH ][t](n−1)/n

ρg[H]2
∼ 0.007 ,

Nq⊥
oc

=
[H][q⊥

oc]
[κ][ΔT ]

∼ 0.75 , Nδoc =
[H][δoc]
[κ][ΔT ]

∼ 0.01 ,

Nq⊥
gr

=
[H][q⊥

gr]
[κ][ΔT ]

∼ 0.75 , Nδgr =
[H][δgr]
[κ][ΔT ]

∼ 10.23 ,

γ =
βSN0

[S][ΔT ]
∼ 0.003 , S =

L[S]
[c][ΔT ]

∼ 0.418 ,

F =
[VL]2

g[L]
∼ 10−15 ,

(11.95)

can be formed. The assigned numerical values are so obtained by substituting
the values of the physical constants and the shelf-related scales from Tables 11.1
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Table 11.3. Typical and constant values of the ice-shelf scales which are required, in
addition to the values given in Table 11.1, for estimating the dimensionless parameters
as written in (11.95)

Quantities Typical Values

Vertical dimension, [H] 500m

Horizontal dimension, [L] 500 km = 500 × 103 m

Vertical velocity, [VH ] 1ma−1

Horizontal velocity, [VL] 500ma−1

Temperature difference, [ΔT ] 20K

Homologous temperature, T ′ −10K to − 20K

Heat flux, [q⊥oc] ≈ [q⊥gr] 0.06W m−2

Density of sea water, ρsw 1000 kg m−3

Heat conductivity, [κ(T = 273K)] 9.828 e−0.0057 T [K] W m−1K−1

≈ 2W m−1K−1

Specific heat, [c(T = 273K)] (146.3 + 7.253 T [K]) J kg−1K−1

≈ 2000 J kg−1K−1

Creep function, [f(σ)] (0.09 × ρg[H])n−1 kg2 m−2 s−4; n = 3

Rate factor, [A(T ′)] 1.6 × 10−24 Pa−3s−1; for t = −50 C

Rate factor, [B(T ′)] ([A])−1/3; for n = 3

Salinity correction coefficient, βs 1.86 [Kkg mol−1]

Salt content in marine ice, [N0] 2/1000

Brine content, [S] 0.05

Oceanic dissipation, [δoc] (v+ − v−)τoc ≈ 7.9 × 10−4 kg s−3

Grounding dissipation, [δgr] 0.79 kg s−3

and 11.3. They are typical of most ice shelves. Finally, we emphasize once more
that the essential difference between the non-dimensionalization of the ice-sheet
and ice-shelf equations is the scaling of these stresses10. For ice sheets all stresses
are small of O(ε) or O(ε2) except the (mean) pressure which is O(ε0). For shelves
all stress components are O(ε0) except the shear stresses tDxz, t

D
yz which are O(ε).

10 We again urge the reader to pause here and to ask himself/herself about the form
of the scalings and the orders of magnitude of the [·] quantities. Most critical of all
these quantities are the stresses which contain a factor � := (ρsw − ρ)/ρsw ≈ 0.09,
the question being why? At this stage of the computations this factor is not readily
understandable. It may be made plausible by stating that ice shelves are floating
and only the difference between the gravity force and the buoyancy force of the shelf
are dynamically significant. This difference is exactly proportianal to (ρsw − ρ)/ρsw.
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11.6.1 Non-Dimensionalized Ice Shelf Equations

As was done in Subsect. 11.3.1 for ice sheets, the governing equations are now
put in dimensionless form by substituting the scalings (11.92) into the field equa-
tions and boundary conditions. Below we list these equations in dimensionless
form, but will delete the tilde that characterizes the non-dimensionality of the
variables in question.

(i) Field equations for ice shelves. These are

∂vx

∂x
+
∂vy

∂y
+
∂vz

∂z
= 0 , (11.96)

1
ε

F
�

dvx

dt
= −∂p

∂x
+
∂tDxx

∂x
+
∂tDxy

∂y
+
∂tDxz

∂z
, (11.97)

1
ε

F
�

dvy

dt
=
∂tDxy

∂x
− ∂p
∂y

+
∂tDyy

∂y
+
∂tDyz

∂z
, (11.98)

ε
F
�

dvz

dt
= ε2

∂tDxz

∂x
+ ε2

∂tDyz

∂y
− ∂p
∂z

+
∂tDzz

∂z
− 1
�
, (11.99)

∂θ

∂t
+ vx

∂θ

∂x
+ vy

∂θ

∂y
+ vz

∂θ

∂z

=
D
c

[
ε2
∂

∂x

(
κ
∂θ

∂x

)
+ ε2

∂

∂y

(
κ
∂θ

∂y

)
+
∂

∂z

(
κ
∂θ

∂z

)]
+ 2

�2α

c
KSA(θ′)f(σ)σ2 ,

(11.100)

θ′ = θ + �Bp , (11.101)

∂vx

∂x
= �KSA(θ′)f(σ)tDxx , (11.102)

∂vy

∂y
= �KSA(θ′)f(σ)tDyy , (11.103)

∂vz

∂z
= �KSA(θ′)f(σ)tDzz , (11.104)

∂vx

∂y
+
∂vy

∂x
= 2�KSA(θ′)f(σ)tDxy , (11.105)

∂vx

∂z
+ ε2

∂vz

∂x
= 2ε2�KSA(θ′)f(σ)tDxz , (11.106)

∂vy

∂z
+ ε2

∂vz

∂y
= 2ε2�KSA(θ′)f(σ)tDyz , (11.107)

σ =
√

1
2

[
(tDxx)2 + (tDyy)2 + (tDzz)

2
]
+ (tDxy)2 + ε2

[
(tDxz)

2 + (tDyz)
2
]
.(11.108)
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These are the continuity equation, three components of the momentum equa-
tions, the energy equation, the pressure-adjusted homologous temperature, six
components of the symmetric stretching-stress-deviator relation and, finally, the
expression for the effective stress. These equations involve the aspect ratio ε and
some other dimensionless products defined in (11.95). They allow the following
physical interpretations: The continuity equation appears in its preserved form
divv = 0; exact satisfaction of the balance of mass is therefore thought signif-
icant. This equally implies that the condition trtD = 0 must be satisfied at all
levels of perturbation if such a perturbation is pursued, see (11.102)–(11.104).
The momentum equations (11.97)–(11.99) show that acceleration terms can be
ignored at least as long as terms of order 10−11 are not accounted for. (Note,
F ≈ 10−15, ε ≈ 10−3 → F/(�ε) ≈ 10−11). This is the case as long as perturbation
expansions are restricted to O(ε3) terms. Thus we conclude with the11

Formal statement 2: Stokes flow is a justified approximation of ice shelf
flows as long as perturbation expansions or equivalent iterative procedures are
not pushed beyond O(ε3) terms.

Since our approximations will not go beyond O(ε3)-terms we shall limit our
attention to Stokes flows only. Scrutiny of the force balances (11.97)–(11.98) then
shows that the dominant stress contributions are those parallel to the (x, y)-
plane, and all stress components contribute. On the other hand, the vertical
force balance (11.99) states that, to lowest order, the vertical normal stress gra-
dient is balanced by the buoyancy force. This may be interpreted as a cryostatic
balance, but it involves tzz = −p+ tDzz and thus contains a materially dependent
contribution. The heat equation (11.100) implies that, to lowest order, advection
and strain heating must be fully accounted for, but that horizontal diffusion is
small of O(ε2).

The material equations (11.106), (11.107) imply that ∂vx/∂z and ∂vy/∂z are
small of O(ε2); this is so despite the fact that vx and vy themselves are of O(1).
This implies that to O(1) and O(ε) the horizontal velocity components cannot
depend on the z-coordinate. A possible z-dependence only enters at the O(ε2)-
level. Any student of strength of materials learns that bending of beams or plates
arises because in-plane deformations (here horizontal velocities) are nonuniform
in the direction normal to the beam axis or plate plane. If such variations can be
ignored or are absent the beam behaves as a rod and the plate as a membrane
with internal forces/deformations being longitudinal and parallel to the plane,
respectively. Thus, we have
11 In fluid mechanics, flows which are mathematically constructed from the governing

equations by omitting in the momentum equations the acceleration terms (left-hand
sides in (11.97)–(11.99)) are called Stokes flows. Creeping flow is often simply said to
be Stokes flow, however, as the above scaling analysis shows, it is an approximation
and can only be fulfilled to a certain degree of approximation, if Froude numbers
are sufficiently small. This fact simultaneously demonstrates the usefulness of the
scaling and asymptotic approach.
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Formal statement 3: In an expansion accounting for O(ε0) and O(ε1)-terms
the ice shelf deforms as a membrane, or: zeroth (SSA) and first order (FOSSA)
shallow shelf approximations are membrane theories. Bending effects are neces-
sarily of O(ε2) or smaller.

The reader might be interested to learn that differences in the horizontal
velocities at the free surface and the ice–ocean interface have been observed in the
Ross Ice Shelf, (Doake, personal communication), but systematic measurements
have so far not been taken.

The dual represenations to (11.102)–(11.107) and (11.108) read

tDxx =
1
�
K′

SB(θ′)g(d)
∂vx

∂x
, (11.109)

tDyy =
1
�
K′

SB(θ′)g(d)
∂vy

∂y
, hutter2 (11.110)

tDzz =
1
�
K′

SB(θ′)g(d)
∂vz

∂z
, (11.111)

tDxy =
1
2�
K′

SB(θ′)g(d)
(∂vx

∂y
+
∂vy

∂x

)
, (11.112)

ε2tDxz =
1
2�
K′

SB(θ′)g(d)
(∂vx

∂z
+ ε2

∂vz

∂x

)
, (11.113)

ε2tDyz =
1
2�
K′

SB(θ′)g(d)
(∂vy

∂z
+ ε2

∂vz

∂y

)
, (11.114)

d =

[
1
2

{(
∂vx

∂x

)2

+
(
∂vy

∂y

)2

+
(
∂vz

∂z

)2
}

+
1
4

(
∂vx

∂y
+
∂vy

∂x

)2

+
(

1
ε

∂vx

∂z
+ ε
∂vz

∂x

)2

+
(

1
ε

∂vy

∂z
+ ε
∂vz

∂y

)2
] 1

2

. (11.115)

They also lead to the formal statement 3, and so the two terms in (11.115)
premultiplied by ε−1 are actually of O(ε). Before we list the boundary conditions
in dimensionless form it is worth illustrating the differences of the ice sheet and
ice shelf approximations by scrutinising the formulas of the effective stresses as
listed in (11.34) and (11.124), respectively. We have

σ2
sheet =

(
tDxz

)2
+
(
tDyz

)2
+ (σcorr

sheet)
2
,

σ2
shelf =

1
2

[(
tDxx

)2
+
(
tDyy

)2
+
(
tDzz

)2
+
(
tDxy

)2]
+ (σcorr

shelf)
2
,

in which the corrective terms are O(ε)2. Interestingly, these corrective terms are
in one formulation the dominant terms of the other, illustrating in a nice and
complementary fashion the essential differences of the SIA and SSA: Vertical
shearing in the first and in-plane stresses in the second. This duality could also
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be observed if the second stretching invarants of the two formulations would be
compared.

(ii) Boundary conditions at the free surface. These apply at z =
h(x, y, t) and are given by (11.7), (11.8); their dimensionless counterparts are

∂h

∂t
+ vx

∂h

∂x
+ vy

∂h

∂y
− vz = Ns a

⊥
s , Ns =

√
1+ε2

(
∂h

∂x

)2

+ ε2
(
∂h

∂y

)2

(11.116)

−
(
−p+ tDxx

) ∂h
∂x
− tDxy

∂h

∂y
+ tDxz = 0 , (11.117)

−tDxy

∂h

∂x
−
(
−p+ tDyy

) ∂h
∂y

+ tDyz = 0 , (11.118)

−ε2tDxz

∂h

∂x
− ε2tDyz

∂h

∂y
+
(
−p+ tDzz

)
= 0 , (11.119)

θ = θs(x, y, z, t) . (11.120)

As can be inferred from these equations, the shear traction conditions (11.117),
(11.118) must be satisfied in their entirety at all perturbation levels. On the
other hand, the surface pressure may, to lowest order, be replaced by the ver-
tical normal stress −p + tDzz. The form (11.117)–(11.118) of the shear traction
boundary conditions in this dimensionless form (without involving an explicit ε-
dependence) is physically very significant. Using “naive” scaling arguments, one
would expect an ε-factor of the terms involving ∂h/∂x and ∂h/∂y. That these
ε-factors are not present in (11.117) and (11.118) means that the shear stresses
tDxz and tDyz do not vanish whenever the free surface is not horizontal. (An analo-
gous argument also applies to (11.122) and (11.123)). These nonvanishing shear
stresses are obviously due to the thickness variations of the ice shelf (which are
small but always present), and they induce at O(ε2) the bending effects. A naive
sealing would have eliminated these ab initio.

(iii) Boundary conditions at the ice-shelf base. The ice-shelf base,
z = b(x, y, t), is either the ice–ocean interface or, at rumpled regions, the con-
tact surface with the rock bed. The kinematic, traction and thermal boundary
conditions are

∂b

∂t
+ vx

∂b

∂x
+ vy

∂b

∂y
− vz = −Nb , Nb =

√
1 + ε2

(
∂b

∂x

)2

+ ε2
(
∂b

∂y

)2

,

(11.121)

−
(
−p+ tDxx

) ∂b
∂x
− tDxy

∂b

∂y
+ tDxz = pb

∂b

∂x
− ετgrexNb , (11.122)
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− tDxy

∂b

∂x
−
(
−p+ tDyy

) ∂b
∂y

+ tDyz = pb
∂b

∂y
− ετgreyNb , (11.123)

−ε2tDxz

∂b

∂x
− ε2tDyz

∂b

∂y
+
(
−p+ tDzz

)
= −pb − ε3τgrezNb , (11.124)

θ = θ+ , (11.125)

κ

(
ε2
∂θ

∂x

∂b

∂x
+ ε2

∂θ

∂y

∂b

∂y
− ∂θ
∂z

)
−Nb q

⊥
b Nb

−Nb

{
Nb δ +

α

αSD
a⊥

b

M
}
H(θ − θM ) = 0 , (11.126)

where H is the Heaviside function and

pb =

⎧⎪⎪⎨⎪⎪⎩
psw =

ρsw
�ρ

(zs − b) ,

pgr =
1
�
(h− b) ,

τgr =

⎧⎨⎩
0 , floating regions ,

τgr , rumpled regions ,
(11.127)

Nb, δb =

⎧⎨⎩
Nq⊥

oc
, δoc ,

Nq⊥
gr
, δgr ,

a⊥
b =

⎧⎨⎩a
⊥
oc = a⊥

b

M
+ a⊥

b

A
, floating regions ,

ε2a⊥
gr , rumpled regions .

(11.128)

We note that over rumpled regions a sliding law applies. It is seen from (11.128)
that melting/freezing and accretion rates over floating regions are of O(ε0)
whereas melting rates in grounding areas are of O(ε2). The shear traction con-
ditions (11.122), (11.123) involve to lowest order all terms except the shear trac-
tions due to sliding over the base in rumpled regions, in agreement of what
was already said above. The basal pressure in (11.124), on the other hand is
given to lowest order by the vertical normal stress; corrections enter only at
O(ε2) and O(ε3). This is qualitatively analogous to (11.119). Finally, the energy
jump condition (11.126) shows that the horizontal components of the heat flux
vector do not contribute to lowest order to the heat transfer through the surface.

(iv) Ice thickness evolution equation. If the continuity equation is inte-
grated over depth from z = b to z = h and the kinematic boundary conditions
(11.116), (11.121) are used in the emerging equation then the following evolution
equation involving h and b is obtained:

∂(h− b)
∂t

+
∂

∂x

h∫
b

vxdz +
∂

∂y

h∫
b

vydz = Ns a
⊥
s +Nb a

⊥
b , (11.129)

with a⊥
b = (w − v) · n.

In what follows zeroth and first order equations for shallow shelves will be
presented. However, the analysis will be more detailed than for sheets because
the mathematical details are far more involved.
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11.6.2 Zeroth Order Ice Shelf Equations

These are obtained from (11.96)–(11.129) by omitting all terms premultiplied
by a positive power of ε; variables will carry the index (·)(0) to identify that
they are of O(ε0). Furthermore, we shall for the time being not deal with the
thermal problem and also impose the Stokes assumption. The force balances
(11.97)–(11.99) and the material equations (11.106)–(11.107) take the forms

0 = −∂p(0)
∂x

+
∂tDxx(0)

∂x
+
∂tDxy(0)

∂y
+
∂tDxz(0)

∂z
, (11.130)

0 =
∂tDxy(0)

∂x
− ∂p(0)

∂y
+
∂tDyy(0)

∂y
+
∂tDyz(0)

∂z
, (11.131)

1
�

= −∂p(0)
∂z

+
∂tDzz(0)

∂z
. (11.132)

∂vx(0)

∂z
= 0 ,

∂vy(0)

∂z
= 0 . (11.133)

and the continuity equation remains formally unchanged

∂vx(0)

∂x
+
∂vy(0)

∂y
+
∂vz(0)

∂z
= 0 . (11.134)

The other stress-deviator-stretching relationships (11.102)–(11.105) or (11.109)–
(11.112) are also unchanged (because no ε-term arises) and will therefore not be
repeated. However, the effective stress and strain rate simplify and read, to
zeroth order,

σ2
(0) = (tDxx(0))

2 + (tDyy(0)
)2 + tDxx(0)t

D
yy(0)

+ (tDxy(0)
)2 , (11.135)

d2(0) =
(
∂vx(0)

∂x

)2

+

(
∂vy(0)

∂y

)2

+
∂vx(0)

∂x

∂vy(0)

∂y
+

1
4

(
∂vx(0)

∂y
+
∂vy(0)

∂x

)2

.

(11.136)

The kinematic and traction boundary conditions (11.116)–(11.119) become at
zeroth order

∂h(0)

∂t
+ vx(0)

∂h(0)

∂x
+ vy(0)

∂h(0)

∂y
− vz(0) = as

⊥
(0) , (11.137)

(
p(0) − tDxx(0)

)∂h(0)

∂x
− tDxy(0)

∂h(0)

∂y
+ tDxz(0) = 0 , (11.138)

−tDxy(0)

∂h(0)

∂x
+
(
p(0) − tDyy(0)

)∂h(0)

∂y
+ tDyz(0)

= 0 , (11.139)

−p(0) + tDzz(0) = 0 , (11.140)
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at z = h(0)(x, y, t). At the base one must differentiate between floating and
rumpled regions. From (11.121) to (11.128) it is easy to deduce that to zeroth
order,

∂b(0)

∂t
+ vx(0)

∂b(0)

∂x
+ vy(0)

∂b(0)

∂y
− vz(0) = −a⊥

b (0) , (11.141)

−
(
−p(0) + tDxx(0)

) ∂b(0)
∂x

− tDxy(0)

∂b(0)

∂y
+ tDxz(0) = pb(0)

∂b(0)

∂x
, (11.142)

−tDxy(0)

∂b(0)

∂x
−
(
−p(0) + tDyy(0)

) ∂b(0)
∂y

+ tDyz(0)
= pb(0)

∂b(0)

∂y
, (11.143)

−p(0) + tDzz(0) = −pb(0) , (11.144)

at z = b(0)(x, y, t), where

a⊥
b (0) =

⎧⎨⎩a
⊥
b

M

(0) + a⊥
b

A

(0) ,

0 ,
pb(0) =

⎧⎪⎪⎨⎪⎪⎩
psw(0) =

ρsw
�ρ

(zs − b(0)) , floating regions

1
�
(h(0) − b(0)) , rumpled regions .

These zeroth order equations are formally still rather complicated and do
not seem to offer essential simplification when compared with the original three-
dimensional equations. The relations (11.133), which state that the horizontal
velocity components are functions of the z-coordinate, however suggest that
thickness averaged equations, or equations that are integrated over the ice-shelf
thickness may yield this simplification. The appearance of the shear stresses
tDxz(0) and tDyz(0) in the force balances (11.130) and (11.131) may look counter-
productive in this regard, but a thickness integration of these equations shows
that these stresses have to be evaluated at the surfaces and can be eliminated
with the aid of (11.138), (11.139), (11.142) and (11.143). These observations are
indications that vertical integration is the operation which achieves the desired
simplification.

Vertical integration. If we integrate the vertical force balance (11.132) over
z and incorporate the boundary conditions (11.140), (11.144) – note there is one
boundary condition too many, so (h − zs) and (zs − b) can be related to one
another by the so-called floating condition – it is found that

tzz(0)(., z) =
1
�
(z − zs)−H(0) , psw(0) =

1
�
H(0) , floating regions .(11.145)

So the floating condition motivated in Sect. 11.2 is indeed satisfied. In rumpled
regions the analogous steps yield

tzz(0)(., z) =
1
�
(h(0) − z) , rumpled regions , (11.146)

implying that tzz(0)(., h(0)) = 0 and tzz(0)(., b(0)) = −H(0)/�, demonstrating con-
sistency in the formulation made with ice rumples. We emphasise, that vertical
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integration of the vertical force balance together with the associated bound-
ary conditions (including the floating condition) has determined tzz(0) as an
unknown field variable.

Next, we determine the vertical component of the velocity, vz(0). Integrating
(11.134) with the proviso (11.133) then yields

vz(0)(., z) = −∇H · vH
(0)(z − c0(x, y, t)) , (11.147)

where ∇H is the horizontal gradient operator and vH
(0) = (vx(0), vy(0)); c0 follows

best by evaluating (11.147) at z = h(0) and using (11.137). This yields

vz(0)(., z) = (∇H · vH
(0))(h(0) − z) +

∂h(0)

∂t
+ v(0) · ∇Hh(0) − a⊥

s (0)(11.148)

which holds true for floating as well as rumple regions.
Next, the thickness evolution equation for the ice shelf follows from (11.129)

by omitting the O(ε2)-terms and accounting for the fact that vx, vy are z-
independent,

∂H(0)

∂t
+
∂

∂x

(
H(0)vx(0)

)
+
∂

∂y

(
H(0)vy(0)

)
= as

⊥
(0) + ab

⊥
(0) , (11.149)

where

ab
⊥
(0) =

⎧⎨⎩a
⊥
b

M

(0) + a⊥
b

A

(0) , floating regions ,

0 , rumpled regions ,
(11.150)

which are known either from the climatological input or from interface thermo-
dynamics.

Last, the horizontal force balance equations are integrated over the ice shelf
thickness. To this end, the first step is to introduce the membrane stress tensor
Nij as the depth integral of the stress deviators tDij

Nij =
∫ h

b

tDij dz, ⇒ Nij(0) :=
∫ h(0)

b(0)

tDij (0)
dz , i, j = x, y . (11.151)

In the second step the vertical normal stress tDzz(0) = −(tDxx(0) + tDyy(0)
), given by

(11.145) and (11.146) is substituted into the horizontal force balances (11.130),
(11.131). The result is given in (11.152) below in Table 11.4. Third, these equa-
tions are then integrated over the ice sheet thickness from z = b(0) to z = h(0) and
the definitions (11.151) are used. This leads to (11.153). The last step consists in
using the constitutive relations (11.109)–(11.112) and to express Nij(0) in terms
of thickness integrals of the rate factor B. The result is shown in (11.154) with ν̄
as expressed in (11.155). Notice that for a power law g(d(0)) = d(0)

(1−n)/n, n > 1
which is singular at d(0) = 0. So, a finite viscosity law should be used, and
we suggest to use the law (11.156). Its limit behaviours are g(0) = η and
g(∞) = d(0)

(1−n)/n.
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Table 11.4. Zeroth order ice shelf equations (for details see main text). The
repeated right-hand sides are for floating and rumpled regions, respectively

equations floating rumpled
region region

2
∂tDxx(0)

∂x
+
∂tDyy(0)

∂x
+
∂tDxy(0)

∂y
+
∂tDxz(0)

∂z
=
∂H(0)

∂x
=

1
�

∂h(0)

∂x

∂tDxx(0)

∂y
+ 2

∂tDyy(0)

∂y
+
∂tDxy(0)

∂x
+
∂tDyz(0)

∂z
=
∂H(0)

∂y
=

1
�

∂h(0)

∂y

(11.152)

2
∂Nxx(0)

∂x
+
∂Nyy(0)

∂x
+
∂Nxy(0)

∂y
= H(0)

∂H(0)

∂x
=

1
�
H(0)

∂h(0)

∂x

∂Nxx(0)

∂y
+ 2

∂Nyy(0)

∂y
+
∂Nxy(0)

∂x
= H(0)

∂H(0)

∂y
=

1
�
H(0)

∂h(0)

∂y

(11.153)

2
∂

∂x

(
ν̄
∂vx(0)

∂x

)
+
∂

∂x

(
ν̄
∂vy(0)

∂y

)
+

1
2
∂

∂y

[
ν̄

(
∂vx(0)

∂y
+
∂vy(0)

∂x

)]
∂

∂y

(
ν̄
∂vx(0)

∂x

)
+ 2

∂

∂y

(
ν̄
∂vy(0)

∂y

)
+

1
2
∂

∂x

[
ν̄

(
∂vx(0)

∂y
+
∂vy(0)

∂x

)]

= �H(0)
∂H(0)

∂x
= H(0)

∂h(0)

∂x

= �H(0)
∂H(0)

∂y
= H(0)

∂h(0)

∂y

(11.154)

where

ν̄ = K′
sg(d(0))

∫ h(0)

b(0)

B(θ′) dz, (11.155)

with

g(d(0)) =
η

1 + η d(0)
(n−1)/n

(11.156)
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The governing equations of this SSA are the thickness evolution equation
(11.149) and the equilibrium equations (11.154) expressed in terms of the veloc-
ities. The former is hyperbolic and driven by the accumulation rate functions
as

⊥
(0) + ab

⊥
(0); in numerical computations this equation is prone to instabilities

so non-oscillating central (NOC) schemes with cell limiters should be used. The
latter is elliptic and driven by the horizontal thickness gradients; subject to
appropriate boundary conditions these equations are solved first for a given
thickness distribution, and (11.149) is solved afterwards for the new geometry.
This must be done together with an updating of the temperature field (which we
have not demonstrated here). Once this is done, (11.109)–(11.114) may be used
to determine the local stress components, and (11.147) will yield the distribution
of the vertical velocity component.

Of course, the solution of (11.154) must be constructed subject to boundary
conditions appropriate for this elliptical problem. Along the grounding line the
flux v(0)H(0) is prescribed as the flow from the inland ice, along the side bound-
aries one best prescribes the no-slip condition v(0) = 0 and along the ice shelf
front a kinematic equation and a calving rate equation are to be prescribed.

11.6.3 First Order Mechanical Ice Shelf Equations

The above zeroth order solution is inaccurate in rumpled regions and close to
side boundaries. It can be improved by constructing the first- and eventually
second-order correction. This will be done now. The equations will be some-
what involved, but their derivation has also the merit to demonstrate that the
asymptotic approach is correct insofar as it does not develop singularities.

The first order force balances, (11.97)–(11.99), material equations (11.106)–
(11.107) and continuity equation (11.96) take the forms

0 = −∂p(1)
∂x

+
∂tDxx(1)

∂x
+
∂tDxy(1)

∂y
+
∂tDxz(1)

∂z
, (11.157)

0 =
∂tDxy(1)

∂x
− ∂p(1)

∂y
+
∂tDyy(1)

∂y
+
∂tDyz(1)

∂z
, (11.158)

0 = −∂p(1)
∂z

+
∂tDzz(1)

∂z
, (11.159)

∂vx(1)

∂z
= 0 ,

∂vy(1)

∂z
= 0 , (11.160)

∂vx(1)

∂x
+
∂vy(1)

∂y
+
∂vz(1)

∂z
= 0 , (11.161)

whilst the first order effective stress and strain rates are given by

2σ(0)σ(1) = tDxx(0)t
D
xx(1) + tDyy(0)

tDyy(1)
+ tDzz(0)t

D
zz(1) + tDxy(0)

tDxy(1)
, (11.162)
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2d(0)d(1) =
∂vx(0)

∂x

∂vx(1)

∂x
+
∂vy(0)

∂y

∂vy(1)

∂y
+
∂vz(0)

∂z

∂vz(1)

∂z
+

1
2
∂vx(0)

∂y

∂vx(1)

∂y

+
1
2

(
∂vx(0)

∂y

∂vy(1)

∂x
+
∂vx(1)

∂y

∂vy(0)

∂x

)
+

1
2

∂vy(0)

∂x

∂vy(1)

∂x
. (11.163)

It is seen from (11.157)–(11.159) that the equilibrium equations are formally the
same as those of zeroth order, see (11.130)–(11.132) except that they are here
homogeneous. Equation (11.160) implies that vx(1) and vy(1) are z-independent
and (11.161) requires the velocity field to be solenoidal. All this is very similar
to the zeroth order model and thus we should not be surprised if similar results
may emerge. The above equations suffice in explaining to the reader how the
computations principally proceed. Nevertheless, for the explicit computations
the stress-deviator stretching relations and the kinematic and traction boundary
conditions at the free surface and the base must also be used. For the benefit of
the reader these are stated in the Appendix.

The above equations together with those listed in Appendix A3 are formidably
looking equations, and it does not seem possible to use them sensibly. However,
it turns out that integration through depth simplifies the structure of the model
considerably. Therefore, from (11.160) and (11.161) we have

vz(1)(·, z) = −
(
∇H · vH

(1)

)
(z + c1(x, y, t)) , (11.164)

and if the kinematic boundary condition (11.203) in Appendix A3 is employed
to determine c1, we have

vz(1)(·, z) = −
(
∇H · vH

(1)

)
z +

∂h(1)

∂t
+∇H ·

(
vH

(0)h(1) + vH
(1)h(0)

)
−a⊥

s (1) −
∂a⊥

s (0)

∂z

∣∣
h(0)
h(1) , (11.165)

valid over floating as well as rumpled regions.
This equation can be combined with (11.148) to yield the vertical velocity com-
ponent to first order as follows

vz(·, z) = (∇H · vH) (h− z)− a⊥
s +O(ε2) , (11.166)

where vz = vz(0) + εvz(1), etc.
Vertical integration. We integrate the vertical force balance (11.159) subject
to the boundary conditions (11.206), (11.210), (11.214) of Appendix A3, (11.145)
and (11.146). This yields

tzz(1) = −p(1)(., z) + tDzz(1)(., z) = −h(1)

�
(11.167)

and the floating condition

�b(1) = (�− 1)h(1) , floating region . (11.168)
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Equation (11.167) states that tzz(1) is z-independent, but obviously (note tr tD
(1) =

0 is used)

− p(1)(., z) = −h(1)

�
+ tDxx(1)(., z) + tDyy(1)

(., z) (11.169)

is not, since tDxx(1) and tDyy(1)
may be z-dependent; (11.168) shows that b(1) and

h(1) have different signs (as they ought to). In rumpled regions (11.168) does not
apply, but

b(1) = 0 , rigid base, or

∂b(1)

∂t
= − 1

Tr

(
b(1) − bst(1) +

ρ

ρa
H(1)

)
,

deformable base

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ over rumples . (11.170)

The next step is the substitution of the result (11.169) into the horizontal force
balances (11.157)–(11.158). The result is

2∂tDxx(1)

∂x
+
∂tDyy(1)

∂x
+
∂tDxy(1)

∂y
+
∂tDxz(1)

∂z
=

1
�

∂h(1)

∂x
, (11.171)

∂tDxx(1)

∂y
+

2∂tDyy(1)

∂y
+
∂tDxy(1)

∂x
+
∂tDyz(1)

∂z
=

1
�

∂h(1)

∂y
. (11.172)

for both floating and rumpled regions. Finally, we now integrate these equations
over the ice-shelf depth. However, this is not so straight-forward. The difficulty
lies in the definition of the zeroth, first and second order membrane forces Nij .
To see the difficulty, consider

F :=

h∫
b

f dz =

h(0)+εh(1)+ε2h(2)+···∫
b(0)+εb(1)+ε2b(2)+···

(
f(0) + εf(1) + ε2f(2) + · · ·

)
dz

= · · · · · · · · · · · ·

=

{∫ h(0)

b(0)

f(0) dz

}
+ ε

{∫ h(0)

b(0)

f(1) dz + f(0) |h(0) h(1) − f(0) |b(0) b(1)
}

+ε2
{∫ h(0)

b(0)

f(2) dz +

[
f(0) |h(0) h(2) +

1
2
∂f(0)

∂z
|h(0) h

2
(1) + f(1) |h(0) h(1)

]

−
[
f(0) |b(0) b(2) +

1
2
∂f(0)

∂z
|b(0) b2(1) + f(1) |b(0) b(1)

]}
+ · · · · ·

= F(0) + εF(1) + ε2F(2) + · · ·. (11.173)

It is seen that it is the terms in curly brackets which define the zeroth, first,
second and higher order integrated quantities and not simply the integral terms
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like
∫ h(0)

b(0)
f(i) dz. So, in particular

Nij(1) :=

h(0)∫
b(0)

tDij (1)
dz + tDij (0)

|h(0) h(1) − tDij (0)
|b(0) b(1) , (11.174)

for (i, j) = x, y, z. If we now integrate (11.171), (11.172) over the thickness, we do
this for each term, as expanded in (11.173) and use Leibniz’ rule to interchange
integration with respect to z and differentiation with respect to x and y. The
boundary terms that emerge in this process are simplified wherever possible by
using the boundary conditions (11.204), (11.205), (11.208), (11.209) in Appendix
A3. After massive calculations, what obtained is as follows:

2
∂Nxx(1)

∂x
+
∂Nyy(1)

∂x
+
∂Nxy(1)

∂y
+
{

0
τx
gr(0)

}

=

⎧⎪⎪⎨⎪⎪⎩
∂H(0)

∂x
(h(1) − b(1)) +

1
�
H(0)

∂h(1)

∂x
, floating region

1
�

∂h(0)

∂x
(h(1) − b(1)) +

1
�
H(0)

∂h(1)

∂x
, rumpled region

⎫⎪⎪⎬⎪⎪⎭ (11.175)

2
∂Nyy(1)

∂y
+
∂Nxx(1)

∂y
+
∂Nxy(1)

∂x
+
{

0
τy
gr(0)

}

=

⎧⎪⎪⎨⎪⎪⎩
∂H(0)

∂y
(h(1) − b(1)) +

1
�
H(0)

∂h(1)

∂y
, floating region

1
�

∂h(0)

∂y
(h(1) − b(1)) +

1
�
H(0)

∂h(1)

∂y
, rumpled region

⎫⎪⎪⎬⎪⎪⎭ (11.176)

in which τx,y
gr (0)

may, via a sliding law, be related to the zeroth order velocity
field

τ gr(0) = C(·)v(0) . (11.177)

Unfortunately, it is not convenient as it was in the case for the zeroth order
equations to derive a set of partial differential equations for v(1). Nevertheless,
the first order membrane forces (11.174) can be related to the zeroth and first
order deformation fields by substituting (11.197)–(11.202) in Appendix A3 into
the definition (11.174). The result is
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N(ij)(1) =

⎛⎜⎜⎜⎜⎝
∂vx(0)

∂x

1
2

(
∂vx(0)

∂y
+
∂vy(0)

∂x

)
1
2

(
∂vx(0)

∂y
+
∂vy(0)

∂x

)
∂vy(0)

∂y

⎞⎟⎟⎟⎟⎠N(1)

+ Γ

⎛⎜⎜⎜⎜⎝
∂vx(1)

∂x

1
2

(
∂vx(1)

∂y
+
∂vy(1)

∂x

)
1
2

(
∂vx(1)

∂y
+
∂vy(1)

∂x

)
∂vy(1)

∂y

⎞⎟⎟⎟⎟⎠ ,

(11.178)

where

N(1) :=
Ks

′

�

⎧⎪⎨⎪⎩dg(d(0))
dd

[( h(0)∫
b(0)

B(θ′
(0))dz

)
d(1) +B(θ′

(0)) |h(0) h(1)

−B(θ′
(0)) |b(0) b(1)

]
+ g(d(0))

( h(0)∫
b(0)

dB(θ′
(0))

dθ′ (θ′
(1))dz

)⎫⎪⎬⎪⎭ , (11.179)

and

Γ =
Ks

′

�

h(0)∫
b(0)

B(θ′
(0)) g(d(0)) dz ,

and d(0) and d(1) are given in (11.136) and (11.163), respectively.
The kinematic evolution equation for h(1) is obtained by applying the rule

(11.173) to the kinematic equation (11.129). The O(ε)-equation is then given by

∂
(
h(1) − b(1)

)
∂t

+ (vx(1) + vy(1))H(0) + (vx(0) + vy(0))(h(1) − b(1))

= as
⊥
(1) +

∂as
⊥
(0)

∂z
|h(0) h(1) + a⊥

b (1) +
∂a⊥

b (0)

∂z
|b(0) b(1) . (11.180)

This formally completes the presentation of the first order mechanical equations.
The unknown fields are vx(1), vy(1), h(1) and b(1). If we think the expressions
(11.178), (11.179) for Nij(0) formally be substituted in (11.175), (11.176), then
these equations form a system of two differential equations involving vx(1), vy(1),
h(1) and b(1), provided the zeroth order fields are known. A third equation is
given by (11.180) and a fourth by the floating condition (11.168) or the evolution
equation of the base (11.170) over rumpled regions. Integration proceeds as for
the zeroth order field equations: For a given temperature distribution and a given
distribution of h(1) and b(1) at a fixed time t the velocity field is determined.
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Equations (11.180) and (11.168) and (11.170) are then used to step forward
and determine the new geometry at t + Δt. Thus we have shown, as with the
zeroth order model, that the first order mechanical equations exhibit membrane
structure, and the integrated balances form a well posed set of equations, if the
temperature field is already determined.

11.7 First Order Shallow Shelf Approximation (FOSSA)

11.7.1 General Procedure

As mentioned before, it is not thought worthwhile to also formally develop
the temperature field into zeroth and first order contributions and to derive
individual boundary value problems for each. It is advantageous to solve the
mechanical equations as outlined in Subsects. 11.6.2 and 11.6.3, provided the
temperature field and the free surface and basal geometry be given (i.e., func-
tions θ(x, y, z, t), h(0)(x, y, t), b(0)(x, y, t), h(1)(x, y, t) and b(1)(x, y, t) are known
for fixed t). With these prerequisites the zeroth order velocities vx(0)(x, y, t),
vy(0)(x, y, t) and vz(0)(x, y, t) and then the corrections vx(1)(x, y, t), vy(1)(x, y, t)
and vz(1)(x, y, t) are computed.

The second computational step then consists in evaluating the new geometry
by stepping forward a temporal increament Δt and solving the new free surfaces
h(0), h(1) and bases b(0), b(1), as equally outlined in Subsects. 11.6.2 and 11.6.3.
Adding the two solutions in the sense f = f(0) + εf(1) yields the total fields with
an error of O(ε2) and also defines the new geometry of the ice sheet. For this new
geometry the new temperature field θ = θ(0)+εθ(1) is then constructed at t+Δt,
however, not by solving for θ(0) and θ(1) individually but for both together.

11.7.2 Determination of the Temperature Field

The idea that the temperature field is determined for the complete field θ = θ(0)+
εθ(1) with an error of O(ε2) works, because the scaled thermal field equations
and boundary conditions contain no O(ε)-terms. Thus dropping the O(ε2)-terms
in these equations leads to an equation set with an error of O(ε2). The equations
are

∂θ

∂t
+ vx

∂θ

∂x
+ vy

∂θ

∂y
+ vz

∂θ

∂z
=
D
c

∂

∂z

(
κ
∂θ

∂z

)
+ 2

�2α

c
KSA(θ′)f(σ)σ2, (11.181)

θ = θs(x, y, z, t) on z = h(x, y, t) , θ = θ+ on z = b(x, y, t) , (11.182)

− κ∂θ
∂z
−Nba

⊥
b −

{
Nbδ +

α

αsD
a⊥

b

M
}
H(θ − θM ) . (11.183)

These equations agree with (11.100), (11.120), (11.125) and (11.126). We em-
phasize that for vx, vy, vz, d, h and b the total fields have to be substituted. Apart
from this, the temperature field is no more difficult to solve than for the zeroth
order problem.



11 Asymptotic Theories of Ice Sheets and Ice Shelves 271

11.8 Closure

In these notes an account has been given on the higher order accurate models of
shallow ice sheets and ice shelves. The notes are brief and arguments sometimes
terse – especially for ice shelves. The reason has not been a lack of understanding
but the relative complexity of the subject matter12. Readers interested in more
details should consult the references [1,2,3].

Structurally, the improvements of the SIA and SSA are the same. A formal
perturbation expansion in terms of the aspect ratio ε is pursued with the mechan-
ical equations, treating the temperature field as known. This expansion of the
stress fields could be pushed to O(ε2) in the scaled equations for ice sheets and
led to an iterative solution procedure for stress, velocity and temperature fields
that is systematic and applicable to all geometric situations in large ice sheet
dynamics. The result is the second order shallow ice approximation (SOSIA)
that will certainly be developed and numerically implemented in the future.

For ice shelves the situation is more difficult. The algebraic manipulations
were so complicated that so far we can only present a first order approximation
with errors that are second order, O(ε2), in the aspect ratio. This led to the
first order shallow shelf approximation (FOSSA). It was demonstrated that to
this order shelves behave like membranes with horizontal velocity fields that
are independent of the z-coordinate. Since observations have been made which
show differences in the amount of velocity at the top and bottom of an ice shelf,
bending effects must eventually come into the picture. This z-dependence of the
velocity field could be accounted for by considering the O(ε2)-terms. This is work
still untouched, except for a series of first steps in [1]. It is not likely to be easy
to develop these equations.

Remark: We have restricted the quoted references to the three items listed
below. This does not mean that they are the only significant ones. Refs [1,2]
contain more than 300 quotations relevant to the topic and we refer the reader
to those for details.
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12 The derivation of theories of the thermomechanical response of thin sheets spans

more than two centuries, starting with the Bernoulli’s in the early 18th century. The
second half of the 20th century brought the systematic deductions of plate equations
by asymptotic methods. Ice shelves are from a physical point of view about the most
complex situation one may encounter: coupling between mechanical and thermal
effects including possible phase change processes. Under such conditions it would be
very difficult to derive these equations by ad-hoc methods. This is the reason why
this systematic derivation is necessary.
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Appendix

This Appendix lists equations of the main text which are complicated and
needed, but would make reading of the main text cumbersome.

Appendix A1: Sliding and energy jump conditions
at the basal surface

The boundary conditions (11.12) and (11.13) when written in dimensionless form
according to the scalings introduced in (11.21) take the forms

(vsl)x = −FtCt

Nb
H(θ − θM )

{
txx
∂b

∂x
+ ε2tDxy

∂b

∂y
− tDxz

− 1
N2

b

[
ε2txx

(
∂b

∂x

)3

+ ε2tyy
∂b

∂x

(
∂b

∂y

)2

+ tzz
∂b

∂x

+2ε4tDxy

(
∂b

∂x

)2
∂b

∂y
− 2ε2tDxz

(
∂b

∂x

)2

− 2ε2tDyz

∂b

∂x

∂b

∂y
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,(11.184)

(vsl)y = −FtCt

Nb
H(θ − θM )

{
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∂b

∂x
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∂y
− tDyz

− 1
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∂y

)3
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∂x

(
∂b
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− 2ε2tDxz
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∂x
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(
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∂y

)2
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,(11.185)

(vsl)z = −FtCt

Nb
H(θ − θM )

{
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∂x
+ tDyz
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∂y
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− 1
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. (11.186)

(vsl)x = vx − v+x −
ε2

N2
b

[
(vx−v+x )

∂b

∂x
+ (vy−v+y )

∂b

∂y
− (vz−v+z )

]
∂b

∂x
(11.187)

(vsl)y = vy − v+y −
ε2

N2
b

[
(vx−v+x )

∂b

∂x
+ (vy−v+y )

∂b

∂y
− (vz−v+z )

]
∂b

∂y
(11.188)

(vsl)z = vz − v+z +
1
N2

b

[
(vx−v+x )

∂b

∂x
+ (vy−v+y )

∂b

∂y
− (vz−v+z )

]
. (11.189)
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In these relations, (·)+ denotes the variable (·) evaluated immediately below the
ice rock interface. Moreover, tii = −p+ε2tDii (no summation over i) for i = x, y, z,
and for our modelling of the isostatic lithosphere adjustment one has

v+x = v+y = 0 , v+z =
∂b

∂t
. (11.190)

The energy jump condition (11.13), after lengthy manipulations is written as
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H(θ − θM ) . (11.191)
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Appendix A2: SIA corrections to the sliding law

Here we list explicit formulas for the corrections (·)corr of the sliding law arising
in (11.83)–(11.86).

(vsl)corrx := −ε2FtCt
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, (11.192)
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Δvx
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Appendix A3: Detailed equations for the FOSSA

We list here those equations relevant to the first order shallow shelf approxima-
tion which are too lengthy and therefore would deter from the text. Nevertheless
the statements are needed for the construction of the main theory. Next, the first
order stress-deviator stretching relations are
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′

�

[
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{
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, (11.197)
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, (11.199)
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, (11.202)

and the kinematic and traction boundary conditions at first order become
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∂h(1)
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h(1) − p(1) +
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∂z
h(1) + tDzz(1) = 0 , (11.206)

valid at z = h(0)(x, y, t). At the base, one needs to differentiate between the
floating and rumpled regions. From (11.121)–(11.128) the following first order
expressions can be deduced:
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and
∂psw(0)

∂z
b(1) + psw(1) = −ρsw

�ρ
b(1) , (11.215)

valid at z = b(0)(x, y, t).
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12 Aspects of Iceberg Deterioration and Drift

S.B. Savage

McGill University, Montreal, Quebec H3A 2K6, Canada

12.1 Introduction

During her maiden voyage from Southampton to New York, the ocean liner
RMS Titanic struck an iceberg off the Newfoundland Banks and sank on April
15, 1912. Of the 2228 passengers and crew on board, only 705 survived. This
tragedy generated a public outcry that subsequently provoked government ac-
tion. Representatives of the world’s various maritime powers signed a convention
in 1914 to inaugurate an international derelict-destruction, ice observation, and
ice patrol service. Today, the International Ice Patrol (IIP) is comprised of 17
member national organizations (including Belgium, Canada, Denmark, Finland,
France, Germany, Greece, Italy, Japan, Netherlands, Norway, Panama, Poland,
Spain, Sweden, the United Kingdom, and the United States of America). Its
mission is “to monitor the extent of the iceberg danger near the Grand Banks
of Newfoundland and provide limits of all known ice to the maritime commu-
nity”. In addition to participation in the IIP, several countries have their own
independent organizations that keep track of individual iceberg positions, trajec-
tories, size and melt decay in Northern waters. Typically, this is accomplished
through the use of satellites (RADARSAT), aerial reconnaissance making use
of Side-Looking Airborne Radar (SLAR) and Forward-Looking Airborne Radar
(FLAR), as well as observations from commercial shipping.

Most of the icebergs that endanger the shipping lanes of the North Atlantic
are generated by the tidewater glaciers off the West Coast of Greenland. Glaciers
are formed from thousands of years of snowfall accumulation. New fallen snow
changes over periods of several months into a form of granular snow called firn.
Over several decades this is compressed into dense ice by the overburden. Ice
at the bottom of a glacier can come from snow that was deposited as many as
150,000 years ago.

The glacier ice can be regarded as a fluid of an extremely high viscosity; it
deforms and flows under its own weight. When the leading edge of a flowing
glacier enters the sea, large slabs of ice can be weakened and then broken off by
buoyant forces and the rise and fall of the tides (see Fig. 12.1). Up to 20,000
icebergs are calved in this way each year; most of these come from the 20 main
glaciers between the Jacobshaven and Humboldt Glaciers. Water and wind cur-
rents then force the icebergs southward to the Atlantic Ocean. As they travel to
the warmer waters, they melt and break up. Typically, an average of around 500
icebergs survive past the 48th parallel in a given year. The largest icebergs have
the potential to cause the most damage to ships, but they are easy to detect by
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ship radar and can be avoided. On the other hand, the smaller ice pieces, having
lengths of a few meters, are much more difficult to discern. In particular, this is
due to the fact that they can be shielded by waves in choppy seas. Most of their
mass is submerged, and an ice piece even as small as 3–5 m in length can cause
very significant damage if it collides with a vessel.

Fig. 12.1. Icebergs being calved from leading edge of glacier (courtesy of Environment
Canada, Canadian Ice Service)

In addition to the icebergs that are found in the North Atlantic, a very small
number of icebergs originate in Alaska and in Siberia or south of Franz Joseph
Land in the Barents Sea.

Icebergs are also calved from the Antarctic ice sheet as it moves towards the
sea. These Antarctic icebergs are generally very much larger than their Arctic
counterparts; some recent ones have been of truly enormous size. The Super Ice-
berg B10A, which broke off in 1992 from the Thwaites Ice Tongue in Antarctica,
is approximately the size of the state of Rhode Island. The danger to mariners
comes not from the iceberg itself, but from the ‘smaller’ kilometer sized ice pieces
that break away from the edges of the main iceberg as it moves Northward and
melts. An iceberg designated as B15 broke off from the Ross Ice Shelf in March
2000. It is approximately 11,000 square kilometers in area, about the size of the
state of Connecticut, making it one of the largest icebergs ever observed. While



12 Aspects of Iceberg Deterioration and Drift 281

some have expressed concern that these events are evidence of global warming,
others have cautioned that they are probably just part of the normal process of
ice shelf growth and loss. It is worth noting that the largest known Antarctic
iceberg, having a length of 333 km and a width of 100 km, was observed in 1957
by the icebreaker USS Glacier.

There are many photographs and satellite images of Antarctic icebergs on the
Antarctic Meteorological Research Center (AMRC) Iceberg Page of the internet
web site http://uwamrc.ssec.wisc.edu. This web page contains a comprehen-
sive archive of information about icebergs recently calved from the Ross Ice Shelf.
Numerous photographs of Arctic icebergs are available from the Lane Gallery in
Newfoundland (cf. http://www.tidespoint.com/lanegallery/index.htm).

Besides the hazards posed by icebergs to shipping and offshore structures
such as oil platforms, icebergs can cause other problems. In shallow water, the
base of the iceberg can gouge wide and deep troughs in the sea bed. In doing
so, it can damage cables and pipelines resting on the sea bottom. Iceberg scour
also can cause ecological damage by exterminating meiofauna such as snails,
lobsterlikes, testaceans, worms, eels, etc. While the seabed ecosystem sometimes
recovers quickly, thereby benefiting the diversity of the species, occasionally it
may take decades to fully recuperate.

12.1.1 The Link Between Iceberg Deterioration and Drift

Before discussing various aspects of iceberg deterioration and drift, we shall
attempt to provide some motivation and rational for this review. Because the
icebergs, as well as the smaller ice pieces that are calved from them, pose hazards
to shipping, offshore structures, underwater pipelines, and the seabed ecosystem,
it is essential to have information about their size, positions, and velocities. While
some information is provided by satellites, aerial reconnaissance and commercial
shipping observations, these data are obtained on an intermittent and often
irregular basis. Therefore, it is necessary to have forecasting models that can
predict iceberg motion and deterioration. Typically, the required forecast time
frame ranges from a couple of days to a week into the future.

Specifically, the kinds of things that might be expected from a forecasting
model are as follows:

1. Predictions of the position and velocity of the parent icebergs. As field ob-
servations are accumulated, these predictions would be corrected or updated
prior to the next forecasting period.

2. Information about the iceberg size and how it changes with time because of
melting and calving of small ice pieces. Estimates of the iceberg lifetimes, i.e.
the time it takes for the iceberg to deteriorate to negligible size such that it
is harmless.

3. Some particulars about the calving of the smaller ice pieces from the parent
iceberg. Predictions of the initial size distributions and the subsequent melting
of these smaller ice pieces. It is also of interest to estimate how far the smaller
ice pieces disperse from their parent iceberg before they melt to an insignificant
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size. While the parent iceberg usually can be seen, it is desirable to have some
idea of the size of the danger zone around the parent where there is a likelihood
of encountering smaller calved pieces that are not so easily observed.

The topics covered in this chapter are presented in the context of assembling
material that could be used in the formulation of operational iceberg forecasting
models. The combined study of iceberg deterioration and drift involves a large
number of fields, including fluid mechanics, atmospheric science, ocean engineer-
ing, dynamics, various modes of heat transfer, solid mechanics, and fracture me-
chanics. While the topic of drift is fairly straightforward, theoretically grounded,
and easy to follow, the material on deterioration is much more ambiguous and
inexact, and it encompasses a wider range of fields. Because the iceberg geome-
try is so irregular and is also changing with time as a result of calving, it is much
more difficult to derive detailed and meaningful deterministic models to predict
the various kinds of deterioration processes. In the absence of such approaches,
one is forced to put together rather crude empirical models.

Let us now very briefly outline the sequence of steps involved in comput-
ing the evolution of iceberg dynamics and thermodynamics. The purpose is to
point out the close coupling between iceberg deterioration and drift. One would
start out with the initial size and shape of the iceberg being given. Using inde-
pendent atmospheric and oceanographic forecasting models, the environmental
forcing, i.e. the wind and the water currents at various levels, would be calcu-
lated. The wind and water drags, which are needed for the prediction of the
iceberg dynamics, both depend upon the iceberg’s shape and the cross-sectional
areas associated with each water current layer. The equations of motion would
then be used to predict the iceberg position and velocity at the next time step.
During this time step, the melting due to the various heat transfer mechanisms,
most of which depend upon the relative velocities between the iceberg and the
fluids (air or water) would be determined. The melting reduces the volume of
the iceberg. It has been found that iceberg shape can be correlated as a function
of its total volume. For example, the ratio of the iceberg draft to its length is
observed to increase as the volume decreases. One could make use of such shape
correlations to approximate a new iceberg geometry after a certain amount of
melting has occurred. This new iceberg geometry would be used in the deter-
mination of the forces required for calculating the iceberg dynamics during the
next time step. The computations proceed in this way, cycling back and forth
between the dynamics and deterioration.

12.1.2 Outline of the Chapter

The chapter begins with a review of terminology pertaining to iceberg size and
shape. The various deterioration mechanisms responsible for melting, wave ero-
sion and calving, and the equations used for their computation are then reviewed.
This is followed by a discussion of iceberg lifetimes and population studies. A
recent melt model for small ice pieces in the bergy bit and growler size ranges is
presented. A final section deals with iceberg dynamics and drift. It reviews the
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governing differential equations of motion for the iceberg, and the various driv-
ing and resisting forces. Numerical schemes to integrate the differential equations
are considered.

12.2 Terminology – Classification of Shape and Size

Information about iceberg populations, and their statistical distributions of
mass, draft and various other linear dimensions is important for hazard assess-
ment in connection with marine transportation and the design of offshore oil
drilling and production platforms. As noted in the previous section, knowledge
about the iceberg shape is essential for the calculations of iceberg drift and dete-
rioration. The next few subsections also have the goal of familiarizing the reader
with the commonly used terminology dealing with iceberg shape and size.

12.2.1 Shape

The morphology of icebergs is of interest for scientific reasons as well as in the
above-mentioned practical applications. The variety and complexity of iceberg
shapes makes it difficult to classify them. However, in an effort to do so, the IIP
has categorized iceberg shapes into the five common forms of blocky, drydocked,
domed, pinnacled and tabular as defined below (see Fig. 12.2).

Blocky – Steep precipitous sides with horizontal or flat top. Very solid berg.
Length/height ratio of 2.5:1.

Drydocked – Eroded such that a large U-shaped slot is formed, with twin
columns or pinnacles. Slot extends into the water line or close to it.

Domed – Large smoothed rounded top. Solid type berg.
Pinnacled – Large central spire or pyramid of one or more spires dominating

shape. Less massive than dome shaped berg of similar dimensions.
Tabular – Horizontal or flat topped berg with length/height ratio of 5:1.

Hotzel and Miller [1] have reported on the frequency of observation of these
various forms in the Labrador Sea from 1973 to 1978 during the months of July
through October. They noted that the pinnacled iceberg was most commonly
observed (36%), followed by tabular (29%), domed (16%), drydocked (15%), and
blocky (4%). Using a coarser, binary classification of tabular and non-tabular
icebergs, yields the result that the non-tabular icebergs are found with more
than twice the frequency as the less degraded tabular forms (71% versus 29%).
On the other hand, the immense icebergs found in the Antarctic are tabular in
shape.

An early method to estimate the drafts of icebergs was to use typical ra-
tios of height to draft [2]. The more detailed study of Hotzel and Miller [1]
reveals the uncertainties inherent in this simple approach. They presented sta-
tistical information on distributions of various important iceberg physical dimen-
sions such as height, length, draft, mass and width, as well as parameter ratios
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Blocky Drydocked

Pinnacled

Domed Tabular

Fig. 12.2. Photographs of five common iceberg shapes (courtesy of Environment
Canada, Canadian Ice Service)

including width/length, draft/length, height/length, mass/length, draft/width,
height/width, mass/width, height/draft, and mass/draft. To emphasize the vari-
ability of some of these data, Hotzel and Miller [1] note that while the average
length to height ratio is about 3:1, the observed values ranged from 0.5:1 to 50:1.
On the other hand, the ratio of width to length is about 0.8 with a moderate
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standard deviation, so that it is reasonable to use the waterline length as an
effective diameter of the iceberg.

Hotzel and Miller [1] obtained power law correlations between various phys-
ical quantities. For example, the relationship between height HI and length L
was found to be

HI = 0.402L0.89 . (12.1)

Such functional relationships can be used to provide a very rough first estimate
of various iceberg dimensions based on the simplest and most easily measured
dimension which is the iceberg waterline length L. These kinds of functional
relationships are specific to a particular location and their use must be tempered
by a recognition of the uncertainties inherent in such equations.

12.2.2 Size Classifications of Tabular and Non-tabular Icebergs

There is a commonly used terminology associated with size classification. Growl-
ers and bergy bits are terms used to designate two particular sizes of ice blocks. A
growler is a mass of glacial ice that has calved from an iceberg or is the remains
of an iceberg. Typically, it has a length between 3 and 10 m. The name growler
comes from the ‘growling’ sound made when the ice piece bobs up and down in
the waves. A bergy bit is a mass of glacial ice that is smaller than an iceberg but
larger than a growler, i.e. about the size of a small cottage. Icebergs that are
larger than bergy bits can be classified as small, medium, large, or very large.
Crocker and Cammaert [3] have given specific size ranges associated with these
classifications as shown in Table 12.1.

Table 12.1. Iceberg size classification used by Crocker and Cammaert [3]

Classification Length (m)

Growler 5–10

Bergy Bit 10–20

Small Iceberg 20–50

Medium Iceberg 50–100

Large Iceberg 100–150

Very Large Iceberg 150+

A very similar classification scheme for both tabular and non-tabular icebergs
giving more detailed descriptions of some shape characteristics was proposed
somewhat earlier by the IIP for tabular and non-tabular icebergs [4]. This is
illustrated in Table 12.2.
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Table 12.2. Iceberg size classification used by International Ice Patrol (IIP) for tabular
and non-tabular icebergs and average values of iceberg parameters [4]

Code Type∗ Size Mass Length Perim- Above Subwater Underwater

(metric (m) eter water surface side surface

tons) (m) surface area area (m2)

area (m2) (m2)

1 2 Growler 450 10 30 100 250 180

2 2 Small 75,000 55 155 2,300 8,000 6,300

3 2 Medium 900,000 125 360 12,000 36,000 26,000

4 2 Large 5,500,000 225 650 40,000 110,000 83,000

5 1 Small 250,000 80 235 5,000 15,000 11,000

6 1 Medium 2,170,000 175 500 25,000 67,000 50,000

7 1 Large 8,230,000 260 750 54,000 150,000 112,000

∗ 1 = tabular
2 = non-tabular

12.2.3 Iceberg Geometry for Use
in Drift and Deterioration Calculations

For the computation of iceberg drift, the IIP makes use of a model in which
the water current field is divided into four layers below the water surface; from
0–20 m, 20–50 m, 50–100 m, and from 100–120 m depths. The water drag on the
iceberg is calculated by summing up the forces acting on each corresponding
layer of the iceberg. Each iceberg layer is subjected to a drag that depends on
the average relative water velocity in each layer and a water drag coefficient
that is based on a reference submerged cross-sectional area of the iceberg for
each respective layer. The wind drag is calculated in a similar way using an air
drag coefficient that is based on the cross-sectional area above the waterline,
but using only one reference air velocity. The IIP has proposed typical values for
the iceberg characteristic cross-sectional areas for different sizes, and for both
tabular and non-tabular icebergs [5].

Other iceberg models consider larger numbers of thinner water layers. Smith
and Donaldson [6] have provided plots of above-water and below-water cross-
sections in two perpendicular vertical planes for 14 separate icebergs measured
during three cruises. Iceberg mass and cross-sectional areas in the air and in
10 m layers below the waterline were determined and used in their iceberg drift
calculations.

Sayed [7] analysed a large number of icebergs of various sizes and obtained
correlations of the geometry as a function of iceberg size. He thus obtained a
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generic iceberg geometry that is statistically appropriate for a certain geographic
location and whose shape changes as it melts. The underwater iceberg shape ob-
tained from the correlations for a given size could then be sliced into 10 m layers
and the cross-sectional area, volume and wetted area for each layer determined
for use in drift and deterioration calculations. As the iceberg melts, the vol-
ume decreases and the new shapes and surface areas can be obtained from his
correlation.

12.3 Iceberg Deterioration Mechanisms

12.3.1 Relative Importance of Various Mechanisms

El-Tahan et al. [8] have listed the major mechanisms of iceberg deterioration that
were originally identified by Job [9]. They are arranged in somewhat different
order below:

1. Melting of the exposed iceberg surface by solar radiation.
2. Buoyancy-induced natural convection along the submerged sides and to a

lesser extent along the bottom.
3. Forced convection melting of the iceberg due to the differential velocities be-

tween the icebergs and the surrounding fluids. This kind of melting occurs
because of: (a) the relative velocities between the submerged portions of the
iceberg and the sea water, and (b) the relative velocities between the exposed
portions of the iceberg above the waterline and the wind.

4. Waterline wave erosion and undercutting.
5. Calving of the ice overhang caused by wave erosion at the waterline.
6. Subsurface calving caused by upward buoyant forces on underwater shelves

(recall that the ice is less dense than sea water), or by other melting mecha-
nisms.

7. Convection induced by wallowing or overturning.
8. Differential melting along cracks and faults in the berg leading to further

calving.
9. Fracture of the ice due to internal stresses.

It is difficult to obtain accurate estimates of the last four items because
of the lack of quantitative theories, and because of uncertainties in geometry,
shape effects and inhomogeneities in material and fracture affinities. Item 7 is
not too significant since typically icebergs spend a relatively small fraction of
their lifetime in the wallowing and overturning modes.

To give an appreciation of the relative importance of these various deterio-
ration mechanisms, Table 12.3 reproduces some estimates given in [8] for three
icebergs:

Case 1 This drydock-shaped 636,000 ton iceberg was observed in the Grand
Banks area off Newfoundland [10]. The water temperatures were low (0–1 ◦ C).
It lost about 12% of its mass in 8 days.



288 S.B. Savage

Case 2 Robe et al. [11] reported on a tabular-shaped iceberg initially 600 m
long by 300 m wide, observed in the Northeast Grand Banks.

Case 3 The data was collected at the Ogmund E-72 drilling site offshore Labrador
[12] for Iceberg No. 032. The iceberg mass was reduced from 486,000 to 264,000
metric tons in 3 days.

Table 12.3. Contribution of each deterioration mechanism to volume loss (in 1000m3)

Deterioration Iceberg #1 Iceberg #2 Iceberg #3

Mechanism [10] [11] [12]

Solar 3.4 (5.3%) 76.2 (2.9%) 0.6 (0.3%)

Buoyant convection 0.8 (1.2%) 35.7 (1.4%) 3.4 (1.5%)

Wind convection 0.6 (0.9%) 74.8 (2.9%) 0.7 (0.3%)

Forced convection (water) 8.0 (12.4%) 643.2 (24.9%) 25.3 (11.3%)

Wave erosion 32.6 (50.6%) 1757.0 (67.9%) 146.3 (65.5%)

Wave induced calving 19.0 (29.5%) nil 47.0 (21.0%)

Total loss 64.4 (100%) 2587.0 (100%) 233.3 (100%)

It is clear from Table 12.3 that wave erosion is the dominant deterioration
mechanism, followed by wave induced calving and forced convection in the water,
whereas incident solar radiation and wind erosion play relatively minor roles.

12.3.2 Equations to Predict Deterioration Mechanisms

We now briefly describe the various deterioration mechanisms and equations
that have been developed to predict them.

Surface Melting Due to Solar Radiation. Monthly values of measured
and interpolated solar radiation of the earth’s surface have been given by De
Jong [13]. For example, in the center of the Labrador Sea (60 ◦ N), the measured
insolation I ranges from roughly 30 cal/cm2/day in December and January to
about 420 cal/cm2/day in July. Because of fog and cloud cover, the ratio of
radiation received to the maximum incident radiation is about 40%.

Let us estimate the rate at which the surface of the iceberg is receding because
of melting. We can equate the energy absorbed by an element of the iceberg
surface dA in a time dt to that needed to melt an iceberg volume element dA dz,
where dz is an element normal to the surface. Thus we find

I(1− α) dt dA = ΓρI dz dA , (12.2)



12 Aspects of Iceberg Deterioration and Drift 289

where Γ is the latent heat of melting of ice (334 J/gm or 79.8 cal/gm), ρI is the
mass density of ice (0.91 gm/cm3), and α is the albedo which is defined as the
ratio of reflected to incident solar radiation. The albedo α can range from as low
as 0.1 for a clear, flat ice surface to as much as 0.95 for fresh, dry snow.

Hence, the velocity of melting of the iceberg due to solar radiation is given
by (12.2) as

Vs =
dz
dt

=
I

ΓρI
(1− α) . (12.3)

Assuming a reasonable value of α = 0.7 [8], and a maximum value of I =
420 cal/cm2/day corresponding to the Labrador Sea in July, then (12.3) yields
a melt velocity Vs = 1.7 cm/day, which is still relatively small.

Melting Due to Buoyant Vertical Convection. Josberger [14] has presented
detailed laboratory and field studies of free convection adjacent to icebergs that is
caused by both thermal and salinity gradients. As the iceberg melts, the adjacent
sea water is both cooled and diluted. The diluted sea water next to the iceberg
has a lower salinity, causing a positive buoyancy and a tendency to rise relative to
the denser surrounding sea water. Closest to the iceberg surface, salinity effects
dominate over the thermal effects. On the other hand, because the thermal
diffusivity is considerably larger than the saline diffusivity, the cooled water
further away from the iceberg surface has the ambient salinity. Being denser,
because of the reduced temperature, it tends to sink. It turns out that salinity
effects are generally more important and result in an upward flow around the
iceberg except for a very small region at the very bottom of the iceberg. White et
al. [15] have suggested that the saline buoyancy will dominate above the lowest
meter or so of the vertical iceberg wall. The flow field observed by Josberger [14]
with the small lower laminar region and the upper turbulent region is shown
schematically in Fig. 12.3.

Further studies of this free convection heat transfer problem have been per-
formed by Gebhart and Mollendorf [16], Neshyba and Josberger [17], and White
et al. [15]. The empirical correlation of Neshyba and Josberger [17] is simple and
provides estimates that are close to the mean of the other predictions. Their
relationship for Vb, the melt rate (in m/yr) of a vertical surface due to buoyant
convection was obtained by a least square parabolic curve fit to the melt rate
data and is given by

Vb = 2.78T + 0.47T 2 , (12.4)

where T is the water temperature in degrees C. Here again, the melt velocities
are relatively small.

Melting Due to Forced Convection. First, to get an idea of the flow condi-
tions as defined by a range of relevant Reynolds numbers, consider icebergs hav-
ing a relative drift velocity vr = 0.2 m/s and characteristic waterline lengths l=10
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Fig. 12.3. The buoyant convection flow field adjacent to ice observed by Josberger [14]

to 100 m. Under these circumstances, the Reynolds number, Re = ρwvrl/μw,
would have values ranging between approximately 106 and 107, where ρw and
μw are respectively the density and viscosity of the sea water. For this Reynolds
number range, the flow around a bluff body like an iceberg would involve tur-
bulent boundary layers, flow separation and turbulent wakes. It is not presently
possible to theoretically predict such complicated flows with any confidence and
engineers typically rely on empirical correlations for heat transfer calculations
around such bodies.

Let us begin by noting some classical results of forced convection heat transfer
for flow past cylinders and spheres. The total forced convection heat flux can be
expressed in terms of the average heat transfer coefficient h as

Q = As hΔT , (12.5)

where As is the surface area of the body and ΔT is the temperature differ-
ence between the free stream and the body. Hilpert [18] developed the following
empirical correlation for the average Nusselt number for cylinders in cross flow

NuD =
hD

k
= CRemDPr

1/3 , (12.6)

where ρ, μ and k are the fluid density, viscosity and thermal conductivity, ReD =
ρuD/μ is the Reynolds number based on cylinder diameter D and free stream
velocity u, Pr = ν/κ is the Prandtl number, ν = μ/ρ is the kinematic viscosity,
κ is the thermal diffusivity, and C and m are parameters that depend upon
ReD. For 40, 000 < ReD < 400, 000 the exponent of ReD was determined to be
m = 0.8. Zhukaukas [19] has presented an equation almost identical in form to
(12.6). For 2× 105 < ReD < 106, Zhukaukas [19] gives the value m = 0.7.



12 Aspects of Iceberg Deterioration and Drift 291

A number of similar correlations have been developed for the flow around
spheres. For example, Achenbach [20] obtained the correlation

NuD = 2 +
(
ReD

4
+ 3× 10−4ReD

1.6
)1/2

. (12.7)

We can curve fit this result by an equation having a power law Reynolds number
dependence like (12.6) in a Reynolds number range ReD ∼ 106. Similar to the
case of the circular cylinders noted previously, one finds m � 0.8.

Note that the surface area of a sphere with a diameterD, or a cylinder having
a length equal to some multiple of its diameter, is proportional to the square
of the diameter, As ∼ D2. Making use of the definition of the Nusselt number
(12.6), and the dependence of the Nusselt number on D as noted in the above
correlations, it is found from (12.5) that the forced convection heat flux has the
following dependence on D

Q ∼ D1+m , (12.8)

where m was found to be between 0.7 and 0.8 for Reynolds number of around
106.

We now focus on the forced convection problem in the context of icebergs.
Strong prevailing Arctic winds cause iceberg melting in two ways. Firstly, there
is the direct forced convection air melting of the exposed surface above the
waterline. Secondly, the winds drive the iceberg through the water at relative
velocities in the range of 10–30 cm/s resulting in forced convection melting of
the submerged portion of the iceberg. In general, we can express Vf , the average
surface melt rate due to forced convection, as

Vf =
qf
ρIΓ

, (12.9)

where qf is the averaged forced convection heat flux per unit surface area (Q/As)
given by

qf = NukfΔT/l , (12.10)

ΔT is the temperature difference between the streaming fluid and the melting
ice, kf is the thermal conductivity of the fluid, l is the maximum waterline length
(the straight line distance from bow to stern) and Nu is the Nusselt number.
White et al. [15] suggested that the Nusselt number can be written, in a form
very similar to (12.6), as

Nu = CRe0.8Pr0.4 , (12.11)

where C = 0.058 for tabular icebergs and C = 0.055 for non-tabular icebergs.
The Reynolds number is defined as

Re = vrl/ν , (12.12)
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where vr is the relative velocity between the fluid and the iceberg, and ν is
the kinematic viscosity. Equations (12.9) to (12.12) can be used to compute the
forced convection melting in both the air and the water by using the appropriate
fluid properties. Typically, computations are based on a relative air velocity
corresponding to a height of 13 m above the ocean surface, and a relative water
velocity that is averaged over the draft of the iceberg. Some coupled forecasting
models predict ocean currents in each of several layers beneath the surface. The
CIS model, for example, considers 10 m thick layers. In such cases, one could
make use of an averaged relative water velocity determined by an appropriate
weighting that accounts for the iceberg surface areas corresponding to each of
these layers. It is found that the surface melt rate due to forced air convection is
comparable to the melt rate due to solar radiation and is very small compared
to the forced water convection.

a 2a

~ 1/k

2a

Original ice face

Wave notch
Mean free surface

Orbit
velocity

Convective
melt

Cusps

Fig. 12.4. Schematic diagram of wave erosion at the waterline and the formation of a
waterline notch

Wave Erosion. Wave erosion at the waterline is the most important iceberg
deterioration mechanism. The basic heat transfer mechanisms are much the same
as the forced convection mode described above. What is different is the enhanced
heat transfer resulting in increased melting in the region near the ocean surface
because of the larger water velocities associated with the wave motion. Waves can
erode a notch in the iceberg after which calving and/or fracture can occur. Figure
12.4 shows a wave train having an amplitude a, wavelength λ, and wavenumber
k approaching the iceberg from the left. In deep water, the particle motions
associated with the waves have the form of circular orbits whose amplitudes
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decay exponentially with depth as shown in Fig. 12.4. When a wave of amplitude
a is reflected by a plane wall, its amplitude is doubled to 2a at the wall itself. So
we might expect the additional melting of the iceberg due to the waves to occur
within region of around 2a above the mean free surface of the water, and a region
somewhat larger below the mean free water surface because of the exponentially
decaying orbital velocities. In addition, because of the relative velocity between
the mean ocean currents and the iceberg there will be forced convection melting
of the iceberg as shown in Fig. 12.4. The result is a waterline notch having a shape
as indicated in Fig. 12.4. An interesting feature of the lower part of the notch is
the formation of ripples or cusps in the ice surface; the mechanisms responsible
for their development have not been discussed in the iceberg literature.

White et al. [15] developed relationships to predict the waterline melt rates.
For the case of a rough wall, the waterline melt rate per degree C is

Vwe = 0.000146
(
R

H

)0.2(
H

τ

)
, (12.13)

where R is the roughness height of the ice surface, and τ and H are the mean
period and height of the waves. A typical value for the roughness height R is
1 cm [15]. The waterline melt rate can be as much as 1.0 m/day/◦C.

Calving of Overhanging Slabs. Section 12.3.1 has listed several iceberg dete-
rioration mechanisms, three of which involve fracturing or calving of the parent
iceberg. Two of the latter mechanisms are (a) calving as a result of thermal
stresses caused by solar radiation or rolling in warm waters, and (b) breaking
off of underwater shelves due to buoyancy. These two mechanisms seem to be
of lesser importance and, furthermore, it is very difficult to quantify them other
than by statistical means. However, the major calving mechanism is that re-
sulting from the waterline wave erosion described in the previous subsection.
Waves progressively cut rounded notches in the iceberg at the waterline. As the
notches become deeper, a protruding overhang above the waterline develops as
shown in Fig. 12.5. The overhanging slab acts like a cantilever beam with the
downward loads arising from the weight of the overhanging ice. As is discussed
in most standard textbooks on engineering solid mechanics, so-called bending
stresses are developed over vertical cross-sections of the overhang. As a result of
the weight of the overhang, tensile bending stresses develop on the upper portion
of the cross section and compressive bending stresses occur in the lower portion.
At some point the bending stresses due to the weight of the overhanging slab
become so great that the ice fractures and the slab calves off.

White et al. [15] have performed extensive axisymmetric finite analyses of
this problem and devised a simple expression for Fl, the critical length when
failure occurs

Fl = 0.33
(
37.5H + h2)1/2

, (12.14)

where H is the wave height and h is the thickness of the overhanging slab, both
expressed in meters.
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Fig. 12.5. Schematic diagram of overhanging slab above the notch caused by waterline
wave erosion

For a steady wave field, tc, the time taken to calve is given by

tc = Fl/Vwe , (12.15)

where Vwe is the wave erosion velocity given by (12.13). If the wave field were
unsteady, then one would integrate the expression for the waterline erosion rate
(12.13) until the critical value of Fl was reached.

White et al. [15] have noted that wave erosion is significantly inhibited in
the lee of waves, and hence the amount of ice lost in calving is strongly shape
dependent. The iceberg shape is also quite variable and difficult to predict. As
a result, the above equations for calving rates are expected to give only crude
approximations.

12.3.3 Validation of Deterioration Equations

El-Tahan et al. [8] performed a study to validate the iceberg deterioration model
described above in Sect. 12.3.2 that is essentially due to White et al. [15]. They
simulated the deterioration of three icebergs, one in the Labrador Sea (during
September) and two in the Grand Banks area (periods from April to June).
These predictions were described earlier in Sect. 12.3.1 and the contributions
of the various deterioration mechanisms were summarized in Table 12.3. When
the sea ice melts away and the water temperatures are above 0 ◦ C, wave erosion
and calving are the dominant deterioration mechanisms, and can account for
as much as 80% of the deterioration rate. The predicted overall mass losses
compared reasonably well with the observed quantities.
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A more recent comparison between predicted deterioration rates and obser-
vations of two icebergs off the Canadian East coast has been made by Venkatesh,
et al. [21]. They concluded that both the calving events and the deterioration
of the icebergs were well modeled (within 10 to 20%) by the above approaches.
This good agreement is indeed surprising in view of the uncertainties in iceberg
geometry and environmental conditions, as well as the many approximations
made in the analyses of the various deterioration mechanisms.

12.4 Melt Deterioration of Bergy Bits and Growlers

The previous section has dealt with the deterioration of icebergs having lengths
greater than about 20 m. It is unlikely that all of the equations of White et
al. [15] can be applied to determine melt rates for bergy bits and growlers whose
lengths range from 20 m down to a couple of meters. These smaller ice pieces
will be carried along with the wave motion to a larger extent than in the case of
larger icebergs. The effect of waterline erosion, which is the major deterioration
mechanism for icebergs, is expected to be different for large icebergs than for
small ice pieces that heave, pitch and roll with the wave motions.

Thus, in the present section, we describe a different, simpler approach to
determine small ice piece melt rates. It was initially proposed by Crocker and
English [22] and was further employed by Savage et al. [23]. Let us assume that
the wave enhanced heat flux Q from the ocean to the ice piece is a function of
the wave height H, wave period τ , water kinematic viscosity ν, the temperature
difference between the water and the melting iceΔT , the thermal conductivity of
the water kw (0.562 W/m/◦K), gravitational acceleration g, and a characteristic
length of the ice piece D, i.e.

Q = fn (H, τ, ν,ΔT, kw, g,D) . (12.16)

Applying the standard dimensional analysis techniques [24] to (12.16) yields four
dimensionless parameters and the functional relationship:

Q

kwΔTH
= fn

(
H2

τν
,
H

gτ2 ,
D

H

)
, (12.17)

where the parameter Q/kwΔTH is the dimensionless heat flux, H2/τν is a wave
Reynolds number and D/H is an ice piece characteristic length to wave height
ratio. If we consider deep water waves where the square of the wave celerity
c2 = λg/2π, then it turns out that we can regard H/gτ2 as being proportional
to the wave steepness. Let us further assume the particular product form of
(12.17)

Q

kwΔTH
= β

[
H2

τν

]c1 [ H
gτ2

]c2
[
D

H

]c3

, (12.18)

where β, c1, c2, and c3 are constants to be determined by means of fitting with
some laboratory and/or field data.
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Note that we can express the characteristic length D as the cube root of the
volume V of the ice piece, which is merely one convenient way to define a length
scale. We can also express the volume in terms of the ice piece waterline length
L, thus

V = kBGL
3 , (12.19)

and hence, we can write

D = V 1/3 = k
1/3
BGL , (12.20)

where kBG is a volume coefficient for bergy bits and growlers assumed to have
a numerical value of 0.45 [23]. Using (12.18), it is possible to express the rate of
change of ice mass ṁ (in kg/s) as

ṁ = −Q/Γ , (12.21)

where Γ is the latent heat of fusion (3.34× 105 J/kg).

12.4.1 Determination of Constants in Heat Flux Equation

To make use of the dimensionless heat flux equation (12.17), the constants β,
c1, c2, and c3 must determined, and empirical data provides a means to do so.
Unfortunately, such data is very limited. Savage et al. [23] considered laboratory
tests and field investigations of Crocker and English [22]. The laboratory tests
of Crocker and English were of two types. One set consisted of experiments,
performed in the Ocean Engineering Basin (OEB) at the Institute for Marine
Dynamics (IMD) in St. John’s, Newfoundland, which measured the melt rates of
fresh-water blocks subjected to regular waves. Similar series of tests were carried
out in the Institute for Marine Dynamics (IMD) ballast tank; they entailed fully
submerged blocks of ice that were forced harmonically under water. In the field
experiments, video images of melting bergy bits and growlers were collected.
These tests were carried out near Baie Verte, Newfoundland from July 19 to
22, 1994. Six ice pieces were monitored from a nearby ship and 14 melt rate
measurements were obtained along with measurements of water temperature
and estimates of wave heights and periods.

Multiple linear regression analyses were applied to the collected data sets
and the constants β, c1, c2, and c3 appearing in (12.18) were obtained. The field
data showed considerably more scatter than the laboratory tests. However, after
a careful examination of the small scale laboratory test results and comparisons
with the field data and classical forced convection heat transfer results, Savage et
al. [23] concluded that it was more appropriate to determine the constants on the
basis of the field results alone. It was found that the ice pieces in the small scale
laboratory tests behaved in a rather different way than in the field tests. As the
ice pieces in the laboratory tests melted and became smaller, there was a greater
tendency for the very small floating ice pieces to be carried along with the waves
as their size decreased. Thus, the differential velocity between the water and ice
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pieces was reduced as melting occurred. This gave rise to a different dependence
of heat flux on characteristic length scale D than was observed in the field tests.
The larger ice pieces in the field tests have less of a tendency to bob up and
down with the waves and are more likely to experience a washing by the waves.
Considering only the Baie Verte field data, then (12.18) takes the form

Q

kwΔTH
= 933

[
H2

τν

]0.347 [
H

gτ2

]0.171 [
D

H

]1.75

. (12.22)

12.5 Iceberg Life Expectancies

12.5.1 Computations Based on Deterioration Model

Using the deterioration models discussed previously in Sect. 12.3.1 and Sect.
12.3.2, Venkatesh and El-Tahan [4] have computed the life expectancies for each
of the standard tabular and non-tabular iceberg size classifications. Calculations
were performed using climatological environmental data (mean sea, sea surface
and air temperatures, wave period and height, and wind speeds) for each month
in the Grand Banks and in Labrador. On the basis of these computations, they
made a number of conclusions corresponding to these two areas.

Grand Banks area – A growler will vanish in less than one day in any month
of the year. A small non-tabular iceberg will completely disintegrate in less
than three days during July to November.

Labrador Sea – During December to May, when the surface and layer mean
temperatures are at or below 0 ◦ C, no significant melting occurs. During June
to November, a growler will completely melt in less than 33 hours, while a small
non-tabular iceberg needs more than five days to disintegrate completely. Also
in the Labrador Sea, the life expectancy of medium and large icebergs is of
the order of weeks.

The shortest life expectancy of any iceberg occurs in September for both the
Grand Banks area and the Labrador Sea.

12.5.2 Empirical Model for Iceberg Life Expectancy

Venkatesh and El-Tahan [4] took the results of the above mentioned calculations
for a given month and particular location, and plotted them in the form of iceberg
mass versus life expectancy. On log–log scales, the graphs were approximately
linear. They were then able to express the life expectancy tl in hours in the
following form

tl = aM b
0 , (12.23)

whereM0 is the iceberg initial mass in metric tons and a and b have constant val-
ues for each month. Using linear regression analyses, Venkatesh and El-Tahan [4]
determined the values of a and b for each month and location (cf. Table 12.4).
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Table 12.4. Values of coefficients a and b used in iceberg life expectancy model of
Venkatesh and El-Tahan [4]

Month Grand Banks Labrador Sea

a b a b

January 0.15995 0.67 – –

February 0.38725 0.67 – –

March 0.41591 0.67 – –

April 0.27415 0.67 – –

May 0.15922 0.67 – –

June 0.089125 0.67 0.831 0.6

July 0.05333 0.67 0.282 0.6

August 0.033884 0.67 0.159 0.6

September 0.019588 0.67 0.183 0.6

October 0.026546 0.67 0.349 0.6

November 0.036224 0.67 0.681 0.6

December 0.061944 0.67 – 0.6

Equation (12.23) can be used to estimate the mass of an iceberg that has a
life expectancy equal to the prediction period τp, thus

m = (τp/a)
1/b

. (12.24)

An iceberg with a mass less than or equal to m will melt during the prediction
period τp.

We require a frequency distribution of iceberg masses in a given ensemble if
we wish to calculate the percentage of icebergs with a mass less than or equal to
m that are lost during the prediction period τp. Venkatesh and El-Tahan [4] made
use of IIP data, which covered mainly the Grand Banks area, and Fenco data,
which primarily covered the Labrador Sea area. Using linear regression analyses,
they were able to obtain relationships between the cumulative frequency (in
percent) and the mass (in metric tons) as follows:

f = −33 + 20 log10 (m) , (12.25)

for the Grand Banks area, and

f = −66 + 24 log10 (m) , (12.26)

for the Labrador Sea.
By using (12.24) and (12.25) or (12.26), we can determine the percentage of

icebergs that will be lost in a given prediction period. For example, if we consider
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a prediction period of one day (24 hours), then from (12.24), we see that all
icebergs with a mass of 40,670 metric tons or less will vanish in that period.
Equation (12.25), for the Grand Banks area, indicates that this corresponds to
59.2 % of the icebergs considered at the start of the prediction period.

12.6 Ice Piece Size Distributions

Because of the potential hazards caused by small ice pieces in the bergy bit and
growler size range, it is important to have information about the probability
of encountering them. Most of them are generated when ice is calved from the
larger parent iceberg and the calved ice fractures into many thousands of pieces.
It is thought that the calving events, caused by waterline wave erosion and
undercutting, can occur in a roughly periodic fashion. The waves create a notch
at the waterline of the iceberg resulting in the formation of an overhanging
cantilever slab of ice. The slab breaks off when it reaches a critical length. The
time taken to develop this critical length was given previously in (12.15); it
is the calving period. Thus, we can think of a continuing supply of ice pieces
being generated by the calving process. The calved ice pieces melt subsequent
to the calving event, and eventually disappear. Depending upon the relative
velocities between the parent iceberg and the smaller ice pieces, there will be
a maximum distance that the smaller ice pieces travel from the parent iceberg
before they melt to a size of negligible significance. As the ice pieces are calved
from the parent iceberg and disperse from it, there develops a spatial distribution
of ice piece sizes that depends upon the distance from the parent iceberg. One
eventual goal of an operational iceberg drift and deterioration program would
be to generate charts yielding the probabilities of encountering bergy bits and
growlers in regions surrounding the parent icebergs.

Although several studies [1,3,25,26] have collected data on iceberg sizes, al-
most all have focused on size distributions of parent icebergs, and few have
included accurate measurements for the smaller (< 20 m) ice pieces in the bergy
bit and growler size ranges. This is in part due to the difficulties in making size
measurements of the small pieces, the very large number of small pieces that are
generated in a calving event, and the earlier lack of concern about the smaller
pieces. Crocker and Cammaert [3] have suggested that most existing iceberg
data sets collected prior to their own work underestimated the numbers of these
smaller icebergs, and some data sets contained little or no information on them.

Crocker and Cammaert [3] presented results of aerial photographic surveys
conducted north of Cape Feels, Newfoundland on July 13, 1992. The large format
photographs permitted identification and measurement of ice pieces as small
as 5 m in length. The data set included waterline lengths of from 5 to 175 m.
The measurements were plotted in the form of size distributions using 5 m bin
divisions of extreme water length. These observations revealed large numbers of
small ice pieces less than 10 m in length and relatively few larger pieces in the
10 to 20 m range. The absence of the 10–20 m pieces suggested that extensive
fracturing occurs during the calving process when the overhanging slab (caused
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by wave erosion at the water line) can no longer be supported. The important
conclusion of this study was that the iceberg size distribution has two distinct
parts. One part is a slightly skewed distribution of parent icebergs similar in
form to what was observed in most previous studies. And most importantly,
there is a second, previously undocumented part, which shows an approximately
exponential increase with decreasing length in the bergy bit and growler size
range (< 20 m).

12.6.1 Size Distributions of Newly Calved Ice Pieces

In this subsection we shall briefly discuss the initial size-frequency distribution
function for the small ice pieces (< 20 m in length) that are generated by a calving
event [27]. Crocker [28] has noted the two primary calving processes that have
been observed. One is due to the breaking off and fracture of an overhanging
slab that has been developed by wave erosion of the iceberg at the waterline as
discussed in Sect. 12.3.2. A second calving process is that due to stresses induced
by buoyant forces and or grounding [29,30]. Related calving can also occur as a
result of thermal stresses caused by solar radiation or rolling in warm waters. It
is very difficult to quantify these latter kinds of calving other than by statistical
means. However, Crocker [28] has suggested that the distribution of ice piece
sizes appears to be qualitatively similar to that which is generated during the
fracture of an overhanging slab.

Analytical Expression for Initial Size Distribution Function. Savage
et al. [27] proposed an analytical expression for the size distribution function
and determined the constants appearing in this expression by fitting it to field
data. Their results can be summarized as follows. Defining L to be the waterline
length of an ice piece, the fractional number of particles with linear sizes between
L− dL/2 and L+ dL/2 can be expressed as

dN
N0

= f(L) dL , (12.27)

where f(L) is the distribution function and N0 is the total number of particles.
Savage et al. [27] proposed that the Weibull [31] distribution function was a
suitable form for f(L), and they chose a particular form that gave a good fit to
the observed ice piece size distributions for calving icebergs and glaciers

f(L) =
1

2L0

(
L0

L

)1/2

exp

[
−
(
L

L0

)1/2
]
. (12.28)

Savage et al. (cf. p. 167 of [27]) noted that although a power law form for
the distribution function could give a reasonable fit to the middle range of the
observations, it overestimated the data for both the smallest and largest ice
pieces. By using the definition of the particle mean size Lm =

∫∞
0 Lf(L) dL,

they determined that the characteristic length L0 = Lm/2.
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The total calved mass m made up of N0 particles, having a mass density ρI ,
and a size distribution function given by (12.28), is defined by

m =
∫ ∞

0
N0 ρI V f(L) dL =

∫ ∞

0
N0 ρI kBG L

3 f(L) dL , (12.29)

where we have made use of (12.19) for the volume V of an ice piece. By carrying
out the integration of (12.29), we can express the mass in terms of L0, i.e.

m =
∫ ∞

0
N0 ρI kBG

L3

2L0

(
L0

L

)1/2

exp

[
−
(
L

L0

)1/2
]

dL

= 720N0 ρI kBG L
3
0 . (12.30)

Rearranging (12.30) yields the total number of particles N0 in terms of the total
mass m and L0 or Lm

N0 =
m

720 ρI kBG L3
0

=
m

90 ρI kBG L3
m

. (12.31)

Correlations with Field Data. There are few field observations that provide
information about the size distributions of ice pieces generated by a calving
event. We consider here the field observations of Crocker [28] involving debris
from recently calved icebergs, and the observations of Dowdeswell and Forsberg
[32] involving ‘small’ ice pieces derived from tidewater glaciers (those with marine
margins grounded below sea level).

Savage et al. [27] performed nonlinear least square fits to (12.28) based on
these ice piece size data. They were thus able to obtain correlations for the
length scale L0 that appears in the distribution function (12.28). The iceberg
calving data of Crocker [28] were derived from aerial surveys carried out in
Bonavista Bay, Newfoundland in 1991 and 1992. These two data sets included
1049 and 3461 ice pieces respectively. The small ice pieces were calved from
parent icebergs that ranged in length from 50 to 100 m, with a mean length of
88 m. Further details about these data are given in [27]. By using the estimates
of the total calved mass for each calving event, the total numbers of ice pieces
calved in a given event were determined by means of (12.31). The 1992 data
sets included 9 separate calving events involving calved masses totaling 62,237
metric tons. When the events involving very small calved masses were neglected,
the remaining 1991 data sets included individual calved masses of 3032 and
767 tons. Thus, while the total calved mass per event varied by an order of
magnitude, the least square fits determined a value of L0 that remained constant
at approximately 0.14 m. It follows that the mean calved ice piece size Lm =
2L0 � 0.28 m.

This suggests that L0 is independent of calved mass for events that involve
more than some minimal calved mass, i.e. that L0 must depend upon some
characteristic length different from, for example, LV that could be obtained by
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Fig. 12.6. Size-frequency distribution function for the 1992 Crocker data that include
9 separate calving events involving a total calved mass of 62,237 tons. Length scale
L0 = 0.135m

taking the cube root of the calved volume. Savage et al. [27] noticed that one
can form a characteristic length LFR from the group

LFR =
[
KIc

ρI g

]2/3

, (12.32)

where KIc is the fracture toughness (having dimensions of force/length3/2), ρI is
the mass density of ice, and g is the gravitational acceleration. The length LFR

is dependent on material properties. However, it is not dependent on a physical
length scale, and thus, would be independent of calved mass.

Figure 12.6 shows a typical size-frequency distribution and compares the
observed data with the curve fits corresponding to (12.28) for the 1992 data set
of Crocker [28]. These data include 9 separate calving events having an average
calved mass of 6915 tons per event. For the larger values of L the data points are
more scattered about the curve fits. This is to be expected; the data contain only
a few large ice pieces in a bin of pieces having lengths between L and L + dL.
On the other hand, there are of the order of 1000 ice pieces having lengths, for
example, between 2 and 3 m.

Also, at first glance, the small value of the mean calved ice piece size Lm �
0.28 m is somewhat surprising. It transpires that this small value is a result of
the extremely large numbers of very small ice pieces that arise in a calving event.
Note that while the smallest ice pieces that were measured for the data shown in
Fig. 12.6 were in the range between 2 and 3 m, enormous numbers of ice pieces
as small as millimeters were present but not measured. In other field events [27],
ice pieces as small as 0.15 m were observed and recorded. The size-frequency
distribution function given by (12.28) was able to fit these observations quite
well in the lowest size ranges. This gives some confidence in the use an equation
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having the form of (12.28) for estimating numbers of ice pieces in the small size
ranges.

12.6.2 Evolution of Initial Calved Piece Size Distribution

The size distributions just discussed pertain to ice pieces that have just been
calved. As the calved ice pieces are immersed in the warmer water, the individual
pieces will melt. As a consequence, the size distribution function will evolve with
time. Savage et al. [23] have determined the evolution of the distribution function
by making use of the bergy bit and growler heat flux equation (12.22). We can
rearrange (12.22) in the form

Q

Γ
= αL1.75 , (12.33)

where Γ is the latent heat of fusion, and

α = 933
kwΔT H

Γ

[
H2

τν

]0.347 [
H

gτ2

]0.171
[
k

1/3
BG

H

]1.75

. (12.34)

Now from (12.19) the mass of an ice piece m = ρI V = ρIkBG L
3, and thus by

using (12.21), we can express the time rate of change of ice piece mass as

ṁ = 3kBGρIL
2 dL

dt
= −Q

Γ
= −αL1.75 , (12.35)

or

dL5/4

dt
= −ζ , (12.36)

where

ζ =
5α

12kBGρI
. (12.37)

Using the initial size distribution function (12.28) just after a calving event and
the temporal variation of an individual ice piece that results from (12.36), Savage
et al. [23] were able to determine the temporal evolution of the size distribution
function subsequent to a calving event.

12.6.3 Dispersion of Calved Small Ice Pieces from Parent Iceberg

If we think of the well known Ekman spiral [33], it is apparent that both the
magnitude and the direction of the wind driven ocean water velocity changes
continuously with depth. The submerged portion of a large parent iceberg will
be subjected to these depth varying currents. The effective water drag force
acting on each infinitesimal horizontal layer of the iceberg will depend upon the
difference between the water layer velocity and the iceberg velocity. The total
effective water force acting on the iceberg mass will result from the integral of
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the forces acting on each differential horizontal layer of the submerged iceberg.
On the other hand, the smaller calved ice pieces, whose drafts are less than that
of the parent iceberg and which penetrate only an upper surface layer of the
ocean, will be subject to different depth averaged velocities, and thus to total
water driving forces that act in different directions.

What this means is that ice pieces which are calved from the parent iceberg
will not move in unison with the parent, but will gradually move away from it
and disperse, while at the same time they will melt and eventually disappear.
Thus, at any given time one could expect a ‘cloud’ of smaller ice pieces in the
neighborhood of a parent iceberg. Since these smaller pieces are diminished by
melting as they drift away from the parent, there will be some maximum distance
that the small ice pieces can travel relative to the parent before they become of
insignificant size.

At the same time that this is going on, wave erosion can cut notches in the
parent iceberg at the waterline, creating an overhanging slab that can break
off when a critical sized notch has developed (cf. Sect. 12.3.2). Then, a calving
event occurs and generates a new supply of small ice pieces in the neighborhood
of the parent iceberg. Two processes proceed concurrently; (1) the intermittent
calving that provides a source of new small ice pieces in the neighborhood of the
parent iceberg, and (2) the dispersion of the small pieces away from the parent
and their melting and eventual disappearance, which effectively act as a ‘sink’
of small ice pieces.

These processes have been implemented in an operational iceberg drift and
deterioration computer program by Sayed [7] and Savage et al. [34]. This fore-
casting program predicts the velocities, positions and size variations of both the
parent icebergs and packets of small calved ice pieces.

12.7 Iceberg Dynamics and Drift

12.7.1 Introduction

There are essentially three types of approaches used for modeling iceberg drift;
these three categories have been reviewed by Marko et al. [35] who discussed the
relative merits of each one. One category is the statistical approach that makes
use of information on previous trajectories and histories to predict future iceberg
positions and velocities [36,37,38,39,40]. The dynamics of the iceberg motion are
usually ignored. A second class of methods is the kinematic model in which one
also ignores the dynamics and estimates the drift by the use of simple empirical
relationships. A simple example is the rule that icebergs move at about 2% of
the wind speed [38]. The third class of methods is the dynamical model in which
one integrates Newton’s equations of motion for an iceberg of known mass that is
subjected to various driving and resisting forces to obtain the iceberg’s velocity
and position as a function of time. Some examples of this type of model are [5,6],
[41,42,43,44,45,46,47,48].

The dynamical models that yield deterministic predictions of velocities and
trajectories have uncertainties associated with the various force terms in the
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equations of motion. These relate, for example, to inaccuracies in the air and
water drag coefficients, the wave force coefficient connected with the radiation
stress, the added mass coefficient, etc. The predictions of the dynamical models
improve as the values of these coefficients are refined. The dynamical models also
can be combined with iceberg deterioration models of various levels of sophisti-
cation (cf. Sects. 12.3, 12.4 and 12.6). For these reasons, dynamical models can
be regarded as the most appropriate type for detailed forecasting. This is the
model type that is discussed below. We note that the iceberg model presently
used by the IIP is a dynamical model; the model used by the Canadian Ice
Service (CIS) is similar to it.

12.7.2 Equations of Motion, Various Force Contributions

In this section we review the governing equations of motion and the various
generic forces that arise. The basic equation governing the horizontal motion of
an iceberg of massm moving with velocity V and referred to axes at rest relative
the rotating earth is based on Newton’s second law, i.e.

m

(
dV

dt
+ f × V

)
= F a + F w + F r + F p + F am + F si , (12.38)

where f is the Coriolis vector that points upward and whose magnitude is f =
2Ω sinφ in which Ω = 7.272× 10−5 rad/s is the earth’s rate of rotation and φ is
the latitude. The terms on the right hand side of (12.38) correspond to the forces
or effective forces acting on the iceberg where F a is the wind drag force, F w is
the water drag, F r is the force due to radiation stress associated with the waves,
F p is the pressure gradient force, F am is an effective force associated with the
added mass of the iceberg, and F si is the force contribution due to interactions of
the iceberg with floating sea ice. The various forces are now discussed in detail.

Wind Drag, F a. The air drag force F a due to the wind acting on the exposed
surface of the iceberg above the waterline is expressed as

F a =
1
2
ρaCaAa|u|u , (12.39)

where u = (V a − V ) is the relative wind velocity, V a is the wind velocity
derived from an atmospheric forecasting model, V is the iceberg drift velocity,
ρa is the air density, and Aa is the cross-sectional area of the iceberg above the
waterline and perpendicular to the relative velocity. The Reynolds number for
a typical wind velocity of 10 m/s, and an iceberg length of 100 m is of the order
of 108. Thus, the flow is certainly turbulent and a drag law like (12.39) which
depends upon the square of the relative wind velocity is appropriate. The air
drag coefficient for the iceberg, Ca, typically has a value of roughly 1.0. Smith
[47], for example, uses a value for the wind velocity V a measured at a height of
13 m. In most models the wind velocity V a is assumed to be much greater than
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the iceberg drift velocity V . As expressed in (12.39), the air drag force acts in
the direction of the relative wind u. This is appropriate if the iceberg shape is
symmetrical about the two planes parallel to the flow direction. If the iceberg
shape is unsymmetrical, then an additional force component perpendicular to
the relative wind direction will arise. The iceberg would then act rather like
an airfoil or a sail that generate lift forces. Because of calving, the shape of
the iceberg is seldom known with any accuracy, and such transverse forces are
almost always neglected.

Water Drag, F w. The water drag F w is modeled in much the same way as
the wind drag force, but since the water currents vary considerably with depth,
some account must be taken of these variations. Typically, the water flow field is
separated into horizontal layers, each layer having a mean relative water velocity
vr(i) = (V w(i)−V ), where V w(i) is the layer averaged upstream water velocity
in the ith layer. The water velocities V w(i) would be determined by an ocean
current forecasting model. Summing over all the layers, the water drag force then
becomes

F w =
1
2
ρwCw

∑
i

Aw(i)|vr(i)|vr(i) (12.40)

where ρw is the density of the water, Aw(i) is the cross-sectional area of the ith
layer of the iceberg in a vertical plane, and Cw is the water drag coefficient again
having a value of about 1.0, as consistent with turbulent flow around typical bluff
bodies (recall from Sect. 12.3.2, in the subsection dealing with forced convection
melting, that the Reynolds number is of the order of 107 for an iceberg having
a length of 100 m and a relative drift velocity 0.2 m/s). Smith and Donaldson
[6,46], for example, have used layer depths of 10 m. Similarly, the model of Sayed
[7] also uses 10 m deep layers. The IIP model, on the other hand, uses coarser
divisions of 4 unequal layer depths: from 0–20 m, 20–50 m, 50–100 m, and 100–
120 m. If the draft of the iceberg is less than 100 m, then fewer than 4 layers
are considered in the IIP model. Note that three-dimensional effects are not
explicitly considered, and that the water drag coefficient Cw is assumed to be
the same for each layer.

As a result of the water temperature and salinity variations with depth, there
are associated water density variations. Moving an object through such a density
stratified flow gives rise to internal wave drag, something that naval architects
term the “dead water phenomenon”. Stratified flow effects have generally been
neglected.

Force Due to Wave Radiation Stress, F r. Longuet-Higgins and Stewart
[49] formulated mean conservation laws of mass, momentum and energy for water
surface wave motions imposed on variable currents and applied them in very ele-
gant ways to a large number of problems. During the motion of a train of surface
waves, there occurs an excess momentum flux associated with the wave motion
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that has been termed the radiation stress by [49]. It is generally acknowledged
that Longuet-Higgins and Stewart coined the term “radiation stress” in the con-
text of water surface waves [50,51]. We should note, however, that this term
is also used in studies of acoustic streaming, albeit with a somewhat different
meaning there.

One can think of a wave train and the excess momentum flux or radiation
stress associated with it. A body exposed to the waves will experience a force
depending upon the way the waves are diffracted and dissipated by the body. To
appreciate this in a simple-minded way, consider the body to be replaced by a
series of vertical screens in deep water. Now let us examine certain limits. First
imagine that the screens are deep and that the deep water waves experience
viscous dissipative as they move through the screens. If all the wave energy is
absorbed (dissipated), then the momentum is also absorbed, and the force on
the screens per unit width is ρwga

2/4 where a is the amplitude of the incident
waves. The amplitude at of the wave transmitted through to the back side of
the screens vanishes. If the screens are very open, then the waves just pass
through, there is no wave reflection, the transmitted wave (behind the screens)
has the same amplitude as the incident wave. In this case, the force on the
screens tends to zero. If on the other hand, the screens are completely closed,
so as to act like a rigid vertical wall, then the incident wave energy is perfectly
reflected, the momentum is all reversed, and the resulting force is doubled, i.e.
equal to ρwga

2/2. The amplitude of the reflected wave ar is the same as that
of the incident wave, and there is no transmitted wave behind the screens. For
the case of partial wave reflection, we can express the force per unit width as
ρwg(a2 + a2

r − a2
t )/4.

More generally, Longuet-Higgins [52] determined the radiation force on a box
of width W normal to the incident wave train in water of finite depth h to be

F r =
1
4
ρwgW (a2 + a2

r − a2
t )
(

1 +
2kh

sinh(2kh)

)
V a

|V a|
, (12.41)

where k = 2π/λ is the wave number, λ is the wavelength and the waves are as-
sumed to have the same direction as the wind. For deep water, 2kh/ sinh(2kh) →
0, and if the waves are absorbed by a deep vertical wall, as suggested earlier the
radiation force is given by

F r =
1
4
ρw g a

2W
V a

|V a|
. (12.42)

For shapes such as an iceberg, the force can be less [53,54,55,56] because of wave
diffraction resulting from the iceberg’s three-dimensional shape and the finite
draft. Commonly, the magnitude of the radiation force for icebergs is expressed
as

|F r| =
1
2
Cwf ρw gWH

2 , (12.43)

where H = 2a is the wave height, W is the width of the iceberg, and Cwf is a
wave force coefficient that, in general, depends on the ratio of iceberg width to
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wavelengthW/λ, the ratio of iceberg draft to width hD/W , ratio of iceberg draft
to water depth hD/h, and the wave steepness H/λ. Isaacson and McTaggart [56]
have noted that the wave force coefficient Cwf typically has values between 0
and 0.25, consistent with the analyses and experiments of Kudou [54] and Maruo
[53]. In the limit of small wave heights, linear wave theory yields no dependence
of Cwf on wave steepness H/λ.

Smith [47] has made an interesting comparison of the ratio of the radiation
wave force (12.42) to the wind drag force (12.39) which is seen to be

radiation wave force
wind drag force

=
ρw g a

2

2ρa Ca hu2
, (12.44)

where h is the mean height of the iceberg above the waterline. Following Bigg
et al. [42] one can estimate the wave amplitude as a function of wind speed by
using a quadratic curve fit of wave crest to trough height H = 0.02025V 2

a from
data in the marine Beaufort scale [57]. Assuming a wind speed Va = 10 m/s
(much larger than the iceberg speed V ), an air drag coefficient Ca = 1.0, and an
iceberg with a mean height h = 20 m, (12.44) yields that the radiation wave force
is almost twice the air drag force. For higher wind speeds, the ratio of radiation
wave force to air drag is much larger.

The wave radiation force has usually been neglected in most models. Bigg
et al. [42] have estimated from their calculations that it usually contributes less
than 5% of the total forces acting on the iceberg. On the other hand, Isaacson
[55] has provided examples in which the wave radiation force is dominant.

Pressure Gradient Force, F p. The equation of motion for a water element
can be written as

dV w

dt
+ f × V w = − 1

ρw
∇p+

1
ρw
∇ · σ , (12.45)

where d/dt is the material derivative following a fluid particle, and σ is the
stress tensor arising from viscous forces. The turbulent surface wind stresses are
communicated into the fluid and generate σ in the interior. Let us assume that
the vertical velocity (in the z-direction) is negligible, so that the velocity vector
has essentially horizontal components. Furthermore, if we assume that the stress
gradients in the z direction are much larger than those in the horizontal (x, y)
direction, then (12.45) can be written as

dV w

dt
+ f × V w = − 1

ρw
∇p+

1
ρw

∂τ

∂z
, (12.46)

where τ has the shear stress components (σxz, σyz) in the interior of the fluid.
Bigg et al. [42] have suggested that the last term in (12.46), which results from
the application of the surface wind stress, has a scale of the order of the surface
wind stress τ s (= 1.5 × 10−3ρa|V a|V a) [58], divided by the water density ρw

and the Ekman depth. Usually the Ekman depth is defined as
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Ek =
(

2μ
ρw f

)1/2

. (12.47)

For the purposes of a simple order of magnitude estimate only, Bigg et al. chose,
instead of (12.47), a vertical length scale corresponding to either the draft of the
iceberg or 90 m, whichever is less. Substituting typical values, based on either
(12.47) or the choice of Bigg et al. [42], shows that the last wind stress term
in (12.46) is a small fraction of the Coriolis term f × V w. As noted by Bigg et
al. [42], it has commonly been assumed that the ocean is in steady geostrophic
balance and the pressure force per unit mass on the iceberg is simply f × V w.
Furthermore, they suggest that the dominant term on the left hand side of
(12.46) is the material derivative dV w/dt. It will be shown subsequently that
the so-called pressure force on the iceberg depends upon dV w/dt. Bigg et al. [42]
stated that the inclusion of the material derivative dV w/dt in the determination
of the pressure force was the principal factor needed to predict realistic iceberg
motion.

The pressure force Fp exerted by the water on a fixed volume, such as an
iceberg, can be expressed as a surface integral, which in turn may be written in
terms of a volume integral by making use of Gauss’ theorem, i.e.

F p = −
∫ ∫

Area

p dA = −
∫ ∫ ∫

V olume

∇p d r , (12.48)

Now following Smith and Donaldson [6], (note that there are several minor mis-
prints in their equations), we assume that the pressure gradient ∇p is uniform
horizontally in the neighborhood of the iceberg, and replace the vertical integra-
tion by a sum over a series of layers, each of volume B(i)

F p = −
∑

i

∇p(i)B(i) , (12.49)

Assuming that (12.46) can be applied to each layer and neglecting the last wind
stress term, we can write

F p = ρw

∑
i

B(i)
(

dV w(i)
dt

+ f × V w(i)
)
. (12.50)

Since the mass of the displaced volume of water is mdv = ρw

∑
iB(i) = m, we

can express (12.50) in terms of a volume averaged current

V w =
∑

iB(i)V w(i)∑
iB(i)

�
∑

iA(i)2V w(i)∑
iA(i)2

, (12.51)

where it has been assumed that the volume of each layer is proportional to the
square of its measured cross-sectional area A(i) in a vertical plane, since one does
not normally have direct measurements of the underwater volume of each layer
nor of the cross-sectional area in a horizontal plane [6]. Hence, using (12.51), we
can rewrite (12.50) as
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F p = m

(
dV w

dt
+ f × V w

)
. (12.52)

The above expression for the pressure force differs from that of the Smith and
Banke [45] model which neglected the material derivative dV w/dt. In later work,
which did include this term, Smith and Donaldson [6,46] indicated that while
it would appear to add important physics to the model, its neglect resulted in
negligible changes to the computed iceberg trajectories. They suggested that
in its absence, the water drag forces act to make the iceberg velocity respond
quickly to the water column. Smith [47] further qualified this in stating that
while the pressure gradient term is frequently comparable to the other terms,
its deletion causes the iceberg to lag behind the changes in water velocity, but
the resultant motion relative to the accelerated water is reduced by changes in
the water drag. The equilibrium drift rates are approached within an hour, and
hence, the lag in response is so brief that it does not significantly affect the
iceberg tracks.

On the other hand, as mentioned earlier, Bigg et al. [42] have forcefully
argued that the material derivative dV w/dt is the key term in the expression
for F p and that only by its inclusion “could the most important iceberg zone
east of Labrador and Newfoundland be reproduced.” They stated that the two
forces, mdV w/dt and the water drag F w contribute approximately 70 ± 15%
of the total forcing of the iceberg motion and are roughly in balance. It was
estimated that accelerations are generally less than 10−7 m/s2 (i.e. 1 cm/s/day)
except when grounded icebergs have just been released. Based on their own
calculations, Bigg et al. [42] suggested that typically the Coriolis force and the
air drag make up the remaining force balance in roughly equal parts of 15%
each, whereas the wave radiation force is generally less than 5%. However, as
noted earlier in the discussion of the wave radiation force, the relative sizes of the
various force contributions depend very much on the environmental conditions.
One should be cautious about generalizing on the basis of limited calculations.

Effective Force Associated with the Added Mass, F am. When a solid
body is accelerated in a fluid, the fluid particles are accelerated to some degree
along with the body. In principle, all the fluid particles will be accelerated, but we
can think of an added mass of fluid that is a weighted average of this entire mass.
Thus, we can think of this added mass as being accelerated with the same value
as that of the solid body [59]. For example, in an inviscid fluid, the added mass
of a sphere is the mass of the fluid corresponding to half of the displaced volume
of the sphere. For an iceberg we can expect a roughly similar value. Newman
[59] has provided added mass coefficients for ellipsoids of revolution and other
shapes. Isaacson and McTaggart [56] have discussed added mass in the context
of icebergs. For example, they have considered the effects of shallow water and
the presence of nearby structures. Instead of considering m (dV /dt+ f × V ) as
the mass acceleration term in the momentum equation, one can write this term
as (m + mam) (dV /dt+ f × V ) where mam is the added mass. Alternatively,
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we can express the momentum equation in the form of (12.38) with an effective
force F am on the right hand side where

F am = −mam

(
dV

dt
+ f × V

)
. (12.53)

In so doing, we are making use of D’Alembert’s principle, which is discussed in
most dynamics textbooks. D’Alembert suggested that Newton’s second law could
be considered from a slightly different viewpoint in which the mass acceleration
terms could be treated as effective ‘inertia forces’. We note that most iceberg
models have neglected added mass effects and do not contain a term like (12.53).

Smith [47] has performed calculations in which the iceberg mass was dou-
bled and quadrupled to examine the effects of iceberg mass. It was stated that
the increases in mass resulted in negligible changes in fit of the modeled track.
However, these computations involved finding ‘optimized’ values for the air and
water drag coefficients, Ca and Cw. When the mass was increased, both Ca and
Cw had to be increased to obtain equivalent fits of the modeled track. For ex-
ample, in the case of iceberg 83-5, his full model fit the iceberg track best when
Ca = 0.9 and Cw = 0.8. When the mass was doubled, the best fit was obtained
when Ca = 1.3 and Cw = 1.2. When it was quadrupled, the best fit was obtained
when Ca = 3.0 and Cw = 2.8. However, this sort of ‘tuning’ does not seem to be
entirely consistent and the significance of such results is not clear.

Force Due to Interactions with Sea Ice, F si. Although the force contribu-
tion due to interactions of the iceberg with sea ice is sometimes mentioned as a
factor in discussions of drift models [42], it is usually neglected, and the writer
is unaware of any models that have explicitly taken this force into consideration
for either drift or deterioration.

12.7.3 Comments Concerning Possible Errors and Uncertainties

The basic ideas behind the dynamics in the present operational iceberg model
are straightforward and well established. The various contributions to the forces
and effective forces acting on the iceberg have been identified. Nevertheless,
there are some differing opinions concerning the relative significance of a few of
the force contributions. Some of the less contentious origins of inaccuracies in
existing models are mentioned below.

Drag Coefficients and Reference Areas. The wind and water drag forces
depend on the fluid velocities, the drag coefficients and the pertinent reference
cross-sectional areas above and below the sea surface. Frequently, the reference
cross-sectional shapes are not known with any degree of certainty. They also
change when the iceberg melts, and more significantly when calving and rolling
of the iceberg occur. The drag coefficients for bluff bodies (such as an iceberg)
at high Reynolds numbers typically have values of around 1.0 [60]. The reliable
prediction of the turbulent flows around such bodies involving flow separation
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is not possible given the present state of the art, and one commonly relies upon
empirical correlations for the drag coefficients. Banke and Smith [61] performed
towing experiments on three growlers and reported water drag coefficients Cw =
1.2± 0.2; part of this scatter was due to uncertainties about the shape and size
of the bergs.

Drag coefficients are sometimes established by choosing values that give the
best fit between predicted and observed iceberg trajectories. For example, Smith
and Donaldson [46] found by fitting 9 iceberg track segments that the “optimum”
drag coefficients were Ca = 1.3±0.7 and Cw = 1.0±0.7. The standard deviation
of values in other fits of this kind are sometimes in excess of the values just
noted (see also [45]). In a later study, Smith [47] suggested optimum air and
water drag coefficients of 1.3 and 0.9 respectively (also see [62]). One must be
cautious about such determinations since the drag coefficients are being used
essentially as fitting parameters, and the particular values obtained can reflect
inadequacies of the overall modeling rather than accurate assessments of the
physical drag coefficients themselves. Nevertheless, the quoted values are not
too different from the standard values for bluff bodies.

Uncertainties in flow forces can also be present because of sail and keel ef-
fects in which “lift” forces perpendicular to the oncoming flow are generated
in addition to the usual hydrodynamic drag parallel to the flow direction. An
additional effect (that is customarily neglected) is the additional drag force due
to the generation of internal waves in the stratified upper water layers.

Wind and Water Currents Forecasts. The major factors that influence
iceberg drift are the wind and water currents. These currents are responsible,
either directly or indirectly, for all of the forces or effective forces that act on
the iceberg. Clearly, inaccurate information about their magnitude, direction
and variations with depth can lead to errors in predicted iceberg trajectories.
It is essential to have wind and water current forecasts that are as accurate as
possible.

For example, in an iceberg model currently under development [7], the Cana-
dian Ice Service (CIS) is making use of the wind and water current forecasting
components that are part of the Community Ice Ocean Model (CIOM). The
CIOM is a coupled ice, ocean numerical model used for support to ice analysis
and forecast operations. It uses a coupling framework shared by the Bedford
Institute of Oceanography, the Maurice Lamontagne Institute and the Cana-
dian Ice Service. The ocean component of the CIOM is POM, the Princeton
Ocean Model (cf. http://www.aos.princeton.edu/WWWPUBLIC/htdocs.pom/).
The CIOM is forced by forecast surface wind from models of the Canadian Me-
teorological Centre.

A tentative CIS iceberg forecasting model [7], which accounts for all of the
forcing terms mentioned in Sect. 12.7.2, was able to yield quite good simulations
of the iceberg trajectories measured by Smith and Donaldson [6] when it made
use of the observed iceberg cross-sectional shapes and the observed water cur-
rents. This suggests that, if the model is forced by accurate predictions of the
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wind and water velocities, it should give reliable results. Ocean current forecasts
from the particular implementation of the POM into the CIS iceberg forecasting
model have not been compared with observed ocean currents, but a field project
to do so is presently being planned.

12.7.4 Numerical Integration Schemes

The equations of motion based on (12.38) can be rewritten in the form of two
first order differential equations

dV

dt
= a(t,V ) = −f × V +

1
m

(F a + F w + F r + F p + F am + F si) , (12.54)

dx

dt
= V , (12.55)

where x = (x, y) is the horizontal position of the iceberg at time t. These
equations can be integrated in the simplest manner by using an explicit or for-
ward Euler method (cf. p. 550 [63]). Thus, one considers an advanced time step
t(j+1) = t(j) +Δt, where t(j) is the previous time step and Δt is the time incre-
ment, and writes (12.54) and (12.55) in the following finite difference form

V (j+1) = V (j) + a(j)Δt , (12.56)

x(j+1) = x(j) + V (j)Δt , (12.57)

where a in (12.56) is based on the velocities V (j) at the earlier time step t(j)

and the velocities V (j) in (12.57) are taken at the position x(j).
For example, Smith and Donaldson [6,46], Smith [47] and Bigg et al. [42]

have used this simple Euler approach. Smith and Donaldson [6,46] and Smith
[47] found the appropriate time step to be 24 s. Shorter time steps gave almost
the same results whereas longer time steps, greater than 100 s occasionally led
to computational instabilities. Bigg et al. [42] used the same discretization as in
[47], but used somewhat longer time steps of 135 s.

Although the forward Euler method is very simple, it is only first order
accurate and other workers such as Mountain [5] and Sodhi and El-Tahan [48]
have used more accurate fourth order Runge–Kutta approaches. The present IIP
model uses a fourth order Runge–Kutta scheme with an adaptive time step. The
computations start with a specified time step and if the computations are not
within a predetermined error tolerance, the time steps are successively halved.
The initial default time step in the current IIP model is taken as 225 s, which
is considerably larger than the value of 24 s used by Smith [47] in his forward
Euler model.

The experience of the Canadian Ice Service is that computations based on
the IIP model sometimes become unstable. This suggests that the stability of
this approach may depend upon the values of various parameters or the forcing
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functions. It is be desirable to have a more robust numerical scheme, one that can
accommodate much larger time steps, and preferably one that is unconditionally
stable.

Implicit Backward Euler Method. One alternative to the above explicit
approaches is to use an implicit or semi-implicit numerical scheme. Even for
nonlinear equations, such techniques are usually stable. The simplest of the
implicit schemes is based on the implicit backward Euler method (cf. p. 735
[63]). Consider the nonlinear set of equations (12.54)

dV

dt
= a(t,V ) , (12.58)

which after implicit differencing yield

V (j+1) = V (j) + a(j)(t(j+1),V (j+1))Δt . (12.59)

Equation (12.59) can be linearized to give

V (j+1) = V (j) +Δt
[
a(j)(t(j+1),V (j)) +

∂a

∂V

∣∣∣∣
V (j)

·
(
V (j+1) − V (j)

)]
,(12.60)

where ∂a/∂V is the matrix of partial derivatives of the right hand side of (12.58).
Solving (12.60) for V (j+1) we obtain

V (j+1) = V (j) +Δt
[
1− Δt

∂a

∂V

]−1

· a(j) . (12.61)

Thus, at each step we must invert the matrix[
1−Δt ∂a

∂V

]
, (12.62)

in order to solve (12.60) for V (j+1). This result is first order accurate; Press et
al. [63] discuss higher order semi-implicit methods.

Savage [69] has studied the explicit and implicit Euler approaches, and vari-
ous linearly implicit Rosenbrock methods [64,65,66,67], including the Wolfbrandt
[68] and modified Rosenbrock triple formulae in the context of iceberg drift. It
was concluded that the simple semi-implicit Euler method was extremely robust,
even for very large time steps, and provided sufficiently accurate results for time
steps as large as 1000 s.

12.8 Concluding Remarks

This chapter has reviewed some of the physics and mechanics of the processes
responsible for the drift and deterioration of seaborn icebergs. It has attempted
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to provide some background of what might be involved in the development of
operational iceberg forecasting models.

The general methodology for the prediction of the various iceberg melt mech-
anisms and calving was first established by the work of White et al. [15]. It was
found that wave erosion and calving are the dominant deterioration mechanisms,
followed by forced water convection. Some of the melt models are fairly simple
and relatively crude, but they can be justified in part by the existence of per-
sistent and relatively unpredictable changes of the geometry of an individual
iceberg. When calving and fracture occur, the shape of the remaining portion
of parent iceberg can be altered significantly. The iceberg can pitch and roll,
changing its equilibrium position in the water, consistent with its new center
of gravity. Under these circumstances, it is not clear how one could handle the
detailed heat transfer mechanisms in a purely deterministic way. Nevertheless,
some studies have suggested that the deterioration predictions including both
calving and melting are reasonably accurate (within 10 to 20%). Such good
agreement is noteworthy in view of the complicated governing physical mecha-
nisms, the simplified approaches used to handle them, a nd the complexity and
variability of possible iceberg shapes. Using these models for the deterioration
mechanisms, correlations of iceberg life expectancies for specific locations and
given months were obtained.

The basic ideas behind the calculation of iceberg drift are also reasonably well
established. The various contributions to the forces and effective forces acting on
an iceberg have been identified, and explicit expressions to calculate them have
been proposed. Among various researchers there are different opinions about
the relative significance of a few of the force contributions. Some in question
are the force due to wave radiation stress, the material derivative of the water
velocity that appears in the pressure gradient force term and the effective force
associated with the added mass of the iceberg. While some researchers have
neglected some of these contributions in the formulation of their drift models,
all of the contributions have been described in the present chapter.

There are uncertainties associated with the numerical values of the wind and
water drag coefficients. Sometimes these have been determined a posteriori by
choosing best fits of observed trajectories by predictions based on selected values
of the drag coefficients. Such a fit procedure masks the possible deficiencies of the
modeling of the various force contributions and can give inappropriate values for
the drag coefficients. A discussion of various numerical integration schemes for
the prediction of iceberg drift concluded that a simple implicit Euler was both
very robust and had adequate accuracy. Details concerning the wind and water
currents are probably the most important inputs to the modeling since these
currents determine, either directly or indirectly, all of the forces acting on the
iceberg. For iceberg forecasting models, it is apropos to couple the iceberg drift
and deterioration model with state of the art ocean and atmospheric forecasting
models.
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13 Snow Avalanches
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Cemagref, unité Erosion Torrentielle, Neige et Avalanches, Domaine Universitaire,
38402 Saint-Martin-d’Hères Cedex, France

13.1 Introduction

Over the last century, mountain ranges in Europe and North America have seen
substantial development due to the increase in recreational activities, trans-
portation, construction in high altitude areas, etc. In these mountain ranges,
avalanches often threaten man’s activities and life. Typical examples include
recent disasters, such as the avalanche at Val d’Isère in 1970 (39 people were
killed in a hostel) or the series of catastrophic avalanches throughout the North-
ern Alps in February 1999 (62 residents killed). The rising demand for higher
safety measures has given new impetus to the development of mitigation tech-
nology and has given rise to a new scientific area entirely devoted to snow and
avalanches. This paper summarises the paramount features of avalanches (for-
mation and motion) and outlines the main approaches used for describing their
movement. We do not tackle specific problems related to snow mechanics and
avalanche forecasting. For more information on the subject, the reader is referred
to the main textbooks published in Alpine countries [1,2,3,4,5,6,7,8].

13.1.1 A Physical Picture of Avalanches

Avalanches are rapid gravity-driven masses of snow moving down mountain
slopes. With this fairly long definition, we try to characterise avalanches with
respect to other snow flows. For instance, a snowdrift involves transport of snow
particles, driven not by gravity but by wind. The slow slide and creep of the
snow cover is driven by gravity but with a slow kinetic (typical velocities are in
mm/day). Likewise, the slide of a snowpack down a roof cannot be considered
an avalanche.

13.1.2 Avalanche Release

Successive snowfalls during the winter and spring accumulate to form snow cover.
Depending on the weather conditions, significant changes in snow (types of crys-
tal) occur as a result of various mechanical (creep, settlement) and thermo-
dynamic processes (mass transfer). This induces considerable variations in its
mechanical properties (cohesion, shear strength). Due to its layer structure, the
snow cover is liable to internal slides between layers induced by gravity. When
the shear deformation exceeds the maximum value that the layers of snow can

N.J. Balmforth and A. Provenzale (Eds.): LNP 582, pp. 319–338, 2001.
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undergo, a failure arises, usually developing first along the sliding surface, then
propagating throughout the upper layers across a crack perpendicular to the
downward direction. This kind of release is very frequent. In the field evidence
of such failures consists of a clear fracture corresponding to the breakaway wall
at the top edge of the slab and a bed surface over which the slab has slid (see
Fig. 13.1). If the snow is too loose, the failure processes differ significantly from
the ones governing slab release. Loose snow avalanches form near the surface.
They usually start from a single point, then they spread out laterally by pushing
and incorporating more snow.

Fig. 13.1. Slab avalanche released by gliding wet snow

The stability of a snow cover depends on many parameters. We can distin-
guish the fixed parameters related to the avalanche path and the varying pa-
rameters, generally connected to weather conditions. Fixed parameters include:

• Mean slope. In most cases, the average inclination of starting zones ranges from
27◦ to 50◦. On rare occasions, avalanches can start on gentle slopes of less than
25◦ (e.g. slushflow involving wet snow with high water content), but generally
the shear stress induced by gravity is not large enough to cause failure. For
inclinations in excess of 45◦ to 50◦, many slides (sluffs) occur during snowfalls;
thus amounts of snow deposited on steep slopes are limited.

• Roughness. Ground surface roughness is a key factor in the anchorage of
the snow cover to the ground. Dense forests, broken terrain, starting zones
cut by several ridges, ground covered by large boulders generally limit the
amount of snow that can be involved in the start of an avalanche. Conversely,
widely-spaced forests, large and open slopes with smooth ground may favour
avalanche release.
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• Shape and curvature of starting zone. The stress distribution within the snow-
pack and the variation in its depth depend on the longitudinal shape of the
ground. For instance, convex slopes concentrate tensile stresses and are gener-
ally associated with a significant variation in the snowcover depth, favouring
snowpack instability.

• Orientation to the sun. The orientation of slopes with respect to the sun has
a strong influence on the day-to-day stability of the snowpack. For instance,
in winter, shady slopes receive little incoming radiation from the sun and con-
versely lose heat by long-wave radiation. It is generally observed that for these
slopes, the snowpack is cold and tends to develop weak layers (faceted crystals,
depth hoar). Many fatalities occur each year in such conditions. In late winter
and in spring, the temperature increase enhances stability of snowpacks on
shady slopes and instability on sunny slopes.

Among the varying factors intervening in avalanche release, experience clearly
shows that in most cases, avalanches result from changes in weather conditions:

• New snow. Most of the time, snowfall is the cause of avalanches. The hazard
increases significantly with the increase in the depth of new snow. For instance,
an accumulation of 30 cm/day may be sufficient to cause widespread avalanch-
ing. In European mountain ranges, heavy snowfalls with a total precipitation
exceeding 1 m during the previous three days may produce large avalanches,
with possible extension down to the valley bottom.

• Wind. The wind is an additional factor which significantly influences the sta-
bility of a snowpack. Indeed it causes uneven snow redistribution (accumu-
lation on lee slopes), accelerates snow metamorphism, forms cornices, whose
collapses may trigger avalanches. On the whole, influence of the wind is very
diverse, either consolidating snow (compacting and rounding snow crystals)
or weakening it.

• Rain and liquid water content. The rain plays a complex role in snow meta-
morphism. Generally, for dry snow, a small increase in the liquid water content
(LWC< 0.5%) does not significantly affect the mechanical properties of snow.
However, heavy rain induces a rapid and noticeable increase in LWC, which re-
sults in a drop in the shear stress strength. This situation leads to widespread
avalanche activity (wet snow avalanches).

• Snowpack structure. A given snowpack results from the successive snowfalls.
The stability of the resulting layer structure depends a great deal on the
bonds between layers and their cohesion. For instance, heterogeneous snow-
packs, made up of weak and stiff layers, are more unstable than homogeneous
snowpacks.

13.1.3 Avalanche Motion

It is very common and helpful to consider two limiting cases of avalanches de-
pending on the form of motion [7]:
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• The flowing avalanche (avalanche coulante, Fliesslawine, valanga radente):
a flowing avalanche is an avalanche with a high-density core at the bottom.
Motion is dictated by the relief. The flow depth does not generally exceed a few
meters (see Fig. 13.2). The typical mean velocity ranges from 5 m/s to 25 m/s.
On average, the density is fairly high, generally ranging from 150 kg/m3 to
500 kg/m3.

• The airborne avalanche (avalanche en aérosol, Staublawine, valanga nubi-
forme): it is a very rapid flow of a snow cloud, in which most of the snow
particles are suspended in the ambient air by turbulence (see Fig. 13.3). Relief
has usually little influence on this aerial flow. Typically, for the flow depth,
mean velocity, and mean density, the order of magnitude is 10–100 m, 50–
100 m/s, 5–50 kg/m3 respectively.

Fig. 13.2. Flowing avalanche impacting a wing-shaped structure in the Lauratet ex-
perimental site (France)

The avalanche classification proposed here only considers the form of motion
and not the quality of snow. In the literature, other terms and classifications
have been used. For instance, it is very frequent to see terms such as dry-snow
avalanches, wet-snow avalanches, powder avalanches, etc. In many cases and
probably in most cases in ordinary conditions, the motion form is directly influ-
enced by the quality of snow in the starting zone. For instance, on a sufficiently
steep slope, dry powder snow often gives rise to an airborne avalanche (in this
case no confusion is possible between airborne and powder snow avalanches).
However, in some cases, especially for extreme avalanches (generally involving
large volumes of snow), motion is independent of the snow type. For instance,
wet snow may be associated with airborne (e.g. Favrand avalanche in the Cha-
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Fig. 13.3. Airborne avalanche descending a steep slope (Himalayas)

monix valley, France, on 16 May 1983). Between the two limiting cases above,
there is a fairly wide variety of avalanches, which exhibit characteristics common
to both airborne and flowing avalanches. Sometimes, such flows are referred to as
“mixed-motion avalanches”. The use of this term is often inappropriate because
it should be restricted to describing complex flows for which both the dense core
and the airborne play a role (from a dynamic point of view). In some cases,
the dense core is covered with a snow dust cloud, made up of snow particles
suspended by turbulent eddies of air resulting from the friction exerted by the
air on the core. This cloud can entirely hide the high-density core, giving the
appearance of an airborne avalanche, but in fact, it plays no significant role in
avalanche dynamics. It should be born in mind that the mere observation of a
cloud is generally not sufficient to specify the type of an avalanche. Further ele-
ments such as the features of the deposit or the destructive effects are required.

The current terminology asserts that there are two main types of motion. In
this respect, mixed-motion avalanches are seen as avalanches combining aspects
of both airborne and flowing avalanches, but they are not seen as a third type
of avalanche. The question of a third type of avalanche has been raised by some
experts during the last few years. Indeed, there is field evidence that some events
did not belong either to the group of airborne or flowing avalanches. For instance,
the Taconnaz avalanche (Haute-Savoie, France) on 11 February 1999 severely
damaged two concrete-reinforced structures. The impact pressure was estimated
at (at least) 600 kPa. The assumption of a flowing avalanche is not supported
by the shape of the deposit. Current knowledge of airborne dynamics has a hard
time explaining such a high impact pressure.

To conclude it should be noticed that there is currently a limited amount of
data on real events. Some of the main parameters, such as the mean density in
an airborne avalanche, are still unknown. Thus, many elements of our current
knowledge of avalanches have a speculative basis. Today a great deal of work is
underway to acquire further reliable data on avalanche dynamics. Experimental
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sites, such as la Sionne (Switzerland) or the Lautaret pass (France), have been
developed for that purpose. However a survey of extreme past events shows
that the characteristics of extreme avalanches (involving very large volumes)
cannot be easily extrapolated from the features of ordinary avalanches. In this
respect, the situation is not very different from the problems encountered with
large rockfalls and landslides [9,57]. Many observations that hold for ordinary
events no longer hold for rare events. Examples include the role of the forest,
the influence of the snow type on avalanche motion, etc.

13.2 Modelling Avalanches

Avalanches are extremely complex phenomena. This complexity has led to the
development of several approaches based on very different points of view. Many
papers and reports have presented an overview of current models. These include
the review by Hopfinger [12] as well as a comprehensive up-to-date review of all
existing models edited by Harbitz [13] in the framework of an European research
programme. Here we shall only outline three typical approaches: the statistical
approach, the deterministic approach, and small-scale models.

13.2.1 Statistical Methods

In land-use planning (avalanche zoning), the main concern is to delineate ar-
eas subject to avalanches. Avalanche mapping generally requires either accurate
knowledge of past avalanche extensions or methods for computing avalanche
boundaries. To that end several statistical methods have been proposed. The
two main models used throughout the world are the one developed by Lied and
Bakkehøi [15] and the one developed subsequently by McClung and Lied [14].
Both attempt to predict the extension (stopping position) of the long-return
period avalanche for a given avalanche path. Generally, authors have considered
avalanches with a return period of approximately 100 year. All these methods
rely on the correlations existing between the runout distance and some topo-
graphic parameters. They assume that the longitudinal profile of the avalanche
path governs avalanche dynamics. The topographic parameters generally include
the location of the top point of the starting zone (called point A) and a point
B of the path profile where the local slope equals a given angle, most often 10◦

(this point is usually interpreted as the deceleration point of the path). The po-
sition of the stopping position (point C) is described using the angle α, which is
the angle of the line joining the starting and stopping points with respect to the
horizontal (see Fig. 13.4). Likewise, β is the average inclination of the avalanche
path between the horizontal and the line joining the starting point A to point
B.

To smooth irregularities in the natural path profile, a regular curve (e.g.
a parabola) can be fitted to the longitudinal profile. Statistical methods have
so far been applied to flowing avalanches. In principle, nothing precludes using
them for airborne avalanches. But in this case, one is faced with the limited
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Fig. 13.4. Topographic parameters describing the profile. The dashed line represents
the fitted parabola

amount of data and their poor quality (airborne avalanches are rare and the
limits of their deposits are hard to delineate in the field). As an example of
statistical models, we indicate the results obtained by Lied and Toppe [16].
Using regression analysis on data corresponding to the longest runout distance
observed for 113 avalanche paths in western Norway, these authors have found
that α = 0.96β − 1.7◦. The regression coefficient is fairly good (r2 = 0.93)
and the standard deviation is relatively small (s = 1.4◦). Many extensions of
the early model developed by Lied and Bakkehøi have been proposed over the
last twenty years either to tune the model parameters to a given mountainous
region or adapt the computations to other standards. For instance, subsequent
work on statistical prediction of avalanche runout distance has accounted for
other topographic parameters such as the inclination of the starting zone or the
height difference between the starting and deposition zones. Although statistical
methods have been extensively used throughout the world over the last twenty
years and have given fairly reliable and objective results, many cases exist in
which their estimates are wrong. Such shortcomings can be explained (at least
in part) by the fact that for some avalanche paths, the dynamic behaviour of
avalanches cannot be merely related or governed by topographic features.

13.2.2 Deterministic Approach (Avalanche-dynamics Models)

The deterministic approach involves quantifying the elementary mechanisms af-
fecting the avalanche motion. Avalanches can be considered at different spatial
scales (see Fig. 13.5). The larger scale, corresponding to the entire flow, leads to
the simplest models. The chief parameters include the location of the gravity cen-
tre and its velocity. Mechanical behaviour is mainly reflected by the friction force
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F exerted by the bottom (ground or snowpack) on the avalanche. The smallest
scale, close to the size of snow particles involved in the avalanches, leads to com-
plicated rheological and numerical problems. The flow characteristics (velocity,
stress) are computed at any point of the occupied space. Intermediate models
have also been developed. They benefit from being less complex than three-
dimensional numerical models and yet more accurate than simple ones. Such
intermediate models are generally obtained by integrating the motion equations
across the flow depth in a way similar to what is done in hydraulics for shallow
water equations.

u

F

u(x,t)
í
p

h(x,t)

u(x,y,t)

ë(x,y,t)

Fig. 13.5. Different spatial scales used for describing avalanches

Simple Models

Simple models have been developed for almost 80 years in order to crude es-
timations of avalanche features (velocity, pressure, runout distance). They are
used extensively in engineering throughout the world. Despite their simplicity
and approximate character, they can provide valuable results, the more so as
their parameters and the computation procedures combining expert rules and
scientific basis have benefited from many improvements over the last few decades.

Simple Models for Flowing Avalanches. The early models date back to
the beginning of the 20th century. For the Olympic Games at Chamonix in
1924, the Swiss professor Lagotala computed the velocity of avalanches in the
Favrand path [18]. His method was then extended by Voellmy , who popularised
it. Since the model proposed by Voellmy, many extensions have been added. The
Voellmy–Salm–Gubler (VSG) model [17] and the Perla–Cheng–McClung model
[11] are probably the best-known avalanche-dynamics models used throughout
the world. Here we outline the VSG model. In this model, a flowing avalanche
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is considered as a sliding block subject to a friction force:

F = mg
u2

ξh
+ μmg cos θ , (13.1)

where m denotes the avalanche mass, h its flow depth, θ the local path inclina-
tion, μ a friction coefficient related to the snow fluidity, and ξ a coefficient of
dynamic friction related to path roughness. If these last two parameters cannot
be measured directly, they can be adjusted from several series of past events. It is
generally accepted that the friction coefficient μ only depends on the avalanche
size and ranges from 0.4 (small avalanches) to 0.155 (very large avalanches) [17].
Likewise, the dynamic parameter ξ reflects the influence of the path on avalanche
motion. When an avalanche runs down a wide open rough slope, ξ is close to
1000. Conversely, for avalanches moving down confined straight gullies, ξ can be
taken as being equal to 400 or more. In a steady state, the velocity is directly
inferred from the momentum balance equation:

u =
√
ξh cos θ (tan θ − μ) . (13.2)

According to this equation two flow regimes can occur depending on path incli-
nation. For tan θ > μ, (13.2) has a real solution and a steady regime can occur.
For tan θ < μ, there is no real solution: the frictional force (13.1) outweighs the
downward component of the gravitational force. It is therefore considered that
the flow slows down. The point of the path for which tan θ = μ is called the
characteristic point (point P). It plays an important role in avalanche dynamics
since it separates flowing and stopping phases. In the stopping zone, we deduce
from the momentum equation that the velocity decreases as follows:

1
2

du2

dx
+ u2 g

ξh
= g cos θ (tan θ − μ) . (13.3)

The runout distance is easily inferred from (13.3) by assuming that at a point
x = 0, the avalanche velocity is up. In practice the origin point is point P but
attention must be paid in the fact that, according to (13.2), the velocity at point
P should be vanishing; a specific procedure has been developed to avoid this
shortcoming (see [17]). Neglecting the slope variations in the stopping zone, we
find:

xa =
ξh

2g
ln
(

1 +
u2

P

ξh cos θ (μ− tan θ)

)
. (13.4)

This kind of model enables us to easily compute the runout distance, the max-
imum velocities reached by the avalanche on various segments of the path, the
flow depth (by assuming that the mass flow rate is constant and given by the
initial flow rate just after the release), and the impact pressure.

Simple Models for Airborne Avalanches. For airborne avalanches, simple
models have been developed using the analogies with inclined thermals or start-
ing plumes. An inclined thermal consists of the flow of a given volume of a heavy
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fluid into a surrounding light fluid down an inclined wall. Buoyancy is the key
factor of motion. To our knowledge, the earliest model was proposed by Tochon-
Danguy and Hopfinger [19], then further developments were made by Béghin and
Hopfinger [20], Fukushima and Parker [21], as well as Akiyama and Ura [22]. But
as for Voellmy’s model, similar models were probably developed in parallel by
other authors, notably Russian scientists [23]. The main difficulty encountered
here is that avalanche volume increases constantly as the avalanche descends.
Thus contrary to simple models developed for flowing avalanches it is necessary
to consider a further equation reflecting changes in volume or mass. To that
end, it is generally assumed that the avalanche volume is a half ellipsoid (three-
dimensional cloud) or a half cylinder with an elliptic basis (two-dimensional
cloud). Changes in volume are due to entrainment of surrounding air into the
airborne avalanche and snow incorporation from the snow cover. Here, for the
sake of simplicity, we only consider two-dimensional flows without snow incorpo-
ration. We further assume that the friction exerted by the ground on the cloud
is negligible compared to the buoyant force.

Fig. 13.6. A thermal is defined as the flow of a constant-volume flow driven by buoy-
ancy (instantaneous release). A starting plume is a constant-supply flow (continuous
release)

It is widely recognised (see [25]) that the inflow rate is proportional to a
characteristic velocity (generally the mean velocity) and the surface area what-
ever the type of the flow (jet, plume, thermal) and the environment (uniform or
stratified). Such an assumption leads to:

d�̄V
dt

= �aα(θ)S U , (13.5)

where V is the cloud volume, U its velocity (velocity of the mass centre), �̄ the
mean bulk density of the “heavy” fluid, �a the density of the ambient (“light”)
fluid, and the surface area S (per unit width) is ks

√
HL with H the flow depth

and L the flow length. We can also express the volume V (per unit width) as
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κHL. We used a shape factor ks defined by: ks = E(1−4k2)/
√
k, where k = H/L

and E denotes the elliptic integral function; likewise, κ is another shape factor:
κ = π/4. In (13.5), we have also introduced α(θ), which is an entrainment
coefficient depending on the inclination θ only. This assumption needs further
explanations. It is usually stated that the entrainment coefficient is a function
of an overall Richardson number, defined here by: Ri = g′h cos θ/u2, where we
introduced the reduced gravity g′ = gΔ�̄/�a and Δ�̄ = �̄ − �a is the buoyant
density [24,25,26]. Here the overall Richardson number reflects the stabilizing
effect of the density difference and the relative importance of buoyancy [24].
In the case of a gravity current with constant supply, it is observed that for a
given slope, the mean velocity U reaches a constant value, insensitive to slope
but depending on the buoyancy flux (per unit width) A = g′hU : U ∝ 3

√
A

[24,27]. This also means that the flow adjusts rapidly to a constant Richardson
number (for a given slope). In this case, using approximate equations for the
mass and momentum balances (respectively d(HU)/dx = αU and d(HU2)/dx =
g′h sin θ), we easily deduce that the entrainment coefficient α is a function of the
Richardson number and slope: α = Ri tan θ [24]. Here, although buoyancy supply
is not constant, we assume that the entrainment coefficient α depends only on
the slope.

Using the fact that at any time the mean bulk density can be defined by:

�̄ =
�0V0 + �a(V − V0)

V
, (13.6)

where �0 and V0 denote the initial density and volume of the cloud, we infer the
volume balance equation:

κ
dHL
dt

= α(θ)ks

√
HLU . (13.7)

In the present context, Béghin assumed that the ratio k = H/L remains constant
from the beginning to the collapse of the cloud. Thus, using the fact that d()/dt =
Ud()/dx, where the abscissa x refers to the downward position of the mass centre,
we easily deduce from (13.7) that:

dH
dx

= αH , (13.8)

where αH = α(θ)
√
kks/(2κ). The ambient fluid exerts two types of pressure on

the cloud: a term analogous to a static pressure (Archimede’s theorem), equal to
�aV g, and a dynamic pressure. As a first approximation, the latter term can be
evaluated by considering the ambient fluid as an inviscid fluid in a irrotational
flow. On the basis of this approximation, it can be shown that the force exerted
by the surrounding fluid on the half cylinder is Fdyn = �akvd(UV )/dt, where
kv = 2k is sometimes called the added mass coefficient [28]. Thus the momentum
balance equation can be written as:

d�̄V U
dt

= �̄gV sin θ − �agV sin θ − kv�a
dV U
dt

, (13.9)
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or equivalently:
d(�̄+ kv�a)V U

dt
= Δ�̄gV sin θ . (13.10)

The buoyant term on the right-hand side of (13.10) is constant. Indeed, using
(13.6), we find that:

Δ�̄gV sin θ = Δ�̄0V0g sin θ , (13.11)

with Δ�̄0 = �̄0 − �a the initial buoyant density. Moreover, to simplify (13.10),
we can use the Boussinesq approximation, which involves neglecting the excess
in density in front of the inertial terms (�̄ ≈ �a). Thus we infer from (13.10):

dU2

dx
+

4
H(x)

αHU
2 =

2β(θ)
H2(x)

, (13.12)

where β(θ) = g′
0V0 sin θ/ [κk(1 + kv)]. After integrating (13.12), we find that the

mean velocity varies as a function of the abscissa as follows:

U2 =
3H4

0U
2
0 + 6βxH(x) + 2βα2x3

3H4(x)
, (13.13)

where (U0, H0) refer to the initial velocity and depth of the cloud. For large values
of x, the mean velocity behaves asymptotically as: U ∝ 1/

√
x. The velocity of

the front is given by:

Uf =
d
dt

(xf − x+ x) = U +
1
2

d
dt
L = U

(
1 +

αH

2k

)
. (13.14)

Thus the velocity of the front is found to be proportional to the mean velocity.
Asymptotically, the front position varies as:

Uf ≈
(
1 +

αH

2k

)√2βα2

3α4
H

√
1
x
, (13.15)

or equivalently:

xf ≈
(
1 +

αH

2k

)2/3
[
2
3
α2

α4
H

g′
0V0 sin θ

κk(1 + kv)

]1/3

t2/3 . (13.16)

This result is of great interest since it is comparable to other results found using
different approaches. For instance, using the von Kármán–Benjamin boundary
condition at the leading edge – stating that the front motion is characterized
by a constant Froude number Fr = U/

√
gh, i.e. Fr2 = g′/(g Ri) – Huppert and

Simpson [29] developed a very simple model, sometimes called the “box model”
(see also Chap. 8). They considered a two-dimensional gravity current as a series
of equal cross-sectional area rectangles (of length l(t) and height h(t)) advancing
over a horizontal surface: u = Fr

√
g′h and V (t) = h(t)l(t) = V0 where V0

denotes the initial volume (per unit width) of fluid (here Fr =
√

2 inferred from
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theoretical considerations using the Bernoulli equation [30]). Using u = dl/dt
and integrating the volume equation leads to:

l(t) =
(

3
2
Fr

)2/3

(g′V0)1/3t2/3 . (13.17)

Comparison of (13.16) and (13.17) reveals the same asymptotic behaviour, except
that in Béghin’s model, the position depends on the inclination θ. This is both
disturbing and comforting since these two models are based on very different
approximations: Béghin’s model assumes that flow is governed on average by a
momentum balance while Huppert and Simpson’s model states that the flow be-
haviour is dictated by dynamic conditions at the leading edge. Many experiments
have been performed on the motion of a two-dimensional cloud over horizon-
tal surfaces or down inclined planes (e.g. [20,27,29,31,32,33,34,35,36,37,38,39]).
They have confirmed the theoretical trend displayed in (13.15) or (13.16). The
main difference between experimental results concerns the depth increase rate
αH (ranging from 0.01 to 0.02 for θ = 5◦).

Many field and laboratory observations have shown the significant role played
by particle sedimentation or incorporation of material from the ground into the
cloud. Improvements of existing simple models have been achieved by imple-
menting new procedures taking material entrainment into account. Research on
this topic is still in process. Compared to field data, Béghin’s model usually
provides correct estimates of the mean front velocity (to 20%) but it may sub-
stantially underestimate the impact pressure by a factor 10. The reason why the
impact pressure computed as �u2/2 is underestimated is not clear. Very large
velocity fluctuations inside the airborne avalanche or particles clustering at the
flow bottom may be responsible for very high impact pressures. Another field
observation that cannot be explained by Béghin-type models is the consider-
able acceleration at the early stages of an aerosol; in some cases, acceleration of
6 m/s2 over a 40◦ slope has been recorded for more than 5 s. This may also be
related to the controversy on reduced gravity [40]. Indeed, some authors have
claimed that a flow acceleration scaling as g′ is not physical and suggested the
alternative g′′ defined by g′′ = g(�̄ − �a)/�̄. Concerning avalanches, field data
tend to show that avalanche acceleration scales as g′.

Intermediate Models (Depth-Averaged Models)

Simple models can provide approximate predictions concerning runout distance,
the impact pressure, or deposit thickness. However they are limited for many
reasons. For instance, they are restricted to one-dimensional path profiles (the
spreading of the avalanche cannot be computed) and the parameters used are
fitted to past events and cannot be measured in the field or in the laboratory
(rheometry), apart from airborne models if the analogy with turbidity currents
is used. More refined models use depth-averaged mass and momentum equations
to compute the flow characteristics. With such models, the limitations of sim-
ple models are alleviated. For instance it is possible to compute the spreading
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of avalanches in their runout zone or relate mechanical parameters used in the
models to the rheological properties of snow. As far as we know, the early depth-
averaged models were developed in the 1970s by Russian scientists (Kulikovskii,
Eglit [23,41,42]) and French researchers (Pochat, Brugnot, Vila [43,44]) for flow-
ing avalanches. For airborne avalanches, the first stage was probably the model
developed by Parker, Fukushima, and Pantin [45], which, though devoted to sub-
marine turbidity currents, contains almost all the ingredients used in subsequent
models of airborne avalanches. Considerable progress in the development of nu-
merical depth-averaged models has been made possible thanks to the increase
in computer power and breakthrough in the numerical treatment of hyperbolic
partial differential equation systems (see [46] for a comprehensive review on hy-
perbolic differential equations in physics and [47] for a practical introduction to
numerical treatment).

Depth-averaged Motion Equations. Here, we shall address the issue of
slightly transient flows. We focus exclusively on gradually varied flows, namely
flows that are not far from a steady uniform state for the time interval under
consideration. Moreover, we first consider flows without entrainment of the sur-
rounding fluid and variation in density: � ≈ �̄. Accordingly the bulk density
may be merely replaced by its mean value. In this context, the motion equations
may be inferred in a way similar to the usual procedure used in hydraulics to
derive the shallow water equations (or Saint–Venant equations): it involves in-
tegrating the momentum and mass balance equations over the depth. As such
a method has been extensively used in hydraulics for water flow [50] as well for
non-Newtonian fluids (see for instance [45,48] or [49]; see also Chap. 14) we shall
briefly recall the principle and then directly provide the resulting motion equa-
tions. Let us consider the local mass balance: ∂�/∂t +∇.(�u) = 0. Integrating
this equation over the flow depth leads to:

h(x,t)∫
0

(
∂u

∂x
+
∂v

∂y

)
dy =

∂

∂x

h∫
0

u(x, y, t)dy − u(h)∂h
∂x
− v(x, h, t)− v(x, 0, t) ,

(13.18)
where u and v denote the x- and y-component of the local velocity. At the
free surface and the bottom, the y-component of velocity satisfies the following
boundary conditions:

v(x, h, t) =
dh
dt

=
∂h

∂t
+ u(x, h, t)

∂h

∂x
, v(x, 0, t) = 0 . (13.19)

We easily deduce:
∂h

∂t
+
∂hu

∂x
= 0 , (13.20)

where we have introduced depth-averaged values defined as:

f̄(x, t) =
1

h(x, t)

h(x,t)∫
0

f(x, y, t)dy . (13.21)
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The same procedure is applied to the momentum balance equation: du/dt =
ρg +∇.σ, where σ denotes the stress tensor. Without difficulty, we can deduce
the averaged momentum equation from the x-component of the momentum equa-
tion:

�̄

(
∂hu

∂t
+
∂hu2

∂x

)
= �̄gh sin θ +

∂hσ̄xx

∂x
− τp , (13.22)

where we have introduced the bottom shear stress: τp = σxy(x, 0, t). In the
present form, the motion equation system (13.20)–(13.22) is not closed since the
number of variables exceeds the number of equations. A common approximation
involves introducing a parameter (sometimes called the Boussinesq momentum
coefficient) which links the mean velocity to the mean square velocity:

u2 =
1
h

h∫
0

u2(y) dy = αū2 . (13.23)

Another helpful (and common) approximation, not mentioned in the above sys-
tem, concerns the computation of stress [50]. Putting ourselves in the framework
of long wave approximation, we assume that longitudinal motion outweighs ver-
tical motion: for any quantity m related to motion, we have ∂m/∂y � ∂m/∂x.
This allows us to consider that every vertical slice of flow can be treated as if it
was locally uniform. In such conditions, it is possible to infer the bottom shear
stress by extrapolating its steady-state value and expressing it as a function of u
and h. A point often neglected is that this method and its results are only valid
for flow regimes that are not too far away from a steady-state uniform regime.
In flow parts where there are significant variations in the flow depth (e.g. at
the leading edge and when the flow widens or narrows substantially), correc-
tions should be made to the first-order approximation of stress [49]. Finally, an
unresolved problem concerns the nature of the front in a transient flow. The
same problem has been already pointed out above in the discussion on Béghin’s
model and “box models”. Some authors have considered it as a shock; in this
case, it is included in the motion equations as a downstream boundary condition
[42,43,44]. In contrast, authors have implicitly assumed that the front has no
specific dynamic role and can be generated by the hyperbolic motion equations
[51]. Other authors considered that the front may be controlled by gravity in-
stability. For instance, numerous experiments performed on viscous and buoyant
gravity currents have revealed that a shifting pattern of lobes and clefts ranges
across the front due to a gravity instability [52,53,54].

Flowing Avalanches. The material is very concentrated in ice particles: gener-
ally the concentration ranges from 20% to 65%. The material is highly compress-
ible (it is frequent to observe snow densities in the deposition zone three times
larger than in the starting zone). This is due to the intrinsic compressibility of
snow as well as dilatant behaviour when the material contains snow balls. The
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rheology of ice/air mixtures is rather complex: significant variations in the mix-
ture composition are caused by minute changes in the air temperature around
0◦ C. This explains the considerable variability of snow consistency: granular
(snow ball), loose, slush-like or pasty snow. The diversity of snow consistency,
along with the size scales, makes any thorough rheometrical examination of snow
involved in avalanches a tricky undertaking. To date, few experimental studies
have been devoted to this topic. The authors (such as Dent [55] or Maeno and
Nishimura [56]), who studied the rheological bulk behaviour of snow, have gen-
erally found that snow is a non-Newtonian viscoplastic material, which depends
a great deal on density. Several constitutive equations have been proposed: New-
tonian fluid, Reiner–Ericken fluid, Bingham fluid, frictional Coulombic fluid, and
so on. For instance, Savage and Hutter assumed that flowing avalanches have
many similarities with dry granular flows [10,48]. They have further assumed
that, as a first approximation, the Coulomb law can be used to describe the
bulk behaviour of flowing granular materials. Therefore they have expressed the
bottom shear stress as: τp = �gh tan δ cos θ, where δ denotes a bed friction angle.
Likewise, the normal mean shear stress can be written as: σ̄xx = −ka�gh cos θ/2,
where the coefficient ka is related to the earth pressure coefficient used in soil
mechanics. Eventually they obtained for flows down inclined planes:

∂h

∂t
+
∂hu

∂x
= 0 , (13.24)

∂ū

∂t
+ ū

∂ū

∂x
= g cos θ (tan θ − tan δ)− kag cos θ

∂h

∂x
. (13.25)

Laboratory tests with dry granular media have shown that such a model captures
the flow features well for steep smooth inclined channels [10,57,58,59]. Similar
models were developed using different constitutive equations. For instance, Eglit
used empirical expressions for the bottom shear stress (in a form similar to
(13.1)) and treated the leading edge using a specific boundary condition [42,41].
Naaim and Ancey used a Bingham constitutive equation in their model [60]. All
these models must deal with the difficult problem of fitting rheological param-
eters. Due to the lack of relevant rheological data on snow, the parameters are
usually adjusted for the runout distance to coincide with field data.

Airborne Avalanches. An airborne avalanche is a very turbulent flow of a
dilute ice–particle suspension in air. It can be considered as a one-phase flow
as a first approximation. Indeed, the Stokes number defined as the ratio of a
characteristic time of the fluid to the relaxation time of the particles is low,
implying that particles adjust quickly to changes in the air motion [61]. At the
particle scale, fluid turbulence is high enough to strongly shake the mixture since
the particle size is quite small. To take into account particle sedimentation, au-
thors generally consider airborne avalanches as turbulent stratified flows. Thus,
contrary to flowing avalanches, bulk behaviour is well identified in the case of
airborne avalanches. The main differences between the various models proposed
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result from the different boundary conditions, use of the Boussinesq approxima-
tion, and the closure equations for turbulence. Parker and his co-workers [45]
developed a complete depth-averaged model for turbidity currents. The motion
equation set proposed by these authors is more complicated than the correspond-
ing set for dense flows presented above, since it includes additional equations
arising from the mass balance for the dispersed phase, the mean and turbulent
kinetic energy balances, and the boundary conditions related to the entrainment
of sediment and surrounding fluid:

∂h

∂t
+
∂hU

∂x
= EaU , (13.26)

∂(Ch)
∂t

+
∂(hUC)
∂x

= vsEs − vscb , (13.27)

∂hU

∂t
+
∂hU2

∂x
= RCgh sin θ − 1

2
Rg
∂Ch2

∂x
− u2

∗ , (13.28)

∂hK

∂t
+
∂hUK

∂x
=

1
2
EaU

3 +u2
∗U−ε0h−

1
2
EaURCgh−

1
2
Rghvs (2C + Es − cb) ,

(13.29)
where U is the mean velocity, h the flow depth, K the mean turbulent kinetic
energy, C the mean volume concentration (ratio of particle volume to total vol-
ume), Ea a coefficient of entrainment of surrounding fluid into the current, vs

the settlement velocity, Es a coefficient of entrainment of particles from the bed
into the current, cb the near-bed particle concentration, R the specific submerged
gravity of particles (ratio of buoyant density to ambient fluid density), u2

∗ the
bed shear velocity, and ε0 the depth-averaged mean rate of dissipation of tur-
bulent energy due to viscosity. The main physical assumption in Parker et al.’s
model is that the flow is considered as one-phase from a momentum point of view
but treated as two-phase concerning the mass balance. Equation (13.26) states
that the total volume variation results from entrainment of surrounding fluid.
In (13.27), the variation in the mean solid concentration is due to the difference
between the rate of particles entrained from the bed and the sedimentation rate.
Equation (13.28) is the momentum balance equation: the momentum variation
results from the driving action of gravity and the resisting action of bottom shear
stress; depending on the flow depth profile, the pressure gradient can contribute
either to accelerate or decelerate the flow. Equation (13.29) takes into account
the turbulence expenditure for the particles to stay in suspension. Turbulent
energy is supplied by the boundary layers (at the flow interfaces with the sur-
rounding fluid and the bottom). Turbulent energy is lost by viscous dissipation
(ε0h in (13.29)) as well as by mixing the flow (fourth and fifth terms in (13.29))
and maintaining the suspension against sedimentation flow mixing (last term on
the right-hand side of (13.29)). Although originally devoted to submarine tur-
bidity currents, this model has been applied to airborne avalanches, with only
small modifications in the entrainment functions [21,62]. Further developments
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have been brought to the primary model proposed by Parker et al., notably in
order to consider non-Boussinesq fluids and snow entrainment from the snow-
cover [63]. To our knowledge, such models do not currently provide better results
than simple models when compared to field data.

Three-dimensional Computational Models

The rapid increase in computer power has allowed researchers to integrate local
motion equations directly. Compared to the depth-averaged models, the prob-
lems in the development of three-dimensional (3D) computational models mainly
concern numerical treatments. For instance, the treatment of the free surface
poses complicated issues. Naturally, problems linked to the constitutive equa-
tions reliable for snow are more pronounced compared to intermediate models
since the entire constitutive equation must be known (not just the shear and
normal stress). The development of 3D models is currently undertaken mainly
for airborne avalanches generally using finite-volume codes for turbulent flows.
Examples include the models by Naaim [64], Hermann [66], Schweiwiller and
Hutter [65], etc.

13.2.3 Small-scale Models

A few authors have exploited the similarities between avalanches and other
gravity-driven flows. For instance, Hopfinger and Tochon-Danguy used the anal-
ogy between airborne avalanches and saline density currents to perform experi-
ments in the laboratory in a water tank [67]. In this way, examination of various
aspects of airborne dynamics has been possible: effect of a dam, structure of
the cloud, determination of the entrainment coefficients, etc. The chief issue
raised by the analogy with density or gravity currents concerns the similarity
conditions based on both the Froude (or equally the Richardson number) and
Reynolds numbers [12,34,67]. Regarding flowing avalanches, authors have con-
sidered the analogy with granular flows. Various materials (ping-pong ball, sand,
beads) have been used. In engineering laboratory experiments simulating flowing
avalanches offer promising tools for studying practical and complicated issues,
such as the deflecting action of a dam [68] or braking mounds [69]. A few scien-
tists have conducted or are performing experiments studying snow flows down
confined geometries the field [70].
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14.1 Introduction

Snow avalanches, landslides, rock falls and debris flows are extremely dangerous
and destructive natural phenomena. The frequency of occurrence and ampli-
tudes of these disastrous events appear to have increased in recent years perhaps
due to recent climate warming. The events endanger the personal property and
infra-structure in mountainous regions. For example, from the winters 1940/41
to 1987/88 more than 7000 snow avalanches occurred in Switzerland with dam-
aged property leading to a total of 1269 deaths. In February 1999, 36 people
were buried by a single avalanche in Galtür, Austria. In August 1996, a very
large debris flow in middle Taiwan resulted in 51 deaths, 22 lost and an approx-
imate property damage of more than 19 billion NT dollars (ca. 600 million US
dollars) [18]. In Europe, a suddenly released debris flow in North Italy in Au-
gust 1998 buried 5 German tourists on the Superhighway “Brenner–Autobahn”.
The topic has gained so much significance that in 1990 the United Nations
declared the International Decade for Natural Disasters Reduction (IDNDR);
Germany has its own Deutsches IDNDR–Komitee für Katastrophenvorbeugung
e.V. Special conferences are devoted to the theme, e.g. , the CALAR confer-
ence on Avalanches, Landslides, Rock Falls and Debris Flows (Vienna, January
2000), INTERPRAEVENT, annual conferences on the protection of habitants
from floods, debris flows and avalanches, special conferences on debris flow haz-
ard mitigation and those exclusively on Avalanches.

With increasing population and with the popularization of the tourism in
the mountainous regions the damage equally increases, occasionally leading to
excessive devastation. Reliable methods for the prevention or reduction of the
effects of such disasters consist, on the one hand, in predicting the disaster itself
and, on the other hand, in the determination of the likely paths of the flows, the
maximum run-out distances as well as the protection against such destructive
flows. They are of considerable interest to civil and environmental engineers and
civil servants of municipalities responsible for the planning and development in
populated mountainous regions. The Savage–Hutter theory [19,20] and its three-
dimensional extension [4,15] for the gravity-driven, free-surface flow of granular
material has proved to model such flows adequately and is now established as
one of the leading models for this purpose. We will show in these lecture notes,
how these model equations can be constructively used to describe these flows.

N.J. Balmforth and A. Provenzale (Eds.): LNP 582, pp. 339–366, 2001.
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A successful verification of an avalanche model by laboratory experiments is
a necessary requirement for it to have a chance also to be adequate in realistic
situations. This second proof still needs to be completed by applying it to a
real avalanche event. For the time being, we are confident on the basis that our
model extends a well established model of Voellmy [26] to account for the im-
portant geometric deformations of an avalanche along its track. Entrainment of
material along the avalanche track can be incorporated, and is a very significant
process in real avalanches, but it is not yet incorporated in our model, because
no experimental method has so far been found by which an entrainment model
could be verified in the laboratory. Entrainment to and deposition from a moving
granular mass are however very significant in realistic flows and constitute the
“last” unsolved item in the mathematical model to be presented below.

Reviews on the subject are e.g. given in [8,9]. A further article on avalanches
– mostly from the practical side – is given by Ancey (Chap. 13).

14.2 The Granular Avalanche Model
of Savage & Hutter 1

The Savage–Hutter theory [19] is a continuum theory to describe the two-dimen-
sional motion of a finite mass avalanche over a rough inclined slope2. The dry
cohesionless granular material is assumed to be incompressible with constant
density ρ0 throughout the entire body. During flow the body behaves as a Mohr–
Coulomb plastic material at yield, which slides over a rigid basal topography.
Scaling analysis isolates the physically significant terms in the governing equa-
tions and identifies those terms that can be neglected. Finally, depth integration
reduces the theory by one spatial dimension.

A simple curvilinear coordinate system was introduced by Savage & Hutter
[20] to enable the avalanche motion to be modelled from initiation on a steep
slope to run-out on a rough curved bed. The coordinates are defined and aligned
with the curved rigid basal topography, so that the local inclination angle ζ
varies as a function of the downslope coordinate x.

The Savage–Hutter theory has been extended to three-dimensions by Hutter
et al. [15], Greve et al. [6], Gray et al. [4], and Wieland et al. [27] for the case of
1 This section is taken from [24].
2 All avalanche models known to us and used in practice are essentially based on

Voellmy’s [26] original model, which may be interpreted as a rigid mass or hydraulic
model (depending on view point). In these models, the physics is incorporated in
the parameterization of the resistive forces comprising of a Coulomb and a viscous
type contribution. The modern trend is to use the basic balance laws of physics and
to account for the internal physics as well as the variation of the basal topography,
just as attempted in the Savage–Hutter model in a very simple form. There have
been attempts to model avalanches by molecular dynamics procedures, and these
are successful when the number of particles or grains is small, i.e. a few hundred or
thousand, as e.g. in rock falls. Possible farther reaching conceptual formulations of
both the continuum and molecular dynamics concepts are given in Chap. 4 and the
literature cited there.
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unconfined three-dimensional flow. Hutter et al. [15] derived the leading order
equations for the motion of unconfined flow on an inclined plane with constant
inclination angle. Greve et al. [6] introduced a quasi one-dimensional curvilinear
system to model unconfined flow on a simple chute without lateral curvature,
whilst Gray et al. [4] generalized this theory to allow the flow over complex three-
dimensional topography. The final three-dimensional theory is able to predict
the flow over realistic topography and provide information about the maximum
run-out distance in site specific applications.

In this section a brief introduction to the Savage–Hutter theory and its three-
dimensional extension over realistic topography is given. Different from the pro-
cedure of the original derivation in [19], the governing equations are integrated
through the depth before the procedure of scaling analysis. In accordance with
the conservation laws of mass and linear momentum the governing equations
are derived in conservative form as described in [4], which will be used to model
granular shocks that have been observed in laboratory experiments, as they are
in conservative form and therefore allow discontinuities in the physical variables
to be considered.

14.2.1 Governing Equations in Conservative Form

The avalanche is treated as a material with constant density3 ρ0 throughout the
entire avalanche body, the local differential forms of the mass and momentum
conservation laws are therefore

divv = 0 , (14.1a)

ρ0

{∂v
∂t

+ div (v ⊗ v)
}

= −divp + ρ0 g , (14.1b)

where v is the velocity, ⊗ the dyadic product, p the pressure tensor and g the
gravitational acceleration.

Following [19], the body is assumed to have Mohr–Coulomb constitutive
properties. This implies that yield occurs when the internal shear stress S and
the normal pressure N are related by

|S| = N tanφ , (14.2)

where φ is the so-called internal friction angle.
The body is subject to kinematic and traction boundary conditions at the

free surface F s(x, t) = 0 and at the base F b(x, t) = 0 of the avalanche. The
kinematic boundary conditions are

∂F s

∂t
+ vs · gradF s = 0 , (14.3)

∂F b

∂t
+ vb · gradF b = 0 , (14.4)

3 Possible sizable volume changes occur at the instants of avalanche inception and
settling, but not so much during motion, see [12]. This is the reason, why a density
preserving model delivers good results.
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where the superscripts s and b indicate the variable evaluated at the free surface
and at the base, respectively. Note that for a rigid basal topography, F b(x) = 0,
the kinematic boundary condition reduces to vb · gradF b = 0, which implies
that the avalanche slides on the basal surface without inflow or outflow, i.e. an
impenetrable base.

The kinematic free surface of the avalanche is assumed to be traction free,
and at the base a sliding Coulomb dry friction law4 is applied. That is,

psns = 0 , (14.5)

pbnb −
(
nb · pbnb

)
nb = (vb/|vb|)N b tanδ , (14.6)

where (pn)i = pijnj , N b = nb · pbnb indicates the normal pressure at the base
of the avalanche, δ is the basal angle of friction, ns and nb are outward pointing
normal vectors at the free surface and base, respectively,

ns =
∇F s

|∇F s| , nb =
∇F b

|∇F b| . (14.7)

14.2.2 Curvilinear Coordinate System

An orthogonal curvilinear coordinate system, Oxyz, is defined by a reference
surface [4], which is illustrated in Fig. 14.1a. The x axis is oriented in the downs-
lope direction, the y axis lies in the cross slope direction to the reference surface
and the z axis is normal to it. The downslope inclination angle of the reference
surface ζ, to the horizontal, changes as a function of the downslope coordinate
x, and there is no lateral variation in the y direction. The complex shallow basal
topography is defined by its elevation z = zb(x, y) above the reference surface,
as illustrated in Fig. 14.1b. The region above the reference surface z = 0 can be
described by the coordinates xyz that is based on the metric with the squared
arc length

ds2 = (1− κz)2dx2 + dy2 + dz2 , (14.8)

where κ = −∂ζ/∂x is the curvature of the reference surface. The metric de-
fines each point in a domain of the three-dimensional space uniquely as long as
the z-coordinate is locally smaller than 1/κ. In the ensuing analysis this will
automatically be assumed.

In this curvilinear coordinate system the divergence of the velocity v in
(14.1a) is

∇ · v =
∂

∂x
(ψu) +

∂v

∂y
+
∂w

∂z
− ψ2κ′zu− ψκw , (14.9)

where ψ = 1/(1 − κz) and u, v, w are the physical velocity components in the
x, y and z directions, respectively. κ′ = ∂κ/∂x is the derivative of the curvature

4 An elementary account on the Coulomb law is given in Chap. 4.
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Fig. 14.1. (a) The curvilinear reference surface which defines the curvilinear coordi-
nate system Oxyz, where the downslope inclination angle of the reference surface ζ, to
the horizontal, changes as a function of the downslope coordinate x. (b) The shallow
basal topography is defined by its height z = zb(x, y) above the curvilinear reference
surface

with respect to the downslope coordinate x. In the curvilinear coordinate system
the divergence of a second order tensor T [6,4] is expressed by

∇ · T =
{
∂

∂x

(
ψTxx

)
+
∂Txy

∂y
+
∂Txz

∂z
− ψ2κ′zTxx − 2ψκTxz

}
ex

+
{
∂

∂x

(
ψTxy

)
+
∂Tyy

∂y
+
∂Tyz

∂z
− ψ2κ′zTxy − ψκTyz

}
ey

+
{
∂

∂x

(
ψTxz

)
+
∂Tyz

∂y
+
∂Tzz

∂z
− ψ2κ′zTxz − ψκ(Tzz − Txx)

}
ez ,

(14.10)
where ex, ey and ez are the unit vectors in the downslope, cross slope and
normal directions, respectively. Furthermore, the gradient of a scalar field F in
this curvilinear coordinate system is

∇F =
1

1− κz
∂F

∂x
ex +

∂F

∂y
ey +

∂F

∂z
ez . (14.11)

Using (14.9) the mass balance equation (14.1a) becomes

∂

∂x
(ψu) +

∂v

∂y
+
∂w

∂z
− ψ2κ′zu− ψκw = 0 . (14.12)

By virtue of (14.9) and (14.10), the downslope, cross slope and normal compo-
nents of the momentum balance equations are

ρ0

{
∂u

∂t
+
∂

∂x
(ψu2) +

∂

∂y
(uv) +

∂

∂z
(uw)− κ′zψ2u2 − 2κψuw

}
= ρ0g sinζ − ∂

∂x

(
ψpxx

)
− ∂

∂y

(
pxy

)
− ∂

∂z

(
pxz

)
+ κ′zψ2pxx + 2κψpxz ,

(14.13)
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ρ0

{
∂v

∂t
+
∂

∂x
(ψuv) +

∂

∂y
(v2) +

∂

∂z
(vw)− κ′zψ2uv − κψvw

}
= − ∂

∂x

(
ψpxy

)
− ∂

∂y

(
pyy

)
− ∂

∂z

(
pyz

)
+ κ′zψ2pxy + κψpyz ,

(14.14)

ρ0

{
∂w

∂t
+
∂

∂x
(ψuw) +

∂

∂y
(vw) +

∂

∂z
(w2)− κ′zψ2uw − κψ(w2 − u2)

}
= −ρ0g cosζ − ∂

∂x

(
ψpxz

)
− ∂

∂y

(
pyz

)
− ∂

∂z

(
pzz

)
+ κ′zψ2pxz

+ κψ(pzz − pxx) ,

(14.15)

respectively, where pij , i, j = x, y, z are the components of the pressure tensor
in this curvilinear coordinate system. The free and basal surfaces are defined by
their heights above the reference surface,

F s(x, t) = z − zs(x, y, t) = 0 ,

F b(x, t) = zb(x, y, t)− z = 0 ,
(14.16)

which ensure the normals ns and nb point outwards from the avalanche body.
The kinematic boundary conditions reduce to

−∂z
s

∂t
− ψsus ∂z

s

∂x
− vs ∂z

s

∂y
+ ws = 0 (14.17)

for the free surface and

∂zb

∂t
+ ψbub ∂z

b

∂x
+ vb ∂z

b

∂y
− wb = 0 (14.18)

for the base, where we recall that the superscripts s, b indicate the values at the
free and basal surface, respectively. The traction condition on the free surface
(14.5) yields

−ps
xxψ

s ∂z
s

∂x
− ps

xy

∂zs

∂y
+ ps

xz = 0 ,

−ps
xyψ

s ∂z
s

∂x
− ps

yy

∂zs

∂y
+ ps

yz = 0 ,

−ps
xzψ

s ∂z
s

∂x
− ps

yz

∂zs

∂y
+ ps

zz = 0 ,

(14.19)

and the sliding condition at the base (14.6) becomes

pb
xxψ

b ∂z
b

∂x
+ pb

xy

∂zb

∂y
− pb

xz =
(
ψb ∂z

b

∂x
+ |∇F b| u

b

|vb| tanδ
)
N b ,

pb
xyψ

b ∂z
b

∂x
+ pb

yy

∂zb

∂y
− pb

yz =
( ∂zb

∂y
+ |∇F b| v

b

|vb| tanδ
)
N b ,

pb
xzψ

b ∂z
b

∂x
+ pb

yz

∂zb

∂y
− pb

zz = −N b ,

(14.20)



14 Dense Granular Avalanches 345

where ψb = 1/(1−κzb). The Coulomb dry friction shear traction is related by the
normal basal pressure N b and the bed friction angle δ. Applying the definitions
of the normal basal pressure N b = nb · pbnb and the basal normal vector (14.7)
yields

N b =
1

|∇F b|2

{
(ψb)2

(
∂zb

∂x

)2

pb
xx + 2ψb

(
∂zb

∂x

)(
∂zb

∂y

)
pb

xy

−2ψb

(
∂zb

∂x

)
pb

xz +
(
∂zb

∂y

)2

pb
yy − 2

(
∂zb

∂y

)
pb

yz + pb
zz

}
.

(14.21)

14.2.3 Depth Integration

The mass and momentum balance equations are integrated through the avalanche
depth to simplify the problem. The avalanche thickness (depth) is the difference
between the height of the free surface zs and the height of the basal topography
zb

h = zs − zb , (14.22)

and is measured normal to the reference surface. The depth integrated mean
value is denoted by 〈·〉 and defined by

〈f〉 =
1
h

∫ zs

zb

f dz (14.23)

for any field quantity f .
Using Leibniz’s rule and integrating the mass balance equation (14.9) through

the avalanche depth subject to the kinematic boundary conditions at the free
(14.17) and basal (14.18) surfaces in the curvilinear coordinate system, it follows
that

∂h

∂t
+
∂

∂x
(h〈ψu〉) +

∂

∂y
(h〈v〉)− κ′h〈ψ2zu〉 − κh〈ψw〉 = 0 . (14.24)

Similarly, integrating the linear momentum balance equations, (14.13), (14.14)
and (14.15), through the avalanche depth and applying the kinematic as well as
traction boundary conditions at both the free surface (14.17), (14.19) and the
basal surface (14.18), (14.20), the depth integrated downslope, cross slope and
normal components of the momentum balance are

ρ0

{ ∂
∂t

(h〈u〉) +
∂

∂x
(h〈ψu2〉) +

∂

∂y
(h〈uv〉)− κ′h〈ψ2zu2〉 − 2κh〈ψuw〉

}
= ρ0gh sinζ − ∂

∂x

(
h〈ψpxx〉

)
− ∂

∂y
(h〈pxy〉)

−
(
ψb ∂z

b

∂x
+ |∇F b| u

b

|vb| tanδ
)
N b + κ′h〈ψ2zpxx〉+ 2κh〈ψpxz〉 ,

(14.25)
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ρ0

{ ∂
∂t

(h〈v〉) +
∂

∂x
(h〈ψuv〉) +

∂

∂y
(h〈v2〉)− κ′h〈ψ2zuv〉 − κh〈ψvw〉

}
= − ∂

∂x

(
h〈ψpxy〉

)
− ∂

∂y
(h〈pyy〉)

−
(
∂zb

∂y
+ |∇F b| v

b

|vb| tanδ
)
N b + κ′h〈ψ2zpxy〉+ κh〈ψpyz〉 ,

(14.26)

ρ0

{ ∂
∂t

(h〈w〉) +
∂

∂x
(h〈ψuw〉) +

∂

∂y
(h〈vw〉)− κ′h〈ψ2zuw〉 − κh〈ψ(w2 − u2)〉

}
= −ρ0gh cosζ − ∂

∂x

(
h〈ψpxz〉

)
− ∂

∂y
(h〈pyz〉)

+N b + κ′h〈ψ2zpxz〉+ κh〈ψ(pzz − pxx)〉 ,
(14.27)

respectively. For details of the derivation see [4].

14.2.4 Non-Dimensionalization and Ordering

Three length scales are introduced to isolate the physically significant terms in
the governing equations, a longitudinal length scale, L, a depth scale, H, and a
scale for the basal curvature in the downslope direction, 1/R. Following [19], [6]
and [4], the physical variables are non-dimensionalized using the scalings(

x, y, z
)
dim = L

(
x, y, εz

)
non−dim ,(

u, v, w
)
dim =

√
gL
(
u, v, εw

)
non−dim ,(

pxx, pyy, pzz, N
b
)
dim = ρ0gH

(
pxx, pyy, pzz, N

b
)
non−dim ,(

pxy, pxz, pyz

)
dim = ρ0gHμ

(
pxy, pxz, pyz

)
non−dim ,

(t)dim =
√
L/g (t)non−dim ,

(κ)dim = 1/R (κ)non−dim ,

(14.28)

where ε = H/L is the aspect ratio and μ indicates a typical magnitude of the
friction coefficient, tanδ0.

Observations of avalanches in nature and laboratory experiments suggest
that they are long and thin and that the basal surfaces on which they slide often
have shallow curvature. The shallowness assumption for the avalanche geometry
implies that the aspect ratio of the avalanche is small,

ε = H/L	 1 . (14.29)

The measure of the curvature of the reference surface geometry with respect to
the length of the avalanche λ = L/R and the friction coefficient μ are assumed
to be of magnitude [4]

λ = O(εα) , μ = O(εβ) , 0 < α , β < 1 . (14.30)
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Applying the scalings (14.28) and assumption (14.30), it follows that the
depth integrated non-dimensional mass balance equation in curvilinear form is

∂h

∂t
+
∂

∂x
(h〈u〉) +

∂

∂y
(h〈v〉) = 0 +O(ε1+α) , (14.31)

where all variables in this equation and in the remainder of this text are now
non-dimensional unless stated otherwise. Using (14.28) the normal component
of the momentum balance (14.15) reduces to

∂pzz

∂z
= − cosζ +O(εα) , (14.32)

which implies that pzz varies linearly with respect to z to order εα. The normal
basal pressure (14.21) gives Nb = pb

zz +O(ε1+β) that the normal component of
the non-dimensional depth integrated momentum balance (14.27) reduces to

pb
zz = λκh〈u2〉+ h cosζ +O(ε) . (14.33)

The downslope and cross slope components are

∂

∂t
(h〈u〉) +

∂

∂x
(h〈u2〉) +

∂

∂y
(h〈uv〉)

= h sinζ − ε ∂
∂x

(h〈pxx〉)− εh cosζ
∂zb

∂x

− ub

|vb|h tanδ(cosζ + λκ〈u2〉) +O(ε1+γ) ,

(14.34)

∂

∂t
(h〈v〉) +

∂

∂x
(h〈uv〉) +

∂

∂y
(h〈v2〉)

= − ε ∂
∂y

(h〈pyy〉)− εh cosζ
∂zb

∂y

− vb

|vb|h tanδ(cosζ + λκ〈u2〉) +O(ε1+γ) ,

(14.35)

respectively, in which γ = min(α, β).

14.2.5 Earth Pressure Coefficients

In the original Savage–Hutter theory [19,20] the stress state of the avalanche is as-
sumed to satisfy both the Coulomb sliding friction law and the internal yield cri-
terion simultaneously at the base of the avalanche. In addition, since the motion
is predominantly downslope it is assumed that the basal cross slope pressure, pb

yy,
is a principal stress and that it is equal to one of the other two principal stresses
in the xz plane. The details of this analysis have been performed many times and
are well documented in the literature, see e.g. [4,5,6,7,8,9,12,13,14,15,17,19,20],
the most useful references probably being [6,17].
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a) b)

Fig. 14.2. The downslope (a) and cross slope (b) earth pressure coefficients are plotted
as functions of the internal friction angle φ with constant bed friction angle δ = 30◦.
The various active and passive stress states are indicated by different line styles

Under these assumptions two Mohr stress circles can be constructed that
satisfy the yield criterion and the sliding law. For the basal normal pressure, pb

zz,
and the shear stress, −pb

xz, the basal down slope pressure, pb
xx, can therefore

assume two values, one on the larger circle, pb
xx > pb

zz, and the other on the
smaller circle, pb

xx < p
b
zz. These downslope and normal pressures can be related

by introducing the earth pressure coefficient Kb
x = pb

xx/p
b
zz. Using elementary

geometrical arguments Kb
x is described as a function of the internal and basal

friction angles [19]

Kb
xact/pass

= 2
(

1∓
√

1− cos2 φ/ cos2 δ
)

sec2φ− 1 . (14.36)

This is real valued provided δ ≤ φ. Savage & Hutter [19] made the ad hoc
definition that the active state was associated with divergent motion and the
passive state was associated with convergent motion, i.e.

Kb
x =

{
Kb

xact
∂u/∂x ≥ 0 ,

Kb
xpass

∂u/∂x < 0 .
(14.37)

The left panel in Fig. 14.2 illustrates the values of Kb
xact/pass

as a function of the
internal friction angle φ for constant basal friction angle δ = 30◦. When φ = δ
the active and passive earth pressure coefficients are equal, Kb

xact
= Kb

xpass
. For

φ < δ the earth pressure coefficients are not real valued.
As mentioned above, the basal cross slope pressure is equal to one of the

other two principal stresses in the xz plane. Introducing the cross slope earth
pressure coefficient at the base, Kb

y = pb
yy/p

b
zz, Hutter et al. [13] showed that it

is equal to

Kb
yact/pass

=
1
2

(
Kb

x + 1∓
√

(Kb
x − 1)2 + 4 tan2 δ

)
, (14.38)

which is not only a function of the internal and basal friction angle but also
depends on the downslope earth pressure coefficient. Since there are two principal
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stresses for the Mohr stress circle determined by the stress state in the xz plane,
there are four possible stress states for the cross slope pressure. As in the two-
dimensional theory they are distinguished from one another by ad hoc definitions
dependent upon whether the downslope and cross slope deformation is divergent
or convergent [13],

Kb
y =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Kxact

yact
∂u/∂x ≥ 0 , ∂v/∂y ≥ 0 ,

Kxact
ypass

∂u/∂x ≥ 0 , ∂v/∂y < 0 ,

K
xpass
yact ∂u/∂x < 0 , ∂v/∂y ≥ 0 ,

K
xpass
ypass ∂u/∂x < 0 , ∂v/∂y < 0 .

(14.39)

In the first of these inequalities the flow is extending in both the x- and y-
directions, in the last it is contracting in the two directions. In the right panel
of Fig. 14.2, Kb

y is illustrated as a function of the internal friction angle φ for
constant δ = 30◦. Like the downslope earth pressure coefficient, Ky is real valued
if and only if δ ≤ φ andKb

yact
= Kb

ypass
when δ = φ. In addition the earth pressure

coefficients are ordered in the following way: Kxact
yact

≤ Kxpas
yact < K

xact
ypas

≤ Kxpas
ypas .

Note that the theory is not objective5 in the xy plane, but it is a good
approximation if the assumption vb 	 ub holds, i.e. this simple representation
is reasonable when the flow is chiefly downhill and the shearing in the xy plane
is small in comparison with the shearing in the xz and yz planes. With these ad
hoc definitions (14.37), (14.39), Koch et al. [17], Gray et al. [4] and Wieland et
al. [27] obtained good agreement between theory and experiments.

The ad hoc definitions (14.37) and (14.39) define the earth pressure coeffi-
cients in two limiting states with piecewise constant values, respectively. There
is a discontinuity at ∂u/∂x = 0 or ∂v/∂y = 0, which results in a jump in the
in-plane pressure between convergent and divergent regions. If we consider the
jump condition of the linear momentum [1], there must be a corresponding jump
in the avalanche velocity, and/or the thickness, in order to balance the tractions
on either side of the jump interface.

A regularization6 for these two limiting stress states was proposed by Tai
& Gray [21], in which the discontinuity is regularized by introducing a smooth
transition between the two limiting stress states. This is illustrated in Fig. 14.3
for the downslope earth pressure coefficient. For large convergence they approach
the passive stress state and for large divergence they approach the active stress
state. Between these two limiting stress states there is a smooth monotonically
decreasing transition, which crosses the ∂u/∂x = 0 line at Kb

x = Kx0 for the
down slope component and Kb

y = Ky0 at ∂v/∂y = 0 for the cross slope com-
ponent, where Kx0 and Ky0 are the downslope and cross slope coefficients with
δ = φ, respectively. The regularized downslope and cross slope earth pressure
coefficients are given by
5 Objectivity refers here to invariance under rigid body rotations.
6 There is no other reason for this regularization than to make the earth pressure

coefficient a continuous function of the strain rate. A partial physical argument for
its introduction can be found in [23].
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Fig. 14.3. The down slope earth pressure coefficient is regularized by introducing
a smoothly varying monotonically decreasing function of the downslope divergence
∂u/∂x, which approaches the limiting values, Kxact and Kxpass , for large divergence
and convergence, respectively. At ∂u/∂x = 0 the downslope earth pressure coefficient
equals Kx0

Kb
x =

1
2
{
(Kx

act +Kx
pass) + fx(∂u/∂x)(Kx

act −Kx
pass)

}
,

Kb
y =

1
2
{
(Ky

act +Ky
pass) + fy(∂v/∂y)(Ky

act −Ky
pass)

}
,

(14.40)

where the regularization functions fx and fy are dependent on the downslope and
cross slope velocity gradients ∂u/∂x and ∂v/∂y, respectively. They are chosen
to be the monotonically decreasing functions

fx(∂u/∂x) = (αK∂u/∂x− cx0)/
(
1 + (αK∂u/∂x− cx0)2

)1/2
,

fy(∂v/∂y) = (αK∂v/∂y − cy0)/
(
1 + (αK∂v/∂y − cy0)2

)1/2
,

(14.41)

where αK determines the steepness of the transition. The constants cx0 and cy0 are
chosen that Kx

∣∣
∂u/∂x=0 = Kx0 and Ky

∣∣
∂v/∂y=0 = Ky0 , respectively7. Using this

regularization of the earth pressure coefficients, Tai & Gray [21] demonstrated
that a necking of the avalanche is resolved in simulating a channelized free-
surface flow, in which the Wieland et al. [27] Lagrangian moving grid technique
is applied. The necking form is observed in the transition zone when the material
flows down in a channel into the horizontal flat runout zone.

14.2.6 Model Equations in Conservative Form

In the one-dimensional Savage–Hutter [19,20] theory and in the two-dimension-
al extensions of their theory [4,13] the downslope and cross slope pressures are
7 The parameters Kx0 and Ky0 must be identified by experiment or via inverse meth-

ods, which is not easy. Tai et al. [23] design an experiment with rotating drums from
which Kx0 can directly be inferred.
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assumed to vary linearly over the thickness of the avalanche. In accordance with
(14.32) this implies that Kx = Kb

x and Ky = Kb
y throughout the avalanche

depth. With the traction free assumption at the free surface it follows that the
average depth integrated pressures h〈pxx〉 and h〈pyy〉 [4] are determined by

h〈pxx〉 = 1
2h

2Kb
x cosζ +O(εγ) , h〈pyy〉 = 1

2h
2Kb

y cosζ +O(εγ) . (14.42)

It is also assumed that the velocity profiles are approximately uniform through
the avalanche depth, i.e. all sliding and little differential shear [19]. Thus, the
basal velocities are assumed to be of the form

ub = 〈u〉+O(ε1+γ) , vb = 〈v〉+O(ε1+γ) , (14.43)

and the velocity products can be factorised [4]

〈u2〉 = 〈u〉2 +O(ε1+γ) , 〈uv〉 = 〈u〉 〈v〉+O(ε1+γ)

and 〈v2〉 = 〈v〉2 +O(ε1+γ) .
(14.44)

These assumptions are supported by measurements in large scale dry snow [2]
and ping-pong ball avalanches [16].

From (14.31) and (14.44) it follows that the mass balance equation reduces
to order ε1+α to

∂h

∂t
+
∂

∂x
(hu) +

∂

∂y
(hv) = 0 . (14.45)

With assumptions (14.42), (14.43) and (14.44) the depth integrated downslope
(14.34) and cross slope (14.35) momentum balances yield

∂

∂t
(hu) +

∂

∂x
(hu2) +

∂

∂y
(huv) = hsx −

∂

∂x

(
βxh

2

2

)
, (14.46a)

∂

∂t
(hv) +

∂

∂x
(huv) +

∂

∂y
(hv2) = hsy −

∂

∂y

(
βyh

2

2

)
, (14.46b)

to order ε1+γ , where the brackets 〈 〉 for the mean values are dropped. The
factors βx and βy are defined as

βx = ε cosζKx and βy = ε cosζKy , (14.47)

respectively. The terms sx and sy represent the net driving accelerations in the
downslope and cross slope directions, respectively

sx = sinζ − u

|v| tanδ(cosζ + λκu2)− ε cosζ
∂zb

∂x
, (14.48a)

sy = − v

|v| tanδ(cosζ + λκu2)− ε cosζ
∂zb

∂y
, (14.48b)

where |v| = (u2 + v2)1/2. The first term at the right-hand side of (14.48a) is due
to the gravitational acceleration. It has no contribution in the lateral, y, direc-
tion. The second terms of both (14.48a) and (14.48b) indicate the dry Coulomb
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friction and guarantee that basal shear traction and the sliding velocity are
collinear. The third terms are the contributions from the basal topography. The
system of equations (14.45)–(14.46b) shall be referred to as the two-dimensional
conservative system (2DCS) of equations.

For smooth solutions the mass balance can be used to simplify the convective
terms in the momentum balances (14.46a), (14.46b). Providing h = 0 the mass
and momentum balance equations reduce to

∂h

∂t
+
∂

∂x
(hu) +

∂

∂y
(hv) = 0 , (14.49a)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= sx − βx

∂h

∂x
− h

2
∂βx

∂x
, (14.49b)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= sy − βy

∂h

∂y
− h

2
∂βy

∂y
, (14.49c)

These equations and their spatially one-dimensional analogues (∂(·)/∂y = 0,
and (14.49c) missing) were derived earlier and numerically integrated by a La-
grangian finite difference method8. These cannot capture possible shocks; but
they proved the model to be adequate for many avalanche tests performed in
the laboratory.

14.3 Numerical Integration
of the Savage–Hutter Equations

14.3.1 Standard Form of the Differential Equations
and Characteristic Speeds

The two dimensional model equations (14.45)–(14.46b) can be written in general
vector form

∂w

∂t
+
∂f

∂x
+
∂g

∂y
= s , (14.50)

where w denotes the vector of conservative variables, f and g represent the
transport fluxes in the x- and y-directions, respectively, and s means the source
8 The one-dimensional model was derived by Savage & Hutter [19,20] and tested

against laboratory chute experiments by Greve & Hutter [5], and Hutter et al. [13].
Two-dimensional spreading was attacked by Hutter [7], Hutter et al. [13], Greve et al.
[6] and Koch et al. [17] on the basis that the basal topography was flat perpendicular
to the direction of steepest descent with good agreement with granular avalanches
from laboratory experiments. Sidewise confinement was then incorporated in [4,27,3]
with equally satisfactory agreement between model output and laboratory experi-
ments. The chute topography in these cases was a weak parabolic channel merging
into a horizontal plane.
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term. They are

w =

⎛⎝ h
mx

my

⎞⎠ , f =

⎛⎝ mx

(mx)2/h+ βxh
2/2

mxmy/h

⎞⎠ ,

g =

⎛⎝ my

mxmy/h
(my)2/h+ βyh

2/2

⎞⎠ , s =

⎛⎝ 0
hsx

hsy

⎞⎠ ,

(14.51)

where the source terms in the momentum balance equations, sx and sy, are
defined in (14.48a) and (14.48b), respectively and equations are written in the
conservative variables h, mx = hu and my = hv. The spatially one-dimensional
version of (14.50) is

∂w

∂t
+
∂f

∂x
= s , (14.52)

where

w =
(
h
mx

)
, f =

(
mx

(mx)2/h+ βxh
2/2

)
, s =

(
0
hsx

)
. (14.53)

It can be obtained from (14.51) by setting g = 0 and ignoring in w, f and s the
third line.

The characteristic speeds of the system (14.50)–(14.51) can be computed by
rewriting (14.50) as

∂w

∂t
+

⎛⎜⎜⎝
Ax 0

0 Ay

⎞⎟⎟⎠
⎛⎜⎜⎝
∂w

∂x
∂w

∂y

⎞⎟⎟⎠ = s , (14.54)

where

Ax :=
∂f

∂w
=

⎛⎜⎜⎜⎝
0 1 0

−(mx)2/h2 + βxh 2mx/h 0

−mxmy/h2 my/h mx/h

⎞⎟⎟⎟⎠ ,

Ay :=
∂g

∂w
=

⎛⎜⎜⎜⎝
0 0 1

−mxmy/h2 my/h mx/h

−(my)2/h2 + βyh 0 2my/h

⎞⎟⎟⎟⎠ ,

(14.55)

and evaluating the eigenvalues of A. These follow from the characteristic equa-
tion

det (A− λI6) = det (Ax − λI3) det (Ay − λI3) = 0 (14.56)
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with six solutions, given by

λ1 = u , λ3, 5 = mx/h±
√
βxh ,

λ2 = v , λ4, 6 = my/h±
√
βyh .

(14.57)

The first two solutions yield as characteristic speed the particle velocity cp =
(u2+v2)1/2 and as characteristic directions the streamline directions. λ3,...,6 give
rise to four different characteristic speeds

C++ =
(
λ2

3 + λ2
4
)1/2

, C+− =
(
λ2

3 + λ2
6
)1/2

,

C−+ =
(
λ2

5 + λ2
4
)1/2

, C−− =
(
λ2

5 + λ2
6
)1/2

(14.58)

with four different directions; C++ is the fastest and C−− the slowest. When-
ever cp > C−− the flow is called supercritical; otherwise, i.e. when cp < C−−,
it is subcritical. Any transition from a supercritical to a subcritical flow state
is associated with a shock. This inevitably happens when a finite avalanching
mass moves down a steep slope (where it reaches supercritical speeds) and is
considerably decelerated (when it approaches the runout zone) and eventually
approaches a subcritical speed. This transition is always accomplished by the
formation of a shock front across which the avalanche depth and speed experi-
ence sudden changes from small heights and large speeds to larger heights and
smaller speeds. The numerical schemes must cope with this situation.

14.3.2 Remarks on Numerical Integration

It is not the place here to present a detailed introduction into shock-capturing
numerical methods. Such an overview is given in Chap. 4 of [24]. We sketch the
method only and must direct the interested reader to the literature, see [24] and
[25] for detail.

Let us commence by recalling that the Lagrangian integration technique ap-
plied to the SH equations faced difficulties whenever a supercritical extending
(diverging) flow became subcritical and contracting. Numerical solution in the
vicinity of such transitions were accompanied with high oscillations of the depth
profile and velocity field which often led to instabilities unless this was properly
counteracted by a sufficient amount of numerical diffusion. The regularization
of the earth pressure coefficient outlined in Sect. 14.2.5 helped to improve the
situation, but the difficulties encountered with shocks were thereby not resolved.

The shock-capturing numerical methods give a high resolution of shock solu-
tions without any spurious oscillations near a discontinuity. The traditional high
order accuracy methods result in unexpected oscillations near the discontinuity.
The Total Variation Diminishing (TVD) method for equation systems in con-
servative form achieves this goal; its application to the Savage–Hutter equations
allows integration across shocks without the introduction of additional numerical
diffusion.
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Fig. 14.4. The cell average physical value Uj (dashed line) and the linear piecewise cell
reconstruction (solid line), where there are two values for each interface, e.g. UL

j+1/2 =
Uj + U ′j/2 and UR

j+1/2 = Uj+1 − U ′j+1/2, one from the left side cell, Uj , with the
approximate derivatives U ′j , the other from the right side element, Uj+1 with U ′j+1

TVD means that the sum of the variations of the variables over the whole
computational domain does not increase as the time evolves. Now, the numerical
schemes are designed such that they provide only the cell average values of the
variable to be determined. In classical schemes of higher order approximation the
numerically determined variable is continuous or even differentiable across cell
boundaries. In TVD methods jump discontinuities are allowed over cell bound-
aries, whilst within each cell Cn-continuity may prevail, for an illustration, see
Fig. 14.4.

In regions where the variations of the field variables are small no jumps are
needed, but in the neighbourhood of shocks and in regions of large gradients of
the field variable the cell re-constructions are such, i.e. the slopes of the variable
within the cell kept so small, that possible spurious oscillations are avoided.
The operators that achieve the limitation of the cell slope (just sufficient to
avoid oscillations) are called slope limiters (and several different versions have
been proposed: e.g. Superbee, Minmod or Woodward). Several schemes have been
tested with the application of these three slope limiters to find the optimal
scheme for smooth as well as discontinuous solutions.

There is a further numerical subtlety associated with the motion of a finite
mass of granular material along an inclined plane or curved topography. The
material does not occupy the whole region of topographic surface available to
it but covers a region with compact support. The margin separates the regions
with and without material. It can be shown that the governing equations (14.45)–
(14.46b) do not admit solutions with cliffs [24] at the margin, so that margins
always have vanishing avalanche height and the transition from the avalanche
region to its complement is continuous. Now in an Eulerian numerical scheme
with the cells fixed in space and a moving boundary problem as this one, it
happens more often than not that the margin lies between the cells than exactly
on cell boundaries. This is different from the Lagrangian integration technique in
which the grid moves with the deforming avalanche mass and margins are always
exactly traced. It is in general associated with a considerable loss of accuracy.
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There are several ways out of this difficulty. One is to add a thin layer to the
whole computational domain, thus abandoning the compactness of the avalanche
body; a second method is to set all physical variables to zero if h = 0; both are not
ideal and still associated with large errors close to the margin. A third method is
to treat the cells in the immediate neighbourhood of the margin separately by a
special front-tracking method. For one-dimensional flows this has been done [25],
and results for the spreading of a parabolic profile turned out to be very much
improved; for two-dimensional situations the method must still be developed.
We now present a few computational solutions.

14.4 Examples

In this section we9 present a number of solutions that were constructed with the
shock capturing finite difference schemes developed by Tai [24]. Further results
are also given in [25].

14.4.1 Similarity Solutions

For flows of a finite mass of granular materials down an inclined plane the de-
formation of an initially compact mass of granular materials is everywhere ex-
tending and so no shock will form in this case. The equations may then be used
in the form (14.49a)–(14.49c), either in their one- or two-dimensional case. For
a parabolic linear (1D) or circular (2D) initial hump at rest exact similarity
solutions were constructed. These solutions ([19], 1D; [14], 1D; [11], 2D) allow
determination of the asymptotic behaviour of the motion. They show that with-
out a viscous contribution to the drag force the avalanches do not reach an
asymptotic constant velocity. The parabolic profile remains preserved, but the
originally circular hump becomes elliptical. Thus, the streamwise extension is
larger than the cross slope extension. These exact solutions are useful, because
numerical solutions obtained by other techniques can be checked against them.

It is interesting to note that such parabolic ellipses have not been observed
experimentally. The profiles have rather tear drop shape [10]. These indicate
that either exact initial conditions to arrive at these solutions were not realized
in the experiments or the model equations – in particular the Coulomb sliding
law with constant bed friction angle δ – are not adequate. The problem is still
open.

14.4.2 Motion of a Granular Avalanche on an Inclined Plane Chute
into the Horizontal Run-Out Zone

Shock formations are often observed when the avalanche slides from an inclined
slope into the horizontal run-out zone, where the frontal part comes to rest
9 The authors acknowledge help received from S. Noelle on shock capturing integration

techniques and the software for gas dynamics from A.-K. Lie which was adopted to
avalanche flow by Y.-Ch. Tai [24].
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Fig. 14.5. Process of the avalanche simulated by the shock-capturing method at t =
0, 3, 6, 9, 12, 15, 18, 21 dimensionless time units. As the front reaches the run-out zone
and comes to rest, the rear part of the avalanche accelerates further and the avalanche
body contracts. Once the velocity becomes supercritical, a shock wave develops, which
moves upward.

and the part of the tail still accelerates further so that its velocity becomes
supercritical. A test simulation is made by the shock-capturing method.

The granular material released from a parabolic cap slides down an inclined
plane chute and merges into the horizontal run-out zone. The parabolic cap
is initially located at the top of the slope with a linearly increasing velocity
distribution, so that the avalanche extends by maintaining its parabolic form
if it slides on an infinitely long slope [19]. The inclination angle of the inclined
plane is prescribed as 40◦, and a transition region lies between the inclined slope
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and the run-out zone. The basal and internal friction angles are 35◦ and 38◦,
respectively.

Figure 14.5 illustrates the simulated process as the avalanche slides on the
inclined plane into the horizontal run-out zone. The avalanche body extends on
the inclined plane with a parabolic form (t = 3). Once the front reaches the
horizontal run-out zone the basal friction brings the frontal part of the granular
material to rest, but the part of the rear accelerates further. At this stage, if
the velocity becomes super-critical, a shock (surge) wave is created (t = 12 to
t = 18), which moves a short distance backwards as can clearly be seen (compare
the humps at t = 12 to t = 18). At t = 21 the whole avalanche body comes to
rest.

14.4.3 Motion of a Granular Avalanche in a
Convex and Concave Curved Chute

In this section we show the simulation of a two-dimensional avalanche moving
down in a confined convex and concave curved chute, and compare the result
with one of many experiments, called here exp. 29 in [5]. The experiment was
performed in a 10 cm wide chute of length greater than 400 cm. The basal surface
was formed to follow a prescribed function, so that the inclination angle is given
by

ζ(x) = ζ0e−0.1x + ζ1ξ/(1 + ξ8)− ζ2 exp(−0.3(x+ 10/3)2) , (14.59)

where

ξ = 4
15 (x− 9) , and ζ0 = 60.0◦ , ζ0 = 31.4◦ , ζ2 = 37.0◦ . (14.60)

The influence of the confining walls of the chute on the bed friction was also
considered, which was determined by replacing the bed friction angle, δ, by the
effective bed friction angle, δeff . They are related by

δeff = δ0 + εkwallh ; (14.61)

here ε is the aspect ratio, h is the dimensionless depth and kwall the measured
correction factor to account for the side wall effects in the bed friction angle, see
[12].

In the simulation all parameters are assigned as in [5], where δ0 = 26.5◦,
Kwall = 11◦, and the internal angle of friction is selected to be φ = 37◦. Figure
14.6 shows the computed profile of the avalanche height on the real chute geom-
etry. Once mobile the avalanche rapidly accelerates downslope until it reaches
the shallow rise in the topography. This is enough to retard the granular mate-
rial until the pressure from the material behind has sufficiently accumulated to
push it over the bump. The material accelerates again and when the slope angle
decreases the mass comes to rest. Normally the deposit is divided into two parts
on the both sides of the bump: the rear deposit and the front deposit.

Figure 14.7 shows time slices of the computed (solid) and experimentally
determined (dashed) profiles of the avalanche height for exp. 29 in [5], where
δ0 = 26.5◦, φ = 37◦ and Kwall = 11◦. The division of the avalanche body into
two parts is well described by the simulation.
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Fig. 14.6. Computed profile of the avalanche height on the real chute geometry for
exp. 29 in [5]. Since compared to the length the deposited height of the avalanche is
very small, the height is three times exaggerated

14.4.4 Granular Avalanche over Complex Basal Topography

In this section a simulation example on a chute with complex basal topogra-
phy is presented to describe the two-dimensional shock formation. A simple
reference surface is defined consisting of an inclined plane (ζ = 40◦) that is con-
nected to a horizontal run-out zone (ζ = 0◦) by a transition zone. Superposed
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Fig. 14.7. Computed (solid) and experimentally determined (dashed) profiles of the
avalanche height for exp. 29 in [5]; δ0 = 26.5◦, φ = 37◦ and Kwall = 11◦. The horizontal
distance is arc length measured along the basal surface

on the inclined section of the chute is a shallow parabolic cross-slope topog-
raphy, zb(y) = y2/(2R) with R = 110 cm, which forms a channel that partly
confines the avalanche motion. The inclined parabolic channel lies in the range
0 < x < 215 cm and the run-out zone lies in the range x > 245 cm, between
which a transition zone smoothly joins the two regions. At x = 160 cm there
is a small parabolic hill with radius 15 cm and heigh 5 cm, see Fig. 14.8. In the
transition zone, 215 < x < 245, a smooth change in the topography defined by
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Fig. 14.8. The complex basal topography for the test problem describing the two-
dimensional shock formation. A simple reference surface is defined consisting of an
inclined plane that is connected to a horizontal run-out zone by a transition zone.
Superposed on the reference surface is a shallow parabolic cross-slope topography,
which forms a channel that partly confines the avalanche motion. The parabolic channel
in restricted to the inclined range. It is connected with the horizontal run-out zone by a
smooth transition zone. A small parabolic hill lies in the channel centre of the inclined
portion and constitutes a partial obstruction

the inclination angle

ζ(x) =

⎧⎪⎪⎨⎪⎪⎩
ζ0 , 0 ≤ x ≤ 215 ,

ζ0[1− (x− 215)/40] , 215 < x < 245 ,

0◦ , x ≥ 245 ,

(14.62)

is prescribed, where ζ0 = 40◦.
The simulation is performed with an internal angle of friction φ = 37◦ and

a bed friction angle δ = 32◦. The material is suddenly released from a hemi-
spherical shell with radius r0 = 32 cm. It is so fitted to the basal chute topog-
raphy, that the projection of the line of intersection onto the reference surface
is approximately elliptical in shape. The major axis of the ellipse is 32 cm long
and the maximum height of the cap above the reference surface is 22 cm.

Figure 14.9 shows the depth contours of the simulated results for a sequence
of non-dimensional times, from the release of the material (t = 0) until the
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Fig. 14.9. Depth contour of the simulated results at a series of non-dimensional times,
from the release of the material (t = 0) until the avalanche comes to rest (t = 22.5).
The length unit is in dm

avalanche comes to rest (t = 22.5). Once the cap is open, the avalanche ac-
celerates and extends, where the acceleration in the down-slope x−direction is
obviously dominant (t = 2.5). Because of the back pressure the rear part of the
avalanche moves slightly backwards at the initial stage of the motion. Due to
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the curvature in the cross-slope direction the extension in y-direction is limited
in the channel region (see t = 5.0 to t = 12.5). The hill holds the material partly
up (t = 5.0 to t = 12.5), but immediately below the hill and on either side
of it two knolls form. Furthermore, behind the hill the reduction of inflowing
mass causes a dent to form. Basically, the material accelerates until it reaches
the horizontal run-out zone. With increasing basal drag the front comes to rest
(t = 7.5 to t = 12.5) but the part of the tail accelerates further. In this stage the
avalanche body contracts. Once the supercritical velocity becomes subcritical, a
shock wave (steep surface gradient) is formed. This occurs just after the end of
the transition zone at ca. x = 260 (t = 15). With the approaching mass from
the tail, the shock wave propagates backwards (t = 15 to t = 20), i.e., as time
proceeds, this shock wave propagates upstream. At t = 22.5 the avalanche comes
to rest.

The velocities inside the avalanche body for the same times as the avalanche
geometries in Fig. 14.9 are illustrated in Fig. 14.10, in which the arrows denote
the direction of the velocity, and their lengths indicate the speed. The velocity of
the elements with depth h < 0.1 cm are not shown here. Although the hill holds
the material partly up and side knolls around it and a dent behind it are formed,
the velocity is not strongly affected by these features (t = 5.0 to t = 12.5) and
the material is obviously accelerated in the downslope direction. The front comes
to rest in the run-out zone but the part of the tail accelerates further (t = 7.5
to t = 12.5). At t = 15 there is obviously a jump of velocity taking place at
the transition zone, which corresponds to the steep surface gradient in Fig. 14.9.
With the mass approaching from the tail, the jump propagates backwards (t = 15
to t = 20). At t = 22.5 the avalanche comes to rest.

14.5 Concluding Remarks

In this contribution a simple theoretical model due to Savage and Hutter was pre-
sented and results obtained with it were compared with experiments. It consists
of depth integrated balance laws of mass and momentum of an incompressible
fluid that obeys a dry friction Coulomb type constitutive relation with constant
internal angle of friction. A second phenomenological parameter entering this
model is the bed friction angle which measures the roughness between the gran-
ules and the bed. This model, which is based on a shallowness assumption and
supposes that downhill velocities are large in comparison to cross-channel veloc-
ities, is expressed as a hyperbolic system of partial differential equations with
an (earth pressure) coefficient appearing in them which, depending on the so-
lution, may be discontinuous. Both the hyperbolicity of the equations and the
discontinuity of the earth pressure coefficient pose difficulties in the integration
process and may require shock capturing numerical techniques. This requires
that the differential equations are formulated in conservative form and that to-
tal variation diminishing finite difference schemes are used and combined with
frontal techniques. Simulations conducted for avalanches, observed in the lab-
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Fig. 14.10. The velocities inside the avalanche body at the same times as in Fig. 14.9
are illustrated in Fig. 14.10, in which the arrows denote the direction of the velocity
and their lengths indicate the speed

oratory, show that agreement with the observations is good including in those
cases when shocks are formed.

Finally we mention that the fact that the dimensionless form of the Savage–
Hutter equations does not depend on any non-dimensional parameters such as
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Froude, Reynolds numbers or any other π-product can constructively be used to
perform laboratory experiments on rapid flow of granular materials. As a con-
sequence, there are no scale effects in this theory, and all that must be observed
in a physical model is geometric similitude and reproduction of the internal and
bed friction angles. This has been done by Tai et al. [22] in a model simulation
of the flow of an avalanche around a wedge that was protecting a construction.
Shocks that form in such processes have also been adequately reproduced.

There remains the incorporation of entrainment/deposition processes to make
the model applicable to realistic situations.
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Nor can the geomorphologist rest content, [...]
until he knows why sand collects into dunes
at all, [...] and how the dunes assume and
maintain their own special shapes.

R. A. Bagnold
The Physics of Blown Sand and Desert Dunes [1]

15.1 Introduction

Many natural patterns appear when a simply structured equilibrium state is
no longer preferred in comparison to a more complicated restructuring or re-
arrangement of the system. Our goal is typically a theoretical explanation or
rationalization of the physical process, and invariably proceeds by way of math-
ematics; we formulate equations that describe the physical processes and seek
to solve them in the appropriate context. Many standard techniques are avail-
able for the purpose to aid our analysis. For example, sometimes, hints about
the patterns that will form can be extracted from a study of disturbances of
infinitesimal amplitude, and so linear stability theory and decomposition into
normal modes are our tools. Often, however, the ultimate, nonlinear mechanism
of saturation is critical to selecting or shaping the forming pattern, and this
cannot be revealed by linear stability analysis alone. Instead, we must advance
into the nonlinear regime where we can use ideas from weakly nonlinear and
dynamical systems theory complemented by numerical simulation.

In fluid flows, instabilities are common and many kinds of patterns are ob-
served, ranging from convection cells and surface waves to meandering jets and
vortices. Such instabilities arise purely from the hydrodynamics of the flow, but
by transporting solid particles in suspension, they may further shape the walls or
bed containing the fluid. This is one mechanism by which patterns may appear
in geomorphology, but much more significant are new effects introduced by the
interaction of the flow with the erodible bed over which the fluid runs. By this
interaction, many new complex patterns arise.

In their full complexity, erosion and sedimentation result from the dynamical
interaction between a turbulent fluid flow and the granular medium composing
the bed. But we know only a little about turbulence, much less about granular
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media, and not much at all about their interaction. Consequently, the theo-
retical problems one must formulate to understand geomorphological patterns
generated by sediment motion are all, at present, intractable. Instead, drastic
simplifications must be tolerated, and in many instances empiricism necessar-
ily replaces first principles. However, even though some of the basic aspects of
this field are “built upon sand,” in the last forty years much progress has been
made, and our overall understanding of geomorphic patterns has significantly
increased.

In this contribution, we briefly discuss some of these results, choosing those
that are both simple and close to our hearts. We concentrate mainly on patterns
that are found in association with waters running in sloping channels. Similar
patterns are generated by the interaction of sea water and coastal sediments
(such as sand waves, or tidal bedforms), and by the interaction of air and sand
(aeolian bedforms, such as desert ripples and dunes) – and these are described
in following chapters.

We embark with an introduction to the phenomenology of natural chan-
nel dynamics through a succession of images of bedforms, channel shapes and
drainage networks. Our theoretical discussion then begins with a description of
sediment transport and it continues with the formulation of the governing equa-
tions and an exploration of the linear stability problem for the simple case of a
shallow water approximation. We pose briefly to describe an example of a purely
fluid dynamical instability – the roll wave. Subsequently, we plunge into the dy-
namics of flows over an erodible, non-cohesive bottom, and we discuss some of
the pattern-forming instabilities of the coupled fluid–dirt system. We hope that
these specific examples will be of some use to start the journey into the realm
of dirty flows, which continues further and deeper in chapters to follow.

15.2 Bedform Phenomenology

When a turbulent fluid flows down a channel having a non-cohesive bottom,
composed by sediment such as sand that can be moved from one place to an-
other, several things can happen.1 A first important point concerns the bottom
stress exerted by the flowing water. If the stress is large enough to lift the bottom
material, then the interaction between the flow and the sediment can generate
bedforms – patterns of sand on the bottom of the watercourse. These include
ripples, dunes and anti-dunes (Fig. 15.1). Second, the water course itself can
become disrupted or diverted by the large-scale redistribution of bed material.
This creates a pattern in the shape of the watercourse, such as braids and me-
anders (Figs. 15.2, 15.3). Finally, on the grandest scale, there can be multiple

1 In this discussion we consider only cases where gravity is a stabilizing factor that
competes with the sediment mobilization induced by the stress exerted by the fluid.
When the channel slope is large, gravity can become a destabilizing factor, and
a large portion of the bottom sediment becomes entrained in the fluid. In such a
situation, one speaks of a debris flow, a fluid composed of a mixture of water and
sediment. One of the following chapters is entirely devoted to debris flows.
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watercourses that compete in accumulating the overland flow, or that ally them-
selves and merge into wide rivers. The pattern now is the landscape itself, the
complex terrain scoured by the running water of a drainage network (Fig. 15.4).

Fig. 15.1. Ripples and dunes on the bed of a small ditch in the countryside

Our main discussion will be on bedforms, and we now describe some of the
phenomenology observed on the bottom of natural watercourses. However, the
discussion is far from complete, and surrounds only the main types of bedform.
General introductions to river geomorphology are given in [2,3]. A classic dis-
cussion of aeolian bedforms can be found in the book by Bagnold [1].

The two main quantities influencing the evolution of the bed are the bottom
stress exerted by the fluid, τb, and the average size of the sediment, d. As we
shall see later, their ratio enters an important non-dimensional quantity, the
Shields number, that controls sediment transport. In channel flows, one often
assumes that the bottom stress can be estimated in terms of the average flow
rate, U , which is far easier to measure. This leads one to quantify sediment
transport and therefore bed morphology in terms of the Froude number, F =
U/(g′H)1/2, where H is the average water depth, g′ = g cosφ is the projection
of the gravitational acceleration perpendicular to the channel, and φ is the angle
of inclination (typically, g′ ≈ g). The distribution of sediment sizes constitutes a
far more complicated input to the problem. In general, very fine sediment can be
mobilized by slow flows with small Froude number while larger sediment grains
can only be moved by strong enough flows with large Froude number. In order
to give a brief overview of bedform phenomenology, we concentrate here on the
case of sand, with grains of typical size of about 0.1 mm and a fairly narrow
distribution about that mean.

In this case, when the average flow speed is low and F 	 1, not much
happens. A flat bottom remains that way on average, and the sediment grains
do not move much. At larger flow speed, the shear stress that the fluid exerts
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Fig. 15.2. Meandering rivers. First two panels: Arctic coastal river. Third panel: Rio
Ucayali river (Peru). These pictures are courtesy of the NASA Goddard Space Flight
Center’s Distributed Active Archive, http://daac.gsfc.nasa.gov/

Fig. 15.3. The braided Waimakariri river in New Zealand. Aerial photo by Bianca
Federici, University of Genoa
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Fig. 15.4. Dendritic river networks. A network in Yemen and that creating the Huang
He (Yellow) river. These pictures are courtesy of the NASA Goddard Space Flight
Center’s Distributed Active Archive, http://daac.gsfc.nasa.gov/

on the bottom becomes sufficient to mobilize the sediment, and the grains start
to move. For F < 1 (the “subcritical” regime), the grains move mainly either
by rolling or by taking small jumps from one location to another (“saltation”).
This is called “bedload transport”, and precipitates pattern formation. In this
regime, two main types of bedforms are observed. The first type is a small
corrugation of the bottom, with typical wavelengths of a few centimeters and
amplitudes of a few millimeters. These bedforms are called ripples, and they
can be seen for values of the Froude number close to incipient sediment motion.
The other bedforms are called dunes, and they can be both longer and of larger
amplitude than ripples. Dunes are asymmetric bedforms, with the side facing
downstream (the “lee” side) being much steeper than the side facing upstream
(the “stoss” side). Dunes can be either two-dimensional (i.e. with little variation
in the cross-stream direction), or fully three-dimensional. The presence of dunes
is also reflected in the shape of the free surface of the overlying water; the surface
is typically depressed above a dune.

Both ripples and dunes move slowly downstream, at a speed (called celerity)
that is much smaller than the fluid velocity. This is because erosion takes place
on the stoss side of the dune, and sediment is deposited immediately after the
crest, on the lee side. The speed of motion of a dune or ripple is determined by
the effectiveness of bedload transport and the amount of material that must be
moved (the volume of the bedform). For fixed water flux, the degree of bedload
transport is roughly given by the surface area of the dune. Thus, larger dunes (or
ripples) have lower bedload transport relative to volume, and so are slower than
smaller dunes by a factor given roughly by the ratio of their respective lengths.

For still higher flow speeds, close to (but usually smaller than) the critical
value F = 1, bedforms become either irregular and not well defined, or do
not form at all and the bottom becomes flat again. This regime is typically
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associated with a change in the dominant form of sediment transport: The stress
exerted by the flow is now sufficient to mobilize much of the sediment and keep
it suspended in the turbulent fluid motions. Thus, rather than bouncing along,
the sediment can be simply carried along within the body of the fluid, leading
to the notion of “suspended load.” Of course, the distinction between the two
modes of transportation is not sharp, and in sediments with varying grain size
one can observe the largest grains to move as bedload and the finest ones to be
suspended in the fluid.

At the largest flow rates (typically, with F > 1, in the “supercritical” regime),
a new type of bedform appears: The antidune. Antidunes are characterized by
the fact that the free surface of the flowing water is approximately in phase with
the bed perturbation. Another important difference is that antidunes can move
either downstream or upstream (i.e. against the flowing water). For upstream-
moving antidunes, erosion takes place mainly on the lee side of an antidune, and
the grains are moved to the stoss side of the following antidune. Thus, although
grains move downflow, the bedforms can migrate upstream. Antidunes are often
associated with the presence of suspended load, which is able to carry particles
between bedforms, but this is not always the case and rivers and laboratory
flumes with dominant bedload transport also form antidunes.

Finally, ripples and dunes are observed on the surface of wind-blown sand.
Antidunes, on the other hand, are typical of channel flows and are not observed
either in wind-tunnel experiments or in the desert. This is because one cannot
usually access the supercritical regime for blown dust or sand in the atmosphere:
The height of the air layer is so large that the Froude number is much smaller
than one. For instance, in a layer of height of 1000 m (the approximate height of
the planetary boundary layer), and with a wind speed of 180 km/hr (typical of
bad weather in Antarctica), one gets a Froude number as small as 0.05.

15.3 Moving a Sandy Bottom

15.3.1 Initiation of Sediment Motion

For a granular material on a slope, there is a critical angle (the “angle of repose”)
beyond which the material starts to avalanche downhill. The value of the angle
of repose depends on the specific properties of the medium; for natural dry sand,
it is about 30 degrees. In the case of a granular sediment immersed in water, the
detailed mechanics of the sediment are much complicated by the presence of the
overlying fluid, but the idea that the medium can become unstable and begin
avalanching remains roughly the same – this is still crudely characterized by an
angle of repose.

When a channel slope is less than this special angle, the bed only moves if the
fluid can mobilize sediment particles. This requires the fluid to exert sufficient
stress on a particle to displace it from bottom, which, as we have implied above,
occurs when the flow is sufficiently strong. However, the problem of the initiation
of erosion, or of the displacement of sediment grains, is an old and complicated
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one, that is still only partially understood, see for example [1,2,3,4,5,6], and the
next chapter of the present volume.

Very crudely, for a horizontal cohesionless bottom composed by tightly packed
sand grains, the bed becomes mobilized when the force exerted on a submerged
particle exceeds the restoring force produced by gravity [1]. The main force ex-
erted by the fluid on the grain is the surface drag force, FD, that is due to the
direct effect of the fluid velocity on the grain and can be obtained by integrating
the stresses exerted by the fluid over the surface of the grain. The result is a
force proportional to the bottom shear stress, τb, and to the square of the grain
diameter, d: FD ≈ τbd2. This force competes with the downward force of gravity,
FG = −g(ρs−ρ)πd3/6, where ρs is the density of the sediment and ρ is the fluid
density. Their ratio provides the Shields number, defined as

τ∗ =
τb

(ρs − ρ)gd
. (15.1)

For values of the Shields number larger than a critical threshold τcr, the drag
force overcomes gravity, and the sediment is set into motion. For τ∗ < τcr, the
drag exerted by the fluid is too low and the grains do not move. As shown by
its definition, the Shields number is directly proportional to the stress exerted
by the fluid but it is inversely proportional to the size of the sediment, d. This
illustrates how slower flows can, in principle, mobilize finer sediments. However,
the critical shear stress is also a function of particle size (see [1,2,3,4,5,6] and
the following chapter).

As a final comment, we recall that the value of τb for a turbulent flow is a
wildly variable quantity, characterized by strong spatio-temporal intermittency
and huge departures from the average value. In turbulent wall flows, in particular,
the dynamics is characterized by the presence of intense coherent structures,
called bursts and sweeps, that violently take fluid from and toward the wall [7].
It is not yet clear what happens to sediment transport in real turbulent flows
where the bottom shear stress violently fluctuates around the critical value [8].
This is matter of present research, and it is perhaps one of the basic issues to
be solved in order to gain a more fundamental understanding of erosion and
sedimentation.

15.3.2 Sediment Transport

Once set into motion, the sediment grains are transported by the fluid flow
either as bedload or suspended load. In bedload transport, the sediment moves
much more slowly than the fluid. At the moment, there is no fully satisfactory
theoretical derivation of the bedload sediment flux as a function of the fluid
and bottom properties. There are, however, a few empirical expressions. A well-
known one is the Meyer–Peter and Muller formula [9],

J =
qb

[(ρs/ρ− 1)gd3]1/2 = A [τ∗ − τcr]
3/2

, (15.2)
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where qb is the modulus of the (bedload) sediment flux, J is its nondimensional
counterpart, τ∗ is the Shields parameter, τcr is the nondimensional critical shear
stress, and A is an empirical constant; Meyer–Peter and Muller suggest A = 8
and τcr = 0.047. Equation (15.2) only gives the value of the modulus of the
bedload flux, and not its direction. To complete the formulation, the flux is usu-
ally taken in the direction of the fluid velocity, u. On sloping bottoms, however,
sediment inertia can deflect the bedload motion from the direction of the fluid
flow, demanding revision of the formula.

When the fluid motion is more intense, the suspended load dominates the
transport of sediment. Because the suspended particles follow the fluid in its rush
downhill, the sediment is moved at approximately the same speed as the water,
and fills the entire water column. In reality, suspended grains do not fully behave
like fluid parcels, due to their relative inertia and finite size. Again, the forces
on the suspended particles are very complex. However, all these complications
are usually discarded, and the suspended grains are considered to move with
the local fluid velocity, corrected to include the settling speed induced by the
gravitational force acting on the grain. In this circumstance, a simple model of
the sediment load is given by the conservation equation,

∂C

∂t
+ (u−Ws) · ∇C = κ∇2C , (15.3)

where C(x, t) is the concentration, and Ws is the free-fall velocity for the sed-
iment. The term on the right hand side represents an empirical diffusion and κ
is the (phenomenological) eddy diffusivity of the sediment concentration field. A
complicated boundary condition must be imposed on this equation at the lower
boundary where there are sources and sinks of sediment due to erosion and de-
position. Equation (15.3) does not have the status of an exact description, and is
obtained by averaging over the random trajectories of the suspended grains. At
the same time, many forces acting on the grains have to be discarded, as well as
the grains’ acceleration. The diffusive term in (15.3) tries to incorporate some of
these effects. However, overall, the validity of the approach has not been verified
in detail and the theory remains open to question – a concentration equation for
particles with inertia has yet to be derived.

With prescriptions for bedload and suspended load, we are now ready to
write an equation for the evolution of the bottom surface, that we denote by
ζ(x, y, t). This is known as the Exner equation, and it is written as

(1− λp)
∂ζ

∂t
= −∇ · qb − E +D , (15.4)

where λp is the sediment porosity and qb is the sediment flux due to bedload
transport. The terms, E −D, represent erosion and deposition of the suspended
load, and can be rewritten using the vertical integral of (15.3), assuming no
diffusive flux through the boundaries:

(1− λp)
∂ζ

∂t
= −

(
∇ · qb +∇ · qs +

∂Qs

∂t

)
, (15.5)
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where
Qs =

∫ η

ζ

C(x, y, z, t) dz , (15.6)

qs =
∫ η

ζ

(u−Ws) C dz , (15.7)

and η is the free surface of the fluid. In most cases, the amount of suspended
sediment is relatively small, and the time derivative of Qs is usually discarded.
This allows for writing the Exner equation as

(1− λp)
∂ζ

∂t
= −∇ · q , (15.8)

where q ≡ qb + qs is the total load. Moreover, rather than deal with the full
transport equation in (15.3), many theorists revert to empirical formulae for the
total load, in which case q becomes a known function of the fluid flow.

At this stage, we have the ingredients that are needed to study how the erodi-
ble bottom responds to the overlying fluid motion. Together with a prescription
for the fluid dynamics, we are then set to explore whether bedforms can be gen-
erated as a result of a linear instability. In the next section, we specify a simple
fluid model – known as the shallow water approximation – and, in this idealized
framework, we couple the Exner equation to the fluid dynamics.

15.4 A Shallow World

Before attempting a mathematical description of the interaction between a fluid
flow and its erodible bed, it is essential to appreciate that the flow of interest is
fully turbulent: For a channel with depth H = 1 m, fluid velocity U = 3 ms−1,
and water viscosity ν ≈ 10−6 m2s−1, one gets a Reynolds number, R = UH/ν,
larger than 106. By all standard yardsticks (critical Reynolds numbers for pipe
and channel flows in the laboratory) this places the flow in the fully developed
turbulence regime. Thus, the equations we seek are in the realm of Reynolds av-
eraged equations (approximate equations in which one takes into account mean,
large-scale properties of the turbulent flow and roughly parameterizes the effect
of small-scale turbulent fluctuations), and we have to cope with standard closure
problems.

A simplified model that has often been used in past studies of channel and
river flows is the one-dimensional shallow-water approximation for a fluid flowing
down a channel with constant (and small) slope S = tanφ. The configuration
is sketched in Fig. 15.5 and it is characterized by the water depth, h(x, t), the
vertically averaged fluid velocity, u(x, t), and the elevation of the surface of the
erodible bed, ζ(x, t), where t is time and x is the downstream spatial coordinate.
There is no lateral variability, and the dynamics takes place only in the down-
stream direction. Of course, we know that the turbulent motion is indeed fully
three dimensional, and that there are strong vertical motions near the bottom
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that make a shallowness assumption quite unrealistic. In the shallow-water the-
ory, all of these unknowns become synthesized into eddy diffusion and drag terms
in the momentum equations for the fluid, and into the erosion and deposition
law for the sediment. The description can therefore only be a pale metaphor of
reality. Encouraged by these considerations, we proceed.

Water

φ

g

z

h

ζ

Bed

x

Fig. 15.5. A sketch of the configuration for a vertical slice of a fluid flowing down a
channel with erodible bed

The shallow-water equations for the model can be derived as a crude ap-
proximation of the governing Navier–Stokes equations: We assume that vertical
lengthscales are far smaller than horizontal scales, that the pressure distribution
is therefore almost hydrostatic, and vertically average the momentum equations.
This procedure is identical to that used for any kind of shallow fluid layer, but
at this juncture, the approaches for inviscid or viscous, laminar or turbulent,
fluid all diverge. In inviscid theory one postulates that the horizontal velocity
is independent of the vertical coordinate or that flow is irrotational (either of
which remain true if the initial conditions are so) and one obtains a closure of
the system of equations. For very viscous fluids, one can close the equations by
choosing an appropriate balance of terms in the scheme of an asymptotic expan-
sion (this is the lubrication approximation that is used for the relatively slow
motion of glaciers, lava and other geophysical fluids elsewhere in this volume).
However, for turbulent fluid, neither approach is suitable and there is really no
justifiable step forward. Instead, we must replace asymptotic expansion by a
crude closure argument. Various options have been chosen in the past (heuristic
reasoning, Reynolds averaging, von Karman’s power integral method, Galerkin
projection amongst others), some of which lead to the equations (see e.g. [10]),

∂u

∂t
+ u

∂u

∂x
= g′

(
S − ∂h

∂x
− ∂ζ

∂x

)
− Cf

u2

h
+

1
h

∂

∂x

(
hν̃t

∂u

∂x

)
(15.9)

and
∂h

∂t
+
∂

∂x
(hu) = 0 , (15.10)
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where g′ = g cosφ, the drag term Cfu
2/h represents the stress exerted on the

fluid by the bed, and ν̃t is an eddy viscosity. There are empirical estimates of the
friction coefficient, Cf , used in the drag formula, which is often referred to as
the Chezy formula. Equation (15.9) is also known as the Saint Venant equation.

Next, we must specify the dynamics of erosion of the bed. That is, we require
an evolution equation for ζ(x, t). We use the one-dimensional form of the Exner
equation:

(1− λp)
∂ζ

∂t
+
∂q

∂x
= 0 , (15.11)

where q(u, h, s) represents the sediment flux and is an empirical function of the
flow speed and depth, and of the local bed slope, s (consisting of the mean slope
S plus a correction due to the bed shape). We do not yet need to specify the
functional dependence of q, and leave open the choice of sediment transport law.
Also, at this stage we do not make a distinction between bedload and suspended
load.

In the case of a flat bottom (ζ = 0), (15.9) admits a family of stationary and
homogeneous equilibrium solutions where the flow has constant velocity U and
depth H. We set all terms containing spatial or temporal derivatives to zero,
leaving

g′S = Cf
U2

H
. (15.12)

This is a relation between the fluid velocity and the water depth, which prescribes
the equilibrium flow given the total downslope water flux, Q = HU . That ho-
mogeneous state owes its existence to a balance between the forcing provided by
the gravitational acceleration, which pushes the fluid down the channel, and the
effective friction from the stress on the bed, which brakes the fluid. In a more
realistic description, effects of turbulent motion may be more varied, but in this
vertically-averaged approach the effective friction is conceptually similar to the
friction exerted by the air on a falling body, and the flow rolls down smoothly
at a suitably defined “terminal velocity.”

The properties of the homogeneous state allow for naturally introducing di-
mensionless variables. Different choices are possible, and here we use

x→ x′ = x/L , u→ u′ = u/U , t→ t′ = tU/L , (15.13)

(η, ζ, h) → (η′, ζ ′, h′) = (η/H, ζ/H, h/H) , (15.14)

where L represents the horizontal scale of motion. To be consistent with the
shallow-water assumption we require only that H/L	 1; a convenient choice is
L = H/S. With these definitions, and after dropping the prime decoration on
the dimensionless variables for notational ease, we obtain

F 2
(
∂u

∂t
+ u

∂u

∂x

)
= 1− u

2

h
− ∂h
∂x
− ∂ζ

∂x
+

1
h

∂

∂x

(
hνt

∂u

∂x

)
, (15.15)

∂h

∂t
+
∂

∂x
(hu) = 0 and

∂ζ

∂t
+ ε

∂J

∂x
= 0 , (15.16)
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where the Froude number is

F =
U

(g′H)1/2 =
S

Cf
, (15.17)

the dimensionless eddy diffusivity is νt (as measured by the unit UL/F 2), ε
is a dimensionless parameter given by the ratio of the characteristic sediment
flux to the water flux (ε = (1 − λp)−1[q]/HU or (1 − λp)−1Vs/U , where Vs is
a characteristic sediment transport speed), J(u, h, s) is the sediment transport
law in dimensionless units (with characteristic values of unity), and s = |1− ζx|
is the local slope.

Equations (15.15)–(15.16) have stationary solutions characterized by u = h =
constant and ζ = 0. The relevant solution is that used to non-dimensionalize the
problem, (h, u, ζ) = (1, 1, 0). A standard approach is then to explore the linear
stability of the homogeneous state by setting (h, u, ζ) = (1, 1, 0)+(ĥ, û, ζ̂), where
(ĥ, û, ζ̂) are infinitesimally small. By substituting these expressions in (15.15)–
(15.16) and retaining only linear terms one obtains

F 2
(
∂û

∂t
+
∂û

∂x

)
= −∂ĥ

∂x
− ∂ζ̂

∂x
+ ĥ− 2û+ ν0

∂2û

∂x2 , (15.18)

∂ĥ

∂t
+
∂û

∂x
+
∂ĥ

∂x
= 0 and

∂ζ̂

∂t
+ ε

[
Ju
∂û

∂x
+ Jh

∂ĥ

∂x
− Js

∂2ζ̂

∂x2

]
= 0 , (15.19)

where ν0 = νt(u0, h0) is the value of the equilibrium eddy diffusivity, and the
subscripts on J indicate the partial derivatives with respect to u, h and slope,
evaluated for the equilibrium state (that is, Ju = [∂J/∂u]u=1,h=1,s=1, and so
on).

To proceed further, we look for normal modes with an exponential depen-
dence on space and time: (û, ĥ, ζ̂) ∝ exp ik(x − ct), where k is the downstream
wavenumber and c is the wavespeed. On substituting the form of the solution
into the linear equations, and after a little algebra, we obtain the dispersion
relation,

[2 + ν0k2 + ikF 2(1− c)](1− c) + 1− ik = ikε
Jh − (1− c)Ju

c+ ikεJs
, (15.20)

that implicitly determines c as a function of k and the parameters of the problem.
Because (15.20) is a cubic, there are three types of normal modes. If c = cr + ici
turns out to have positive imaginary part, the normal mode grows exponentially
in time; for ci = 0, the mode is neutrally stable. The equilibrium is stable only
if ci < 0 for all three modes and for all values of k. The real part of c determines
the propagation speed of the mode: If cr > 0, the perturbation propagates with
the flow in the positive x direction, while cr < 0 indicates propagation upstream.
If cr > 1, the perturbation propagates faster than the flow (i.e. at a speed that
is larger than the fluid velocity).
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A key property of the problem we are considering is that, for bedload trans-
port, the water flows much faster than the sediment. Indeed, we often observe
that low-amplitude waves on the surface of a river are brief and insignificant as
far as the rearrangement of the bed is concerned. And ripples and dunes form far
more gradually than the water rushes over them. In mathematical terms, this
means that the parameter ε is usually small. The smallness of this parameter
allows us to solve the cubic dispersion relation in an asymptotic fashion and to
decode the physics that is woven into it.

First, given that ε	 1, we are tempted to simply ignore the right-hand side
of (15.20). The result is a quadratic equation for c:

[2 + ν0k2 + ikF 2(1− c)](1− c) + 1− ik ≈ 0 . (15.21)

On solving this quadratic we observe that the corresponding values for |c| are
order one. Thus we uncover directly two of the modal solutions. These are rapidly
evolving modes and correspond to water waves that are barely modified by the
erodible bed. Indeed, they are the solutions that we would have found had there
been no erosion of the bed at all; (15.21) is the dispersion relation for the non-
erosive problem. The erosion generated by these water waves is recovered on
looking at the higher-order terms in ε:

ζ =
[(1− c)Ju − Jh]

(1− c)(c+ ikεJs)
εu . (15.22)

Thus the bed perturbation remains small.
The third solution that is missing from the approximate quadratic is a slowly

evolving or “sediment” mode. We uncover this solution by observing that if c ∼ ε,
we can no longer neglect the right-hand side of (15.20). Instead, we find another
solution,

c ≈ ikε(Jh − Ju)
3 + ν0k2 + ik(F 2 − 1)

− ikεJs . (15.23)

This slow mode describes the diffusive-like evolution of the bed. Because c ∼ ε,
the time derivatives in the momentum and continuity equations are always small
for this mode. Thus the water evolves “quasi-statically” as the bed erodes or
builds up through deposition.

Each of the different kinds of modes can, in principle, be unstable. Unstable
fast-modes correspond to purely hydrodynamical instabilities, or roll waves as
they are often called. Unstable sediment modes, on the other hand, could create
bedforms such as dunes and antidunes. Hence by exploring the linear stability
of the diffusive sediment mode we may begin to rationalize bedform dynamics.

15.5 Rolling Shallowly Downhill

First we consider the purely hydrodynamic instability which occurs when the
fluid velocity (equivalently, the Froude number) is large enough. As these per-
turbations propagate and grow, they develop into a series of fronts, or shocks,
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that propagate downstream – the roll waves. Photographs of roll waves in a long
rectangular open channel were first published by Cornish [11].

As described above, for roll waves we can neglect the disturbance of the bed
(for ε 	 1). In linear theory, the waves are then described by the dispersion
relation in (15.21). This equation is quadratic in c, and so there are two different
solutions for c for any value of the controlling parameters and of k. One wave
moves slower than the mean flow and is always decaying (ci < 0). However, the
other wave moves faster than the mean flow and can be unstable, depending
on the values of F , ν0 and k. The inception of instability can be detected by
demanding that the wavespeed is purely real: c = cr and ci = 0. Then the real
and imaginary parts of the dispersion relation provide the two equations,

(2 + ν0k2)(c− 1) = 1 and F 2(1− c)2 = 1 . (15.24)

The latter implies that c = 1 ± F−1. The slower solution, c = 1 − F−1, cannot
satisfy the first relation in (15.24) for positive viscosity. However, the faster
solution, c = 1 + F−1, leads to 2 + ν0k

2 = F . A little more algebra shows
further that all modes with ν0k2 < F − 2 are unstable. Notably, if ν0 = 0, all
wavenumber are unstable for F > 2, which implies that the problem without
eddy diffusivity is potentially ill-conceived.

From a physical perspective, the instability has a simple explanation: Con-
sider an initial perturbation in which we rearrange the fluid so that the water
depth is depressed at some point, but is elevated just downstream. Because the
friction coefficient depends on the inverse of the water depth, the fluid elements
with the elevated surface experience less friction; they accelerate downstream.
Behind them, the fluid elements where the surface is depressed experience greater
friction and slow down. As a result, the surface swell picks up speed and propa-
gates downstream, collecting fluid in its passage and leaving behind a shallower
layer.

In summary of linear theory, for F < 2, the homogeneous state is stable,
and travelling perturbations decay. For F > 2, the homogeneous state becomes
unstable, and small perturbations that travel faster than the flow grow expo-
nentially. This instability is how we rationalize mathematically the emergence
of roll waves. However, their finite-amplitude behaviour must be explored by
other means, particularly since stability theory predicts a wide band of unstable
modes when ν0 is small and there is no way to select the characteristic separa-
tion of roll waves. To that end, steady finite-amplitude waves were constructed
by Dressler [12] and Needham & Merkin [13,14], and weakly nonlinear results
were obtained by Kranenburg [15] and Yu & Kevorkian [16]. These results were
compared favourably to full numerical simulations of the non-erosive equations
by Brook et al. [17].

Kranenburg [15] suggested an image for the behaviour of finite-amplitude
roll waves: From a generic initial field, linear instability nucleates growing roll
waves. These roll waves steepen into a sequence of shock-like objects. In general,
because the different crests are not equally spaced, the individual shock-like roll
waves experience different water depths. The waves that begin in deeper water
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move faster as they feel a reduced drag with the bottom. This allows a stronger
roll wave to catch up with a smaller, slower moving roll wave lying immedi-
ately downstream; the two waves then collide and merge into a single wave.
The merged waves then accelerate downstream, catching up with more distant
companions, leading to further collisions and mergers on a longer timescale. This
“coarsening” of the roll-wave pattern continues inexorably until only a single roll
wave remains with the size of the simulation domain. Thus the system displays
a tendency toward generating structures on the largest possible spatial scale –
an “inverse cascade.”

Figure 15.6 shows solutions obtained by numerically integrating the full hy-
drodynamic equations (15.15)–(15.16) without erosion (ζ = 0) from an initial
condition consisting of a random perturbation away from the homogeneous state.
We show the results for four values of the Froude number, all larger than two.
The perturbations grow and form roll waves; these waves then merge with one
another and eventually generate a single roll wave with the spatial scale of the
simulation box (see also [18]).

15.6 Sediment Instabilities in Shallow Water

The previous discussion focusses on hydrodynamic instabilities, the roll waves.
However, it is the slow, diffusive modes of sediment redistribution that are rel-
evant to the creation of bedforms. From our approximate solution of the linear
stability problem in (15.23), we observe that these modes have the growth rate,

kci ≈ εk2
[

(3 + ν0k2)(Jh − Ju)
(3 + ν0k2)2 + k2(F 2 − 1)2

− Js

]
. (15.25)

The growth rate is largest for k → 0, in which case,

kci →
εk2

3
(Jh − Ju − 3Js) . (15.26)

Evidently, if the sediment flux is sufficiently sensitive to perturbations in fluid
depth (Jh > Ju + 3Js), sediment modes with long wavelength (small wavenum-
ber) are unstable. This mechanism for the creation of bedforms, however, has
two drawbacks which indicate that it is not a tenable explanation for ripples,
dunes and anti-dunes. First, there is no dependence on the Froude number, in
complete contrast with the bedform phenomenology described earlier. Second,
many of the commonly used sediment flux laws have at most a weak dependence
on h and thus give no instability in this way. For example, the Meyer–Peter &
Muller formula (15.2) implies that J depends only on u (so Jh = 0); in another
class of transport laws, J depends purely upon the total water flux, hu (and
Ju = Jh). Either way, it is impossible for the sediment mode to be unstable.

We illustrate further with a specific example: Consider the explicit form
for the total sediment load given by Coleman & Fenton [19] which summarizes
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Fig. 15.6. Nonlinear evolution of the free surface for the erosionless shallow water
system discussed in the text. Each panel shows a case with different Froude number.
The downstream drift of the whole pattern is subtracted in each case, so that we can
easily observe the coarsening dynamics of the roll-wave patterns. The system has been
numerically integrated by a finite difference code with third-order predictor-corrector
time stepping and second-order accuracy in the spatial derivatives. The initial condition
is low-amplitude random noise. The horizontal scale indicates distance in the unit
periodic box (0,1), the vertical scale on the left of the figures indicates wave amplitude,
the vertical scale on the right of the figures indicates time in nondimensional units. The
numerical simulations were performed by Jost von Hardenberg, University of Oxford

the Engelund and Hansen formula [20] and is fit to the experiments of Jain &
Kennedy [21]:

q =
0.05U2(HS)3/2

d(ρs/ρ− 1)2g1/2u
2(h|1− ζx|)3/2 , (15.27)
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where ρs/ρ is the ratio of sediment to water density, and d is a characteristic
sediment particle size. Thence,

ε =
0.05UH1/2S3/2

d(1− λp)(ρs/ρ− 1)2g1/2 . (15.28)

For one of Jain & Kennedy’s experiments, Coleman & Fenton quote ρs = 2.65ρ,
d = 2.5×10−4 m,H = 0.0771 m, U = 0.3847 m/s and S = 0.00267, which implies
that ε ≈ 2.5 × 10−4/(1 − λp), and is very small as we remarked earlier. Given
this data, we may also independently estimate the drag coefficient,

Cf =
gHS

U2 ≈ 1.4× 10−2 ; (15.29)

this is consistent with values typically quoted in the literature. Also Re =
UH/ν ≈ 3 × 104, so the flow is presumably fully turbulent. For this trans-
port law, we find that Ju = 2, Jh = 3/2 and Js = 3/2, which implies that the
sediment mode is stable. This is confirmed by solving the eigenvalue equation, as
shown in Fig. 15.7. Importantly, because of the bottom friction, the three types
of modes are all well separated on the spectral plane for all values of k. This is
unlike the problem considered by Coleman & Fenton, and as a result there is
no chance of an instability (for these parameter values) occuring due to mode
interaction.
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Fig. 15.7. Solution of the dispersion relation. The values of c are shown for the
different modes with k ranging from 0.05 to 125, for three values of ν0 (0, 0.01 and
0.02). Somewhat curiously, the large k limit of the fast mode is c → 1 for finite ν0.
F 2 = 0.2, Ju = 2, Jh = Js = 3/2 and ε = 2.5 × 10−4
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Numerical simulations of the full equations (15.15)–(15.16) including erosion
also fail to show any instability. For F < 2, one finds that there is no instability;
for F > 2, the main effect of the transport of sediment is to modify roll waves
and their dynamics slightly, but not qualitatively. There is some rearrangement
of the bed, with the roll wave dredging sediment with it as it propagates.

15.7 Lagging Behind

Given that our simple model fails to incorporate the necessary physics of bedform
pattern formation, we must next ask what is missing. Many effects have been left
out. One possibility is that the shallow water theory does not contain sufficient
information about the vertical structure of the instability to capture the physics.
Another option is that we have been using a bad parameterization for the erosion
law.

Vertical structure can be taken into account in another way if we consider
irrotational motions in inviscid fluid. This approach provides an alternative to
the shallow-water theory that keeps the mathematical analysis relatively simple.
In this circumstance, the addition of rearrangements of the bed through the
Exner equation constitutes a straightforward generalization of classical theory of
water waves, and can be used to try to detect bedform instability. Unfortunately,
Kennedy [22] found no instabilities in this problem. To resolve the issue, he
proposed that, if the bed perturbation lagged behind the fluid perturbation by
an angle kδ, instability would occur provided that δ lay within certain ranges.
The physics of the phase lag was not worked out in detail, and is evidently
not present in the Exner equation. In this case, we write the sediment flux as
J → J [u(x+ δ, t), h(x+ δ, t), ζ(x, t)]. Although the introduction of this phase lag
is rather ad hoc, Kennedy went on to show that the modified stability theory
predicted bedform instabilities that occured in ranges of wavenumber and Froude
number that roughly matched observations, provided the phase lag was suitably
chosen.

In the years after Kennedy’s works, various researchers have attempted to
justify the existence of this lag, while other have preferred to follow a different
route, abandoning the assumption of potential flow [23,24,25]. Actually, very
recently, Coleman and Fenton [19] have pointed out that it is not true that
potential flows are always stable. They solve the linear stability equations for
potential flows. As for shallow-water flows, the dispersion relation is a cubic and
there are three types of modes: Two hydrodynamic modes (one slow, one fast),
and a sediment mode. Because the fluid is inviscid, when the wavespeed of the
slow hydrodynamic mode becomes sufficiently small, there can be a resonant
interaction between this mode and the sediment mode, promoting instability.
Some rationalization for bedforms in laboratory experiments is offered, but the
theory does not give a definitive explanation of bedforms in general.

Mode interactions do not occur in shallow water theory because of the im-
portance of the bottom drag (which separates all the eigenvalues, see Fig. 15.7).
This highlights a key difference between the two approaches, even though both,
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in principle, apply to high Reynolds number fluids. The potential flow approach
neglects turbulent dissipation altogether, and treats the dynamics as though it
were purely inviscid. On the other hand, the shallow-water (or, better, Saint–
Venant) approach admits the existence of dissipation and turbulence and crudely
parameterizes their effects. These are two quite different approaches that can be
relevant in different limits of the fluid problem. For example, it is often argued
that inviscid fluid dynamics is relevant to phenomena in high Reynolds number
flows when the timescales of interest are relatively short. In this circumstance,
there is no time for a turbulent cascade to channel energy down to the dissi-
pative scales. At the other extreme, for relatively slowly evolving phenomena
(compared to the typical turn-over times of eddies), the turbulent motions may
be in some instantaneous equilibrium state in which energy continually cascades
to the dissipation scale to create an effective friction. In this limit, the braking
action of turbulent motions are clearly essential, and simple parameterizations
of the drag may be useful. This is the Saint-Venant regime. For bedform pro-
cesses, the evolutionary timescales are relatively long, which suggests that the
Saint–Venant approach may be the more plausible of the two. (An even simpler
argument is that, over the timescales of interest and on a slope, inviscid fluid
would continually accelerate, precluding a steady downflowing equilibrium.)

As in potential flow theory, we can explore the effect of an artificial phase lag
in the shallow-water analysis. Following Kennedy, we simply adopt the modified
sediment transport law, and omit a discussion of the difficult matter of its phys-
ical origin. The normal-mode analysis proceeds as before except that we must
replace Ju and Jh by Jueikδ and Jheikδ. We then obtain a dispersion relation
like (15.20), and the eigenvalue of the sediment mode becomes

c+ ikεJs ≈
ikε(Jh − Ju)√

(3 + ν0k2)2 + k2(F 2 − 1)
ei(Δ+kδ) , (15.30)

where

tanΔ =
k(F 2 − 1)
3 + ν0k2 . (15.31)

Hence, the growth rate takes the form,

kci ≈
εk2(Jh − Ju)√

(3 + ν0k2)2 + k2(F 2 − 1)
cos(Δ+ kδ)− εk2Js . (15.32)

For instability,

(Jh − Ju) cos(Δ+ kδ) > Js

√
(3 + ν0k2)2 + k2(F 2 − 1) . (15.33)

Because of the phase lag, it is no longer necessary that Jh > Ju for instability
(although the instability condition cannot be satisfied unless |(Jh− Ju)| > 3Js).
Curiously, if Js = 0, the flow is always unstable, and the growth rate is an os-
cillating function of wavenumber with the limit, kci → (ε/ν0)(Jh− Ju) cos kδ as
k →∞. For small ν0, the higher wavenumber modes are even the most unstable.
Neither feature would seem particularly desirable from a physical perspective.
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The theory is to some degree saved by the slope-dependence of the sediment flux:
By using a transport law with Js = 0 we can eliminate many of the ranges of
unstable wavenumber, and reduce the wavenumbers of the most unstable modes.
Nevertheless, the problem of wavelength selection still appears particularly se-
vere in this model, a feature also brought out by Coleman & Fenton for potential
flow with a phase lag. Thus, whereas an arbitrary phase lag can permit unstable
sediment modes where none previously existed, it can also create just as many
problems as it cures.

The above results indicate that a better treatment of the turbulent flow and
transport is needed in order to detect bed instabilities. Along these lines, shortly
after Kennedy’s work, several authors [23,24,25] studied the linear instability of
flows with erodible beds, treating turbulence by means of a simple eddy diffusion,
and sediment transport using empirical formulae. By directly considering the
stability of the vertical flow profile of the steady solution, these explorations
avoid any crude vertical averaging of the sort that goes into the Saint-Venant
model. However, the price one pays for this generalization is that one must
then solve differential equations for the vertical structure of each normal mode
together with complications regarding how one deals with the movable lower
boundary. Engelund [23] considered both bedload and suspended load transport
and predicted linear instabilities with the lengthscales of dunes. However, finite
growth rates were again predicted for bed waves of infinitesimal wavelength.
This problem was cured by Fredsoe [24] who incorporated a slope-dependence
into the sediment flow law (as we exploited Js = 0 in the Saint-Venant model).
Further detailed computations were performed by Richards [25], who found two
ranges of maximally unstable wavelengths that he associated with ripples and
dunes.

These results suggest that one can explain the formation of certain types
of bedforms if one introduces a more detailed parameterization of turbulence.
However, though plausible, there is no guarantee that such parameterization
is any more accurate that the physics captured in our shallow-water model –
turbulence is the big unknown ingredient in all of the theory. Moreover, for
particle saltation in water, Wiberg & Smith [26] suggest that the dependence of
the sediment transport on local bed slope, although present, may be too small
to have an appreciable effect on bed instabilities (see also [27]). Thus, all is by
no means solved here.

15.8 Landscaping

Up to this point, we have considered only one-dimensional situations. How-
ever, real bedforms are two-dimensional. In addition, there are other phenom-
ena – such as bars, braids, meanders and channelization – that demand a two-
dimensional description.

The model we explore here is the two-dimensional version of the Saint Venant
picture. The setup is now a sloping plane in which x points down the slope and
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y across the slope. The governing equations are

F 2(ut + uux + vuy) = 1−
√
u2 + v2

h
u− (hx + ζx) +

1
h

[∂x(hνtux) + ∂y(hνtuy)] ,

(15.34)

F 2(vt+uvx+vvy) = −
√
u2 + v2

h
v−(hy+ζy)+

1
h

[∂x(hνtvx)+∂y(hνtvy)] , (15.35)

ht + (hu)x + (hv)y = 0 and ζt + ε∇ · j = 0 , (15.36)

where the sediment flux,

j =
(u, v)√
u2 + v2

J
(√

u2 + v2, h,
√

(1− ζx)2 + ζ2y
)
, (15.37)

is assumed to lie in the same direction as the water flow, and to depend only
on water speed, depth and local slope. More complicated expressions can be
introduced.

15.8.1 Two-dimensional Instabilities

Again there is a basic state with u = h = 1 and ζ = v = 0. In linear theory, we
explore perturbations to this state of infinitesimal amplitude: Let (h, u, v, ζ) →
(1, 1, 0, 0) + ε(h̃, ũ, ṽ, ζ̃) exp[ik(x − ct) + ily]. Then a little algebra provides the
dispersion relation,

(2 + Γ )[(1 + Γ )(1− c)− κ2] + (1− ik)[1 + Γ + (2 + Γ )κ2] = ikεF (15.38)

where Γ = ν0(k2 + l2) + ikF 2(1− c), κ = l/k and

F =
Jh[1 + Γ + κ2(2 + Γ )]− Ju[(1 + Γ )(1− c)− κ2]− κ2[(2 + Γ )(1− c) + 1]

c+ ikεJs
.

(15.39)
For ε	 1, the left-hand side of (15.38) provides the simpler dispersion relation
of the two-dimensional erosionless problem. It is a cubic equation, reflecting how
a third hydrodynamic mode now appears. However, as before, when ε	 1, the
hydrodynamic modes are all much faster than the sediment mode, which has the
approximate eigenvalue,

c+ ikεJs = ikε
Jh(1 + Γ + 2κ2 + κ2Γ )− Ju(1 + Γ − κ2)− κ2(3 + Γ )

(3 + Γ )(1 + Γ )− ik(1 + Γ + 2κ2 + κ2Γ )
, (15.40)

with Γ ≈ ν0(k2 + l2) + ikF 2.
A number of different types of instabilities are encoded in this formula,

and manifest themselves in different ways depending on the sediment transport
formula that is employed. For example, using the sediment transport relation
(15.27) and the values quoted by Coleman & Fenton, we derive the results shown
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in Fig. 15.8. Although perturbations with purely streamwise structure are stable,
those with lateral structure are unstable. The stability theory also predicts that
these objects should migrate upstream (see panel (a) of Fig. 15.8). The maximal
growth rates occur for values of l of around unity, with the corresponding values
for k being smaller by a factor of three or so (κ ≈ 3). Thus these instabilities
would be somewhat longer than they were wide (length measured downstream).
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Fig. 15.8. Contours of constant growth rate for the sediment mode eigenvalue pre-
dicted for the sediment transport law quoted by Coleman & Fenton (with ν0 = 0.001,
F 2 = 0.2, Ju = 2, Jh = Js = 3/2 and ε = 2.5 × 10−4). The unstable region is lightly
shaded. The dark region shows the eigenvalues with cr > 0

Related instabilities with other transport laws have been used to rationalize
the appearance of classes of two-dimensional bedforms, namely, bars and braids
in rivers [28,29,30]. Alternating bars are sedimentary features in rivers with
roughly regular spacing in which bed elevation alternates from one side of the
river to the other on proceeding downstream. If we assume that water flows in
a straight channel and the banks simply quantize the transverse wavenumber,
then we may apply the preceding linear stability theory to the study of this
problem. In this way, alternate bars could be understood as resulting from the
growth of unstable modes whose wavelength matched the channel width. Braids,
on the other hand, would be interpreted as having smaller wavelengths than the
channel width, and so more bed elevations would occur at any given streamwise
position. Note that a commonly accepted philosophy is that once bars form,
meandering of the whole watercourse can begin [28,29]. Hence the prediction of
bar instability further offers the beginning of an explanation of river meanders
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[30]. Various experiments and observations offer support for these theoretical
rationalizations [29].

Given the freedom to vary the parameters of the problem, we can tune the
system so that the instability is gradually turned off and we arrive at a marginally
stable state. At that point, we can exploit asymptotic tools to derive a weakly
nonlinear theory for the growth of the instability just beyond onset (see Chap.
1). If we consider flows that are strictly periodic in both x and y, we then
arrive at a Landau equation, as did Colombini et al [31] in a related problem.
Alternatively, if we allow perturbations to develop spatially downstream, and
allow long variations in x, the result is a complex Ginzburg–Landau equation
(Chap. 1; [32]). This suggests that bar patterns on long length scales need not
be periodic.

15.8.2 Channelization

A particularly interesting limit of the stability problem is that with F 2 → 0,
which corresponds to slow overland flow on a sloping plane. As considered by
Smith & Bretherton [33] and Izumi and Parker [34], linear instability of such
flow could be responsible for the initiation of channelization and the formation
of watercourses. Moreover, as the water continues to collect in the seeded streams
and flows downhill, a river network may be created through nonlinear pattern
dynamics [35]. Alternative views to this basis of landscape patterns are provided
by cellular automata models [36] and stochastic models [37].

For F 2 = 0, Γ ≈ ν0(k2 + l2) is real, and so

ci + kεJs =

kε
(3 + Γ )(1 + Γ )[Jh(1 + Γ + 2κ2 + κ2Γ )− Ju(1 + Γ − κ2)− κ2(3 + Γ )]

(3 + Γ )2(1 + Γ )2 + k2(1 + Γ + 2κ2 + κ2Γ )2
.

(15.41)
In the original work by Smith & Bretherton, J depended only on the water flux,
so Ju = Jh, and turbulent viscosity was neglected. Thence,

kci = εk2
[

9l2(Ju − 1)
9k2 + (k2 + 2l2)2

− Js

]
. (15.42)

Hence, for sufficiently large Ju, the system is unstable over a range of wavenum-
bers. Actually, the present approximation is not completely equivalent to the
original Smith & Bretherton model, which was not derived from a shallow-
water system but was written down as a phenomenological model. The Smith–
Bretherton system predicts a growth rate that diverges with l if Ju > 1, a fact
that requires the introduction of an external regularization [38]. Here, this ultra-
violet catastrophe is avoided and the most unstable wavenumbers are finite even
with vanishing eddy viscosity.
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15.9 Conclusion

Hopefully, the topics discussed in this chapter can serve as an introduction to
the complicated world of dirty flows. We have seen that it is possible to generate
linear bed instabilities that can be associated with incipient ripples, dunes, an-
tidunes, bars, braids, or entire drainage networks. The whole picture, however,
resides heavily upon the empirical parameterizations that are adopted for tur-
bulence and the bed evolution. Changing the parameterizations can significantly
alter the results. Clearly, this is worrying especially because there are no solid
reasons, based on first principles, to prefer one formulation over another.

Indeed, simple shallow-water models with empirical transport laws offer ex-
planations for two-dimensional erosional features in rivers (bars and braids), but
they seem unable to explain the simpler, one-dimensional structures that form on
the bed (ripples, dunes and anti-dunes). It seems a little far-fetched to believe
that theoretical modelling could be successful in the one context and not the
other. Nevertheless, this pessimism should be tempered by the fact that there
are countless examples in engineering in which empirical parameterizations of
turbulence have been very effective.

In conclusion, there is still room for new approaches and for developing deeper
theoretical insight in bedform evolution. A better understanding of erosion and
deposition in turbulent flows is clearly the crucial ingredient for describing the
instability of a flat erodible bed. Even when linear instability is more completely
understood, on the other hand, we will still need to understand what happens
next – that is, the nonlinear evolution of the bedforms and their further insta-
bilities to secondary perturbations.
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16 Invitation to Sediment Transport

G. Seminara

Dipartimento di Ingegneria Ambientale, Università di Genova, Via Montallegro 1,
16145 Genova, IT

16.1 Formulation

As stated in [12] the mechanical system analyzed in morphodynamics ‘....consists
of a low concentration two phase mixture of water and sediment particles subject
to a free surface flow bounded by a granular medium. Flow of water also occurs
very slowly through the interstices of the granular medium: however such a weak
filtration process may be safely ignored. The interface between flowing mixture
and granular medium can move as a result of a continuous exchange of sediment
particles. The general problem of morphodynamics may then be stated as that
of determining the motion of the above interface for given boundary and initial
conditions for the flowing mixture and the granular medium’.

The classical mathematical formulation of the latter problem is based on the
assumption that the presence of the solid phase does not affect significantly the
motion of the fluid phase, a reasonable assumption when the concentration of
solid particles is sufficiently low, as it is typical of fluvial and tidal environments,
except within a thin layer close to the bed. The theoretical scheme then adopts
the continuity and Navier–Stokes equations (in suitably averaged form) for the
fluid phase, coupled to mass and momentum conservation equations for the solid
phase along with appropriate boundary conditions. The formulation is completed
by deriving an evolution equation for the free boundary consisting of the interface
between the flowing mixture and the granular medium.

16.2 Mass Conservation of the Solid Phase

Let the motion of the flowing mixture be referred to a fixed cartesian reference
frame (x1, x2, x3) with x3 vertical coordinate pointing upwards. The region oc-
cupied by the flowing mixture is defined by the following relationship (Fig. 16.1):

η(x1, x2, t) < x3 < H(x1, x2, t) , (16.1)

where t is time, η(x1, x2, t) andH(x1, x2, t) are the elevations of the bed interface
and free surface, respectively. The granular medium fills the region x3 < η.

Mass conservation of the solid phase imposes the following continuity require-
ment:

∂c

∂t
+∇ · qs = 0 (16.2)

N.J. Balmforth and A. Provenzale (Eds.): LNP 582, pp. 394–402, 2001.
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Fig. 16.1. Sketch of the system

where c(x1, x2, x3, t) and qs(x1, x2, x3, t) are volume concentration and volume
flux of sediments, respectively.

The boundary conditions associated with (16.2) must express the following
constraints:

i) no net flux of sediments enters or leaves the flow region through the free
surface, hence

(qs · n− c vnH) = 0 (x3 = H) (16.3)

where vnH is the normal component of the velocity of the free surface and n
is the outward normal unit vector;

ii) the motion of the bed interface leads to a net flux of sediments entering or
leaving the flow region, due to the difference between the near bed concentra-
tion of the flowing mixture and the packing concentration cM of the granular
medium bounding the flow region, hence

qs · n = E = [vnη(c− cM )] (x3 = η) (16.4)

where E is the entrained flux of sediments and vnη is the normal component
of the speed of the bed interface.

Also note that in natural flows the motion of the flowing mixture is nearly
invariably turbulent, hence both c and qs are fluctuating quantities amenable
to the classical Reynolds decomposition.

In order to make any progress with the latter formulation appropriate equa-
tions interpreting the motion of sediments are needed. They are presented in
Sect. 16.4, while, in the next section, we show that from (16.2) one immediately
derives an evolution equation for the bed interface.

16.3 Evolution Equation of the Bed Interface

Let us perform a Reynolds average of (16.2), integrate it over depth, use Leibniz’s
rule to account for the spatial and temporal dependence of the boundaries and
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employ the boundary conditions (16.3)–(16.4) to find:

cM
∂η

∂t
+∇H ·Qs = 0 (16.5)

where ∇H is the gradient operator in two dimensions (≡ (∂/∂x1, ∂/∂x2)) and
Qs is the depth integrated volumetric sediment discharge, defined in the form:

Qs = (Qs1, Qs2) =
∫ H

η

〈(qs1, qs2)〉dx3 , (16.6)

with 〈·〉 denoting Reynolds average. Equation (16.5) plays the role of an evolution
equation for the bed interface.

A one-dimensional form of the latter, first derived by Exner [4], is readily
obtained by integrating (16.5) in the lateral direction x2. Further, stipulating
that no flux of sediment can enter or leave the stream through the banks, one
finds:

cMb
∂η

∂t
+
∂

∂s
(bQs) = 0 , (16.7)

where b is the width of the active portion of the bed interface assumed to undergo
spatial (but not temporal) variations, s is a longitudinal coordinate (which re-
places the cartesian coordinate x1) and an overbar denotes average in the lateral
direction between the banks at x2 = ±b/2, hence:

(bη, bQs) =
∫ b/2

−b/2
(η,Qs)dx2 . (16.8)

The possible presence of a net sediment flux entering or leaving the stream
through the sidewalls may be incorporated in a 2D context by assigning the
vector Qs at the side walls. In a 1D context the latter effect would lead to
adding to the right hand side of (16.7) an additional contribution, qsl, namely
the given value of the lateral sediment flux per unit width.

Both the 2D and the 1D equations (16.5) and (16.7) require boundary con-
ditions. The choice of the appropriate form of the latter conditions requires an
analysis of the mathematical nature of the governing equations. The interested
reader is referred to [16] for the 1D case. The 2D case has yet to be thoroughly
investigated.

In order to complete the formulation we need closure relationships for the
vector Qs or for the scalar quantity Qs in the 2D or 1D contexts, respectively.

16.4 Motion of the Solid Phase

Providing such closure relationships requires the knowledge of the instantaneous
quantities qs1 and qs2, which should then be Reynolds averaged, depth integrated
(see (16.6)) to determine the vector Qs and finally integrated in the lateral
direction (see (16.8)) to evaluate the scalar quantity Qs. This is a formidable task
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which still awaits the development of fully satisfactory, theoretically well founded
tools. In spite of such relative uncertainty a few fairly well established results of
semiempirical nature have been widely employed in the literature. They refer to
the simplest flow conditions, namely uniform free surface flow on a homogeneous
cohesionless bed, a configuration that by definition is in equilibrium, i.e. such that
the elevation of the bed interface keeps constant in time. Let us summarize the
main features of such results.

16.4.1 Incipient Transport

Threshold hydrodynamic conditions exist below which no bed particle is set in
motion. Such conditions have been expressed in terms of a relationship between
a critical value Θc of the dimensionless form of the average shear stress acting
on the bed Θ (called Shields stress, [14]) and a particle Reynolds number Rp,
defined as follows:

Θ =
u2

∗
Δgds

, Rp =

√
Δgd3s
ν

, (16.9)

where u∗ is the average friction velocity, Δ reads (�s/�− 1) with � and �s water
and particle density, respectively, ds is particle diameter, ν is kinematic viscosity
and g is gravity. Such relationship was first plotted by Shields [14] and is known
as Shields curve.

Simple theoretical derivations of Shields curve have been proposed by Cole-
man [3] and Ikeda [6] among others.

16.4.2 Bedload Transport

For values of Θ exceeding Θc but lower than a second threshold value Θs to
be defined below, particles are intermittently entrained by the flow, either indi-
vidually or collectively, and move close to the bed, mostly saltating or rolling
but also occasionally sliding. Particles eventually come to rest to be entrained
again after some time. In this mode of sediment transport, which keeps confined
within a layer of thickness ranging about few grain diameters and is called bed-
load transport, particles have a distinct dynamics driven by, but different from,
fluid motion. Recent detailed investigations have clarified that the agent of par-
ticle motion is the spatially and temporally intermittent generation of turbulent
eruptions in the near wall region. More precisely, events responsible for bedload
transport are those called sweeps in the turbulent literature [9].

Under uniform conditions theoretical approaches (e.g. [1]) as well as labora-
tory observations (e.g. [8]) suggest that the average bedload flux:

• is aligned with the average bottom stress τ ;
• has an intensity which, once suitably made dimensionless, is found to be a

monotonically increasing function of the excess Shields stress (Θ−Θc) and of
the particle Reynolds number Rp.
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In other words, we may write:

Q̂sb =
Qsb√
Δgd3s

= Φ[(Θ −Θc), Rp]
τ

|τ | . (16.10)

Various relationships have been proposed in the literature to quantify the func-
tion Φ (e.g. [8,10]). They provide estimates which can be considered as qualita-
tively reliable for practical purposes.

In order to make use of the latter result in the context of investigations
on morphodynamical patterns, a crucial extension is needed such to describe
bedload transport on a weakly sloping topography. This is readily accomplished
as described in [96]. Assuming that the dimensionless quantity ∇Hη is small
enough to allow for a linearized treatment of the effect of local slope on sediment
transport, on pure dimensional ground one derives the following relationship:

Q̂sb = Φ(Θ −Θc, Rp)
(

τ

|τ | + G · ∇Hη

)
, (16.11)

where the bedload function Φ must be evaluated in terms of the local value of the
Shields stress and G is a (2 × 2) matrix whose elements are in general functions
of the dimensionless parameters θc, θ and Rp. Physically (16.11) simply states
that the direction of bedload transport deviates from the direction of the local
average bottom stress by an amount which is linearly related to the local value
of the gradient of bed elevation.

Theoretical [11] and experimental [15] works suggest the following estimates
for the elements of the matrix G:

Gss = −Θc

μΦ

dΦ
dΘ

, (16.12)

Gsn = Gns = 0 , (16.13)

Gnn = − r

Θm
, (16.14)

where n is a lateral coordinate, orthogonal to the s-longitudinal coordinate, μ is
the friction coefficient of the mixture, r and m are empirical constants ranging
about 0.56 and 0.5 respectively.

The equation of motion of the solid phase appropriate in the context of 2D
models of the dynamics of the bed interface (see (16.5)) is (16.11). It is restricted
to the case of slowly varying bed topographies, hence it fails close to sharp fronts
where the weakly sloping assumption does not apply. The reader interested in
extensions of the above treatment to the case of arbitrarily sloping beds is referred
to [7] and the later developments in [13].

The equation of sediment motion employed in the context of one-dimensional
models of the dynamics of the bed interface (see (16.8)) in dimensionless form
reads:

Q̂sb =
Qsb√
Δgd3s

= Φ[(Θ −Θc);Rp] (16.15)
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where Θ is the cross sectionally averaged value of the Shields stress. Note that
the latter formulation would be strictly valid (i.e. it would be obtained perform-
ing a cross sectional average of (16.10)) if the bedload function Φ were linear
in the excess Shields stress. Since the latter function is non linear, the above
approximation is increasingly less satisfactory the less uniform is the lateral dis-
tribution of Shields stress in the cross section. Also note that lateral averaging
cancels the dependence of bedload transport on lateral slope, while its depen-
dence on longitudinal slope is usually neglected in the context of 1D formulations
applying to very slowly varying configurations.

Are the above equilibrium formulations appropriate to patterns forming un-
der unsteady or spatially varying conditions, as typical of tidal environments?
Non equilibrium effects may in principle lead to a phase lag in the response
of sediment transport to changing hydrodynamic conditions. This is a subject
which will require attention in the near future. Current models commonly ne-
glect non equilibrium effects and employ the equilibrium formulations (16.11)
and (16.13) for the equations of motion of the solid phase under bedload domi-
nated conditions.

16.4.3 Transport in Suspension

As the local instantaneous value of the Shields stress Θ exceeds a second thresh-
old value Θs, depending on the particle Reynolds number, a second mode of
transport, namely transport in suspension, is observed to coexist with bedload
transport. Particles are individually or collectively entrained by the flow, driven
by near wall ejection events, and are ‘nearly passively’ transported by the fluid in
the outer flow region until they return to the bed under the effect of their excess
weight. In other words, transport in suspension differs from bedload transport
because sediment particles are able to escape the near wall flow barrier and their
dynamics is not significantly distinct from that of fluid particles except for their
tendency to settle. The threshold condition for entrainment in suspension can
be expressed in the form:

Θ > Θs = N(Rp) . (16.16)

Various semiempirical estimates have been proposed for the function N (e.g.
[2,10]) which attains values of order one. The sediment flux per unit width in
this regime can be written in the form:

Qs = Qsb + Qss , (16.17)

where Qsb is the bedload flux per unit width defined by (16.11) and Qss is
the flux of suspended sediment per unit width. In order to evaluate the latter
quantity we note that the local value of the average flux of suspended sediments
is defined in the form:

qss = 〈c vp〉 = 〈c (v −Ws x̂3)〉 , (16.18)

with v and vp local and instantaneous values of the fluid and particle velocities
respectively, Ws settling speed of sediment particles and x̂3 unit vector in the
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vertical direction. Note that (16.16) is based on the assumption that sediment
particles are ‘nearly passive’ tracers which are advected by the flow except for
their tendency to settle, accounted for through the second term in the right hand
side of (16.16). The latter scheme is reasonable provided the particle suspension
is sufficiently diluted and grains are small enough for their presence not to affect
the fine structure of turbulence. Such conditions are usually fairly well satisfied in
fluvial and tidal environments. Performing a Reynolds decomposition we write:

(c,v) = (C,V) + (c′,v′) . (16.19)

Recalling definition (16.6) we then find:

Qss =
∫ H

η

[C(V1, V2) + 〈c′(v′
1, v

′
2)〉] dx3 . (16.20)

In order to make any progress with the evaluation of Qss we then need to evaluate
the spatial and temporal distribution of the mean concentration C as well as the
turbulent fluxes 〈c′v′

j〉 (j = 1, 2). This is achieved by substituting from (16.16)
into (16.2), performing the Reynolds decomposition (16.17) and thus deriving a
convection-diffusion equation for C which reads:

∂C

∂t
+ Vj

∂C

∂xj
−Ws

∂C

∂x3
=
∂〈−c′v′

j〉
∂xj

. (16.21)

The latter equation poses a closure problem for the turbulent fluxes. The classi-
cal approach employed in the engineering literature is to employ a diffusive type
of closure by analogy with the semiempirical closures employed for Reynolds
stresses. The theoretical foundation of such an approach is fairly weak and may
find some justification only in the slowly varying character of the flow fields
typically encountered in morphodynamics, which suggests that the turbulent
structure may be considered in quasi equilibrium with the local and instanta-
neous conditions. Using the so called diffusion approximation one writes:

〈−c′v′
j〉 = DT

∂C

∂xj
(16.22)

with DT turbulent diffusivity, a quantity which several experimental investiga-
tions suggest to attain values slightly different from the corresponding values
of the eddy viscosity. Suitable estimates for DT must then be associated with
(16.20). In order to complete the formulation of the convection–diffusion equa-
tion, appropriate boundary conditions are needed. The condition that the net
flux of suspended sediment through the free surface must vanish instantaneously,
(16.3), is readily averaged over turbulence and it gives:

〈c′v′ · n〉 = CWs (x3 = H) . (16.23)

At the bed interface an entrainment condition of the type (16.4) is enforced with
the entrained flux E given in the form:

E = Ws(C − Ceq) (x3 = η) , (16.24)
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where Ceq is the average concentration established under equilibrium conditions
at some conventional small distance from the bed. Various empirical or semiem-
pirical relationships have been proposed in the literature to estimate the latter
quantity as a function of the local and instantaneous value of Shields stress and
particle Reynolds number (e.g. [10]). Note that (16.22) correctly predicts that
under equilibrium conditions, i.e. for uniform flows, the net flux entrained by the
stream vanishes, i.e. entrainment and deposition balance exactly. The knowledge
of the distribution of concentration at some initial cross section or, alternatively,
some periodicity condition, along with the condition of vanishing flux of sus-
pended sediment through impermeable boundaries and the knowledge of the
state at an initial time complete the three-dimensional formulation of trans-
port of suspended sediment. Depth averaged two-dimensional formulations and
cross sectionally averaged one-dimensional formulations can be derived from the
three-dimensional formulation outlined above. The interested reader is referred
to [5].

16.5 Conclusive Remarks

The mathematical problem of morphodynamics can be formulated at various
levels of complexity on the basis of the conservation equations and semiempirical
inputs briefly outlined in the previous sections.

It will appear in the following chapters that, in spite of the relatively weak
foundation of the above approach, a variety of patterns observed in different
sedimentary environments of the earth can be satisfactorily investigated using
the above formulation. Appropriate averaged forms of the latter apply in various
contexts depending on the spatial scale of the morphodynamic pattern to be
investigated.

In particular, large scale patterns characterized by a ‘longitudinal’ scale vastly
exceeding the typical depth and width of the flow are suitable interpreted by
means of a 1D model. This is the case of the longitudinal profile of rivers and
tidal channels.

Mesoscale patterns, like the so called bars, which are repetitive forms typically
observed in rivers and estuaries as well as in coastal regions, are conveniently
treated by means of the 2D version of the above formulation.

More detailed 3D models are needed when treating the formation and devel-
opment of patterns characterized by smaller scales, of the order of flow depth
(dunes and antidunes in rivers, sandwaves in coastal areas) of even smaller (flu-
vial and coastal ripples, sand ridges).

Some of the patterns mentioned above will be examined in the next chapters.
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17 Types of Aeolian Sand Dunes
and Their Formation

H. Tsoar

Department of Geography and Environmental Development Ben-Gurion University of
the Negev Beer-Sheva 84l05, Israel

17.1 Introduction

The accumulation of windblown sand creates sand dunes which are one of na-
ture’s most dynamics and intriguing phenomena. Sand dunes are found in most
climates of the world as coastal dunes and in some arid regions. Grains of sand
between 0.062 and 2.0 mm in diameter are not cohesive and therefore are easily
carried by the wind. Paradoxically, finer grains of silt and clay (< 0.050 mm) are
cohesive and can resist wind erosion. This property of sand is reflected in the
wind threshold speed curve for sand transport (Fig. 17.1) explaining why dune
sand, in most cases, is composed of fine particles between 0.125–0.250 mm.

While sand dunes, mobile and immobile, are found in almost all climates,
from humid Europe [1,2], boreal Alaska [3], and Central Canada [4] to semiarid
[5] and arid areas [6], more than 99% of all sand dunes are located in deserts. Less
than 1% are located in humid climates and along some of the world’s coastlines
[7]. Coastal dunes are known to be relatively young, no older than 6,500 years,
which is when the sea reached its present level after the last rapid postglacial
rise. The common characteristics for all dunes, in all world climates, are that
their formation indicates an abundant supply of sand-sized sediment, strong
sand-moving winds, and conditions favoring sedimentation of the sand. Most
of the world’s sand dunes were active during the period 20,000 to 15,000 BP,
known as the last glacial maximum, when wind power was much higher than in
present-day wind storms [8,9].

17.2 Wind Power

Wind should not only be above the threshold velocity (Fig. 17.1) to initiate sand
transport, but should also have a certain drift potential to prevent plants from
growing in the sand and stabilizing it. The accepted method of quantifying wind
power is by referring to the drift potential (DP ) of the wind, which is based on
the sand transport equation [10] in which the sand flux is directly proportional
to the cube of the wind:

q = Ku2
∗(u∗ − u∗t) , (17.1)

where u∗ is the shear velocity of the wind, u∗t is the threshold shear velocity
and K depends upon variables such as grain size, sand sorting and air density.
Since K characterizes variables that have little variation from one dune field to

N.J. Balmforth and A. Provenzale (Eds.): LNP 582, pp. 403–429, 2001.
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Fig. 17.1. Threshold friction velocity (U∗t) curve for quartz grains of different diame-
ters (solid line). The broken line separates saltation from suspension (after [10])

another, the drift potential (DP ) in vector units can be calculated by simplifying
(17.1) and referring to the cube of the wind velocity above the threshold speed
[11]:

DP =
∑

q =
u2 (u− ut)

100
t , (17.2)

where q is the rate of sand drift, u is the wind velocity (in knots), ut is the
threshold velocity (in knots) and t is the amount of time the wind blew above
the threshold (in %). An index of wind direction variability is illustrated by the
ratio between the resultant drift potential and the drift potential (RDP/DP ),
where values close to one indicate narrow unidirectional drift potential, and
values close to zero indicate multidirectional drift potential.

The average yearly DP forms sand roses that indicate the relative poten-
tial transport of sand from various directions. An example is demonstrated
by Fig. 17.2, which shows sand roses in three sites along the coastal plain of
the southeastern Mediterranean. The total yearly average DP and the ra-
tio RDP/DP can explain mobility and stability of sand dunes mostly because
the limiting factor for vegetation on dune sand is wind erosion [12,13]. When
RDP/DP is low, wind energy is distributed on more than one slope of the dune
and the energy exerted on each slope is lower. For that reason sand dunes with
high rates of directional variability are covered by vegetation on their slopes
(as in some star dunes, Fig. 17.3) while under the same DP and low rates of
directional variability, the dunes are bare of vegetation.

Sand dunes in areas where the annual average rainfall is ≥ 50 mm are unveg-
etated and mobile under the conditions in which DP > 1000 and RDP/DP is
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Fig. 17.2. Three sand roses of the drift potential (DP ) vectors for three stations along
the southeastern Mediterranean coast. Note the ratio of the total DP and the resultant
drift potential (RDP ), which is a parameter for the wind direction variability

Fig. 17.3. Star dunes in Gran Desierto, Mexico, where their slopes are covered by
vegetation because of low value of RDP/DP (about 0.21 for the nearest meteorological
station), in spite of the low amount of rainfall (about 70mm on annual average). Data
from [90]



406 H. Tsoar

close to zero, or DP > 250 and RDP/DP is close to one [13]:

DP

1000− (750RDP/DP )
> 1 . (17.3)

Table 17.1 gives the DP and RDP in various dune sites of the world. The
table shows that rainfall is not as decisive a factor for dune mobilization or
stabilization as is the DP . In the Negev Desert dunes are fully stabilized where
the average yearly rainfall is 90 mm. The dunes in Sinai (east of Al-Ismailiya)
and the coastal dunes in Gaza are fully active due to human impact [14]. Dunes
that were artificially stabilized, such as along the Netherlands coast, will become
active once the vegetation is destroyed.

17.3 Classification of Sand Dunes

The tremendous variety of sand dunes makes their classification a difficult task.
Three main factors (two climatic and one sedimentary) influence the piling of
sand into dunes with particular shapes:

1. Wind magnitude (above the threshold velocity), direction, and frequency.
2. Vegetation cover.
3. Grain size.

In addition, other factors – obstructions to wind flow, climatic changes man-
ifested by dramatic change in wind direction, velocity and frequency of storms,
sand availability, thickness of sand cover, and sudden removal of vegetation cover
– can affect dune morphology. Because dunes are bed-forms in which a great deal
of energy has been invested, daily or seasonal changes in wind direction do not
easily reshape them. Therefore dune shape is the manifestation of a long-term
average of wind conditions.

Distinction of sand dunes into simple (basic), compound and complex forms
was suggested by McKee [15]. Simple dunes consist of individual dune forms
which are spatially separate from nearby dunes. Compound dunes consist of two
or more dunes of the same type which have coalesced or are superimposed.
Complex dunes consist of two or more different types of simple dunes which
have coalesced or are superimposed. Complex and compound are in most cases
megadunes and abound in most of the world’s great sand seas. Simple sand dunes
are small in most cases, with wavelengths (shortest distance from one dune crest
to the other) of 10 to 500 m.

Three general types of active sand dunes are classified by movement:

1. Migrating dunes: the whole dune body advances with little or no change in
shape and dimension. Transverse and barchan dunes are the most representa-
tive specimens.

2. Elongating dunes: the dunes elongate and become extended in length with
time. Linear dunes are the most representative specimens.
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Table 17.1. Drift potential (DP ), directional variability of the wind (RDP/DP ), and
rainfall of several dune field sites. * approximate value; N/A not available

Location, DP RDP/DP Average Dunes status

Country yearly

rainfall

(mm)

Al-Ismailiya, Egypt 62 0.47 50 Fully active

(western Sinai)

Nizzana, Israel 108 0.70 90 Fixed

(Negev Desert) (fully vegetated)

Gaza, Palestine 158 0.73 400 Active

(coast) (partly vegetated)

Ashdod, Israel 147 0.71 500 Semi-active

(coast) (partly vegetated)

Upington, South Africa 560 0.66 183 Stabilized linear

(Kalahari Desert) dunes

Port Elizabeth 951 0.49 660 Fully active with

South Africa (coast) no vegetation

Newport, Oregon 2000* N/A 1750 Fully active with

USA (coast) no vegetation

Luderitz, Namibia 2300 0.85 < 100 Fully active with

(coast) no vegetation

Ijmuiden 3999 0.51 768 Fully stabilized by

The Netherlands vegetation, active when

(beach) vegetation is destroyed

3. Accumulating dunes: the dunes have little or no net advance or elongation.
Star dunes best represent this type.

These three types are distinguished by wind direction variability (RDP/DP )
[16,17,18,19]. Migrating dunes are formed by a wind regime that is unimodal
or close to a unimodal direction (RDP/DP ≥ 0.6). The wind directions of
elongating dunes are bimodal when the two modes are 90◦–70◦ apart (0.8 >
RDP/DP > 0.5). Accumulating dunes are formed under bimodal or multimodal
wind directions when the two main modes form an obtuse angle that is about
180◦ (0 < RDP/DP < 0.4).
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Fig. 17.4. Classification of major dune types based on dune genesis and wind direc-
tional variability (after [10])

The above classification along with a classification based on dune genesis and
processes [10] is shown in Fig. 17.4. Dunes are segregated into three different
categories of sand accumulation:

1. Accumulation as a consequence of topographic barriers (mostly cliffs) inter-
fering with airflow. These dunes are not vegetated.

2. Accumulation of sand in areas of open terrain due to changes of bed roughness
or aerodynamic fluctuations. These dunes are not vegetated.

3. Accumulation due to vegetation that determines dune formation and shape.
All dunes in this category are vegetated. If vegetation is destroyed by human
impact the reaction is either transformation to a category 2 dune type, or the
formation of superimposed dunelets on top of the main dune.

The second category, unvegetated dunes that are self-accumulated, is wide-
spread mostly in arid lands. This category is subdivided according to the grain
size into sand dunes with bimodal and unimodal sand-grains. The fine sand mode
of the bimodal sand dunes is within the range of the mean size of unimodal
desert dune sand (0.125–0.250 mm). All dunes composed of bimodal coarse sand
have a moderate aspect ratio of h/L < 0.3 (where h is the hill height and L
is the horizontal distance from the hilltop to the point where the elevation is
half its maximum). Dunes composed of unimodal, well-sorted fine sand display
slip-faces, pronounced crests and a much higher aspect ratio (1.3 > h/L > 0.3).
Despite the upslope increase in wind shear stress, the effect of gravity (mg sin θ)
on grains, which is dependent upon the weight of the grain (mg) and the slope



17 Types of Aeolian Sand Dunes and Their Formation 409

angle (θ), is stronger [20]. Bimodal sand with one coarse mode can only form
sand-sheets and sand-strips. Coarse sand-sheets (also known as zibars) are the
most common types of aeolian depositional surfaces in deserts, covering an area
of 1,520,000 km2 [21].

17.4 Dunes Accumulated and Controlled
by Topographic Barriers

Topographic obstacles such as cliffs, buttes, boulders or shrubs act as baffles
and induce separation of airflow into zones of acceleration and deceleration,
thus producing local changes in direction and enhanced atmospheric turbulence.

When the airflow approaches the front of an isolated obstacle, such as a
boulder, butte, mesa, cliff or mountain, it slows down suddenly, causing a build-
up of pressure against the obstructing face [22]. The affected streamlines are
forced to separate from the surface. Some of them rise and flow upwards with
increasing wind velocity over the obstacle, while others make a loop and create a
windward reverse-flow eddy (Fig. 17.5). The shape of the obstacle causes the flow
in the windward eddy to spiral and sweep around the obstacle for some distance
downwind, thus producing a three-dimensional horseshoe vortex in which the
helicoidal vortex, around the windward and lateral sides of the obstacle, causes
erosion [23]. The two vortices trail downwind, leeward of the obstruction, and
fade out (Fig. 17.5). Unlike self-accumulated dunes, dunes that are related to

Fig. 17.5. A diagram showing the development of a horseshoe vortex in front of and
around an obstruction and the resultant sand deposition. (a): side view; (b): plan view
(after [10])
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Fig. 17.6. Echo dune developed in front of a cliff. The extremities of the dune develop
into climbing dunes and are the only places where sand leaves the dune and climbs the
cliff

obstacles are static, i.e. they do not advance or elongate. Once they achieve a
steady state form, the active processes of erosion and deposition do not affect
their stability since the amount of sand they receive equals the amount they lose
[24].

The reverse flow of the horseshoe vortex in front of a vertical obstacle (such
as a cliff) causes a drop in wind magnitude at a distance of d/h = 3.3 (d is the
horizontal distance from the obstacle upwind and h is the height of the obstacle)
and a minimum at d/h = 0.75, which is where the two opposite flow directions
meet [24]. The outcome is an accumulation of sand that evolves into a static echo
dune (Figs. 17.5 and 17.6). No accumulation occurred between the distances of
0 < d/h < 0.3, but erosion is induced by the reverse flow of the horseshoe vortex
and on the lateral sides of the obstruction (Fig. 17.5). Wind tunnel simulation
shows that a steady state is reached when the height of the echo dune is about
0.3h to 0.4h [24]. At this height the shear velocity at the windward side of the
crest is slightly higher than that of the reverse flow of the horseshoe vortex on
the lee side of the crest. Sand that is added to the dune from the windward
side will move onto the trough between dune and obstacle and be carried by the
horseshoe vortex to the rear side of the obstacle where some of it will accumulate
in the ‘shadow’ of the obstacle, between the two horseshoe vortices, to form a
lee dune (Fig. 17.5).
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Lee dunes are best developed by a nearly unidirectional wind regime. At a
distance where the topographic obstacle is no longer effective as a barrier, they
tend to break up downwind into individual barchans, which are the preferred
dune form in an open area unidirectional wind regime. The size of the lee dune
is directly related to the size of the obstacle; the dune can be small, a few
centimetres high and extending a few dozen centimetres downwind behind small
shrubs or boulders, or it can attain a height of hundreds of metres and extend
several kilometres downwind [23]. The term longitudinal, applied to lee dunes
[25,26], originates from the resemblance of big lee dunes to seif dunes. However,
according to the classification used in this paper (Fig. 17.4), seif dunes are not
related to obstacles.

When the brink of the cliff is straight, without any projection, there is no
convergence of flow on the lee side of the cliff but a great abatement of wind
velocity. The result is, literally, falling dunes that in some cases mix with scree
(talus) deposits [27,28].

Sand is normally incapable of climbing slopes [20]. Wind that encounters a
cliff is diverted at the foot of the cliff to flow parallel to the cliff front. When the
wind impinges obliquely upon the cliff, the separation eddy turns into a helical
roll vortex that moves along the cliff front, causing sand transport along the
foot of the cliff and preventing sand from climbing it [29]. Despite the above,
aeolian sand is known to climb slopes, forming climbing dunes. This happens
when a bell-shaped slope narrows, creating a funneling effect in which wind-
carried sand is forced to climb the cliff, or where the helical roll vortex climbs
the cliff through drainage channels (Fig. 17.6). Leeward of the slope crest there
is a great abatement in wind velocity, resulting in cliff-top dunes [30,31].

17.5 Self-accumulated Dunes

Sand has the propensity of self-accumulation into mounds, or dunes, in the
absence of topographic obstacles and vegetation. This tendency is due to the
fact that the change from a rough to a smooth surface, i.e. from gravel to a sand
patch, will cause a sharp drop in shear velocity, leading to sand deposition [32].
This process is only effective when strong, sand-laden winds are able to carry
sand over a rough surface and then allow it to accumulate on the sand patch.
Under gentler winds the sand is trapped over the rough surface so that a sand
patch would be eroded and extended down-wind [33].

A different explanation is given by the wave-form theory. It speculates that
a wave-like movement in the air, initiated by an irregularity in the bed, brings
about variations in surface shear stress, causing an increase followed by a de-
crease in the sand transport rate [34]. This means that there are alternating
transverse or longitudinal zones of erosion and deposition under which a bed-
form shape of ridges and troughs starts developing and builds up until the wind
velocity at the surface of the new mound is sufficient to remove as much sand as
is deposited. In this case a steady state is formed, similar to a ripple formation
[1], [34,35,36].
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17.5.1 The Steady-state Dune Profile

The presence of the rudimentary aeolian bed-forms produces a number of mod-
ifications in the airflow of the atmospheric boundary layer, as both wind shear
velocity and turbulence structure change when the wind blows over any mound
of sand. Any such change in wind velocity has a significant influence on surface
shear stress and, hence, on sand transport rates and dune morphology. On ev-
ery hillock patch there is an increase in surface shear stress up the windward
slope toward the crest and a decrease on the lee side [37,38,39,40]. Sand dunes,
as a dynamic geomorphic system, have the attribute of negative feedback, self-
regularity bedform which subjects them to periodic changes in energy (wind
velocity and direction) and material (sand). Any alteration in wind and sand
supply produces a change in dune morphology by forming a negative feedback
which regulates the effect of that change, and brings the dune to a new state of
balance whereby input and output of material and energy are equalized. This
condition of equilibrium is known as a steady state [41]. A simple dune can be
considered to be in a steady state when its shape and size do not change while
the dune is advancing (the self-preservation criterion), i.e. when the rate of ad-
vance of all parts of the dune is constant [42,43]. A dune that is pushed out of
steady state by a change in wind direction or alteration in sand supply produces
negative feedback which adjusts itself to the effect of those modifications and
restores a new state of balance. A final steady state does not occur because of
continuing small changes in wind direction and magnitude. Therefore, all sand
dunes are actually in a time-independent quasi-steady state, with little change
in their configuration [44].

The first rudimentary aeolian nascent bed-form is not in a steady state; it
is a result of the harmonious interrelation of wind velocity, direction and sand
transport that brings the bed-form into a steady state where the rate of sand
transport increases on the windward slope toward the crest in such a way as
to ensure a constant and steady rate of advance at all points on the windward
slope. The dune shape changes the wind shear stress above it. The change in
wind speed above the dune is essential for the increased rate of sand transport
on the windward side, which maintains the dune in a steady state. The change
in wind velocity over the dune, measured at a particular height (z) above ground
level, can be expressed as the speed-up ratio (Az) [45]:

Az =
Ū2

Ū1
(17.4)

where Ū2 is the mean wind velocity at height z above the dunes and Ū1 is the
mean wind velocity at the same height above a flat surface. The rate in which the
speed-up ratio changes over the dune depends upon the dimensions of the dune
and its shape [41]. A dune attains a steady-state shape when the speed-up ratio
increases the wind shear stress in such a way that sand is eroded and carried
along the windward slope while adhering to the steady-state principle (no change
in shape while the dune is advancing). This rate of advance (c) depends upon the
rate of erosion dq/dx (where q is sand-transport rate per unit width and x is the
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longitudinal coordinate along the windward slope) and on the declination of the
slope (tanα). In a two-dimensional configuration the above can be formulated
as [42]:

dq
dx

= γc tanα (17.5)

where γ is the specific weight of the sand in bulk. The rate of erosion is defined by
the wind velocity as specified by the rate of increase in speed-up ratio, the latter
depending upon the shape of the slope (Fig. 17.7). Two-dimensional profile

Fig. 17.7. The rate of change of speed-up ratio (Az) over three different windward
slope shapes. The solid line presents the speed-up ratio formed due to the shape of
the slope. The broken line presents the speed-up ratio that would keep such a shape
in steady state condition. (a) A uniform slope. (b) A small convex shape. (c) A bigger
convex shape (for explanation see text)

analysis [41] and three-dimensional modeling [46,47,48] indicate that a dune’s
steady-state profile in a unidirectional wind regime is a low convex slope (boat-
shaped) similar to the form of a barchan dune (Figs 17.7(C) and 17.8). Three
different shapes of dune profiles are shown in Fig. 17.7 with the corresponding
speed-up ratio for each profile (solid line). Also shown in Fig. 17.7 is the profile
of the theoretical speed-up ratio (broken line) needed for maintaining a steady-
state dune shape.

When a dune’s windward slope near the crest is steeper than that of a steady-
state dune (Fig. 17.7(A)) the speed-up ratio on the upper windward slope attains
a greater magnitude than needed to carry all the sand previously eroded from
the windward slope. Consequently, sand will be eroded from the upper part of
the windward slope and the crest will be lowered until a steady state is reached
(Fig. 17.7(C)). A self-regulatory process can occur in the opposite direction. A
bed-form can have a conformation that is flatter than that of the steady state
(Fig. 17.7(B)). In that case the rate of increase of the speed-up ratio towards
the crest is insufficient to prevent sand from being deposited on the windward
slope; consequently the dune will grow in height until a steady state is reached
(Fig. 17.7(C)). This is a self-regulatory process whereby sand deposition changes
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Fig. 17.8. Oblique air view of a barchan dune. Note the convex windward slope (the
left side of the dune), the steep lee slope (slip-face) where avalanches occur, and the
two horns typical to barchans

the bed-form shape, which, in turn, increases the wind velocity, and gradually
a steady-state form is achieved. The processes of sand accumulation and self-
regulation are very short, acting until the dune achieves a steady state. Therefore,
most dunes in the field fall into the categories of steady state or quasi-steady
state.

Sand eroded on the windward side is deposited on the upper lee side, causing
oversteepening until it reaches the critical angle of internal friction, which is
approximately 35◦. At this angle the upper lee slope is not steady and failure
occurs by the formation of a series of avalanche ‘tongues’ (Fig. 17.9) that reduce
the slope angle to 32◦–33◦ – the angle of repose [10].

The profile and processes described above are typical of transverse and barchan
dunes, which are migrating dunes. They advance by erosion on the windward
slope at a rate expressed in (17.5), and deposition on the lee slope, followed by
avalanche that forms a slip-face (Fig. 17.9).

17.5.2 Transverse and Barchan Dunes

Transverse and barchan dunes are the same dune type, migrating according
to the same unidirectional-wind mechanism. It is the amount of sand available
for aeolian transport that causes the difference between the two. Barchans are
isolated mounds of sand, formed in limited sand supply areas which overlie coarse
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Fig. 17.9. A field of barchans in the Namibian desert looking upwind. Note the
avalanche tongues on the slip-face

sand or non-sandy surfaces (Figs 17.8 and 17.9); a single long transverse dune
is built of many barchans that have coalesced into one long dune.

In three dimensions, the wind climbing the barchan diverges a bit from the
crest towards the flanks, thus increasing the speed on the barchan sides which
advance more quickly than the crest and form the typical crescentic shape (Figs
17.8 and 17.9).

The rate of advance of barchan and transverse dunes according to Bagnold
[42] is in direct proportion to the rate of sand transport (q) and in inverse
proportion to the specific weight of the sand in bulk (γ) and the slip face height
(h):

c =
q

γh
. (17.6)

Results from measurements of the barchans’ rate of advance show that the link
between dune height and rate of advance is not linear. Since wind increases with
height, q would not be the same for dunes with dissimilar heights. High dunes
will experience relatively higher sand transport than low dunes. The data from
barchan displacement in Peru [49] give this exponential relation:

c = 33.6 e−0.19h (17.7)

and data from Sinai [50] give another exponential relation:

c = 8.7 e−0.26h . (17.8)

According to (17.6, 17.7, and 17.8), a field of barchans will arrange themselves
with the smallest dunes in front and the biggest in the back.
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Most of the sand of the barchan is circulated by saltation on the windward
slope and avalanching on the slip-face, where it is trapped until resurfacing
again on the windward slope as the dune advances one dune length. However, a
barchan loses sand through horns which are devoid of slip-faces (Figs. 17.8 and
17.9). The sand that escapes through the horns of the dune is used to create
another barchan downwind (Fig. 17.10). Every barchan should be in a steady
state wherein the amount of sand it loses through the horns is nearly equal to
the amount of sand it gains from behind.

Fig. 17.10. A field of barchans on Mars (Near 76.7◦N, 254.0◦W). Note how the horns
of one barchan serve as a source of sand for another barchan downwind. Sub-frame
of MOC image SP2-45205 acquired on 26 July 1998. Area shown is approximately 2.4
km by 2.5 km and pixel sizes are approximately 3.3 meters per pixel. By courtesy of
NASA/JPL/Malin Space Science Systems, San Diego

17.5.3 Linear Seif Dunes

A seif, an elongated dune type, is formed under bidirectional wind regimes beat-
ing the dune obliquely. Seifs are completely devoid of vegetation and possess a
triangular profile with a sharp crest, which explains the term seif (an Arabic
word for sword). Another typical characteristic of seifs is the tortuosity of their
crest-lines, with their intermittent peaks and saddles (Fig. 17.11).

From its primary formation, the seif dune is affected by wind flows coming
obliquely from both sides of its slopes, meeting the dune crest at an acute angle
of attack and separating over the crest line. Each wind is diverted along the lee
slope, after reattachment of the separated flow, to blow parallel to the crest-line
in a down-dune direction. This process is referred to as the flow diversion model
[51,52].
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Fig. 17.11. Oblique aerial picture of seif dunes. Note the dunes’ tortuosity and the
sharp crest-line

It follows that two different processes act upon the lee slope of a dune. If the
wind encounters the slope at a right angle, as is the case with barchan and trans-
verse dunes, the flow will separate from the dune brink and create a separation
bubble followed by an abrupt drop in wind velocity. Hence, deposition and for-
mation of slip-face are the main processes acting upon the lee slope (Fig. 17.9).
When, due to dune tortuosity, the wind direction is at an angle of 30◦–40◦ to
the crest-line, the flow separates obliquely to the crest-line and the reattach-
ment flow on the surface of the lee slope is deflected to a direction parallel to
the crest-line at a magnitude that is above the threshold speed [51]. Therefore,
there is less deposition and more erosion and transport of sand in this segment of
the lee slope (Fig. 17.12). The changing angle of attack explains why seif dunes
meander. There are parts of the dune where angle of attack is acute and others
where it is around 90◦ because of dune meandering (Fig. 17.12). Sand that is
eroded and transported across the windward slope will not be deposited on the
lee slope when the angle of attack is acute enough to create a strong diverted
flow on the lee slope. This sand will be deposited on the lee slope when the
dune meanders and, as a result, heightens the angle of attack. This process is
exerted on the dune by bidirectional side-winds. Erosion by the wind from one
side is offset by deposition of sand on the other side of the dune (Fig. 17.12).
As was previously mentioned, only strong winds cause sand accumulation on
desert surfaces. For that reason barchan dunes can also form by a bidirectional
wind regime with one dominant strong wind direction (e.g. the W and SW sand
transport winds in Fig.17.2). After the barchan is built up, the second, gentler
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Fig. 17.12. Schematic sketch of a seif dune that is under a bidirectional wind regime
(one wind direction is shown by the solid line and the other by the broken line). Note
that erosion occurs on the lee side when the wind flow is diverted to flow parallel to
the crest-line, and deposition when the wind encounters the crest-line perpendicularly

wind direction (e.g. the N and NW sand transport winds in Fig. 17.2) starts to
affect the dune. In that case there are two main wind directions that encounter
one horn of the barchan at an acute angle from both sides. Figure 17.13 is an
aerial photograph of crescentic transverse dunes that are affected by a bidirec-
tional wind regime. The strongest wind is from SW and the gentler direction is
from NW. The southern horns of these transverse dunes are oriented obliquely
between these two main wind directions, resulting in along-horn sand movements
that elongate the horns and turn them into seif dunes (Fig. 17.13).

When seifs are formed from barchan or transverse dunes, two different aeolian
bedforms are linked together in one dune system [53]. The barchan or transverse
dune advances while the seif elongates. It is obvious from Fig. 17.13 that the
rate of elongation is faster than the rate of advance, so it is only a matter of
time until the seif dunes are the dominant dune type in this field.

17.5.4 Hybrid Dunes

In rare cases when the wind regime is bidirectional with opposing directions, the
reversing wind regime will re-form a transverse dune with a complete reversing
profile [42,54]. When the wind alternates from two opposite directions, the dune
formed has the straight, linear, triangular shape of a reversing dune (Fig. 17.14).
The mechanism of advance of unvegetated sand dunes can be either the trans-
verse (barchan) mechanism, in which sand is eroded from the windward slope
and deposited on the lee slope, or the linear seif mechanism, where there is also a
considerable along-dune sand transport on the lee side by winds encountering the
dune at an acute angle from both sides. However, in some areas the wind regime
can be bidirectional where one direction is oblique to the crest line and the other
is perpendicular to it. Cooper [55] noticed that Oregon coastal dunes are under
such a wind regime. He termed these dunes, which resemble both transverse and
linear seif dunes, oblique ridges. It seems more appropriate [4,56] to classify the
Oregon dunes and other similar forms as hybrid dunes. Some see hybrid dunes
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Fig. 17.13. Aerial photograph of crescent-shaped transverse dunes showing how the
southern horns are turning into seif dunes

Fig. 17.14. Oblique aerial view of reversing dunes

as transverse [57] while others see them as linear dunes [58,59], although they
exhibit both migrating and elongating attributes in one dune type.

Hybrid dunes can move sideways if the perpendicular wind is strong enough
to form a slip-face that reaches the plinth of the dune. Pure seif dunes have
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small slip-faces on the lee slope undergoing erosion (Fig. 17.11) and are therefore
deprived of any lateral migration [51].

The rate of elongation of the hybrid dunes is less than the rate of elongation
of seif dunes because a greater proportion of the sand transport is perpendicular
to the dune axis rather than parallel to it. However, hybrid dunes have a greater
volume of sand per length and are therefore high dunes [4,57,58]. The confusion
between hybrid and longitudinal (linear) dunes led some researchers to conclude
that linear dunes migrate laterally [59,60,61,62].

17.5.5 Star Dunes

The bedforms that characterize accumulating dunes are the largest known. Star
dunes are the most widespread type of accumulating dune, with sinuous arms
radiating from a central, pyramid-shaped peak (Figs 17.3 and 17.15). Star dunes
are formed by a wind regime with high directional variability (RDP/DP < 0.4)
and for that reason are found in high desert latitudes where there are marked
seasonal changes in wind direction [63]. Observations made in some sand seas
indicate that star dunes originate as reversing or hybrid dunes in cases where
sand is transported to the dune from several directions and adds to its bulk.
Secondary wind directions create secondary arms that are perpendicular to the
main arm of the reversing dune [63,64]. The secondary flow becomes effective
once the dune increases its height and becomes exposed to winds that are below
the threshold at lower elevations. Approximately 11% of all desert dunes are ac-
cumulating star dunes, and they constitute about 5% of the aeolian depositional
surfaces [21].

17.6 Vegetated Dunes

Vegetation can grow on sand dunes in arid areas with less than 100 mm of annual
average rainfall. The limitation of vegetation on dune sand is, first of all, human
impact. The most dominant natural limitation is wind power (17.3) (Table 17.1).
Rainfall is a limiting factor only where the annual average is very low (< 50 mm).

Paradoxically, vegetated surfaces cause steeper velocity gradients, and thus
greater shear stress, than unvegetated surfaces. This is because vegetation causes
a greater friction effect which, in turn, causes greater drag on the flow. The in-
creased stress is not usually transferred to the ground surface, and is therefore
ineffective in entraining sand. Full vegetation cover precludes aeolian entrain-
ment but a partially vegetated canopy can only curtail particle entrainment by
the wind to a certain degree [65]. Hence, dune activity can occur in the presence
of vegetation.

There are several typical vegetated dune types in arid and humid areas
(Fig. 17.4). Isolated clumps of vegetation act as sand traps and thus lead to
the formation of nebkhas (coppice dunes) – hummocks that can reach up to
30 m high and 100 m across; variations in shape depend upon the shape of the
canopy. They are considered to be static bedforms which change in shape as the
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Fig. 17.15. Aerial photograph of star dunes. Note the radiating arms from the dune
central peak. The main arms are from left to right and the secondary are perpendicular
to them

vegetation changes with time. Experiments made by Hesp [66] demonstrated
that dunes formed by the effect of isolated plants are similar to those formed by
sand accumulation due to obstacles (Fig. 17.5).

17.6.1 Vegetated-linear Dunes

This dune type belongs to the group of elongating sand dunes found in many
deserts of the world (Australian deserts, the Kalahari, Indian deserts and the
Negev). Vegetated-linear dunes are low with rounded profiles. They range in
height from a few metres up to dozens of metres. Vegetation covers them, some-
times entirely, and sometimes abundantly on the plinth and lower slopes but very
sparse or absent on the crest. Those that are fully covered by vegetation have
become partly or wholly stabilized. Vegetated-linear dunes may run in parallel
for scores of kilometres (Fig. 17.16). An exclusive attribute of vegetated-linear
dunes is the tendency for two adjacent dunes to converge and continue as a
single ridge. Convergence is in the form of a Y-junction (the tuning fork shape;
Fig. 17.16) commonly open to formative winds [67]. Vegetated-linear dunes are
distinguished from seif dune by: 1) coextension along the strongest dominant
wind direction; 2) the cover of vegetation; 3) straight alignment with no tortuos-
ity; and 4) Y-junctions. However, when vegetation is removed, the creation of sec-
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Fig. 17.16. Aerial photograph of vegetated linear dunes. These linear dunes elongate
in the direction of the dominant, strong wind. Note the straight alignment of the dune
(different from the meandering seif of Fig. 17.11) and the Y-junctions, which indicate
wind direction from left to right

ondary, superimposed transverse dunelets with slip-faces facing downwind may
change the normal low shape and rounded profile of the vegetated-linear dune
(Fig. 17.17). Destruction of vegetation on vegetated-linear dunes that change
their azimuth of alignment on the order of 16◦–25◦ occurs when they converge
to form a Y-junction, causing the formation of seifs (Fig. 17.17). As stated be-
fore, seif dunes form and develop under bidirectional wind regimes. Therefore,
after the destruction of vegetation, the transformation takes place in those ar-
eas (Y-junctions) where vegetated-linear dunes became obliquely aligned to the
strongest dominant wind.

It can be concluded from the above that vegetated-linear dunes undoubtedly
owe their form and development to the vegetation cover – an important factor in
the mechanism of their formation. It is worthwhile to stress that the vegetated-
linear dunes in the southern and eastern Simpson Desert are located leeward of
mounds that are adjacent to playas [68]. Some southwest Kalahari linear dunes
also originate from pan-fringing lunette dunes [69]. In northeastern Arizona they
are formed downwind of a protrusion in the cliff [70].

17.6.2 Parabolic Dunes

Parabolic dunes are mostly found in humid and cold areas. These dunes are U-
shaped (parabolic) with the arms pointing upwind (Fig. 17.18). Parabolic dunes
can be active and transgressive or fully stabilised and inactive. Most work on
parabolic dunes and their formation was done in humid areas. However, parabolic
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Fig. 17.17. Aerial view of linear dunes that have reacted to destruction of vegetation
by grazing and trampling. Note the braided pattern of small dunelets that formed after
the vegetation was destroyed. Seif dunes in the upper part of the photograph resulted
from a change of 16◦ to 25◦ from the linear dune alignment because of the Y-junction

Fig. 17.18. Oblique aerial view of a parabolic dune. The wind is from right to left
pushing the apex of the dune forward and leaving behind the two tails

dunes are also formed in arid and semiarid areas where vegetation is present,
such as in the Jufara Desert of Arabia [71], the semiarid areas of Arizona [72],
the Thar Desert of India [73] and the Kalahari desert in South Africa [5].

The mechanism of parabolic dune formation in coastal humid areas is due to
the fact that vegetation is more easily established at the base of the dune near
the water table. Vegetation or dampness along the lower sides of the dune retards
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sand motion and both are considered to be anchors. Vegetation in parabolic dune
formation is said to protect the less mobile arms against wind action, thereby
allowing the central part to advance downwind [74,75,76,77,78]. In this way the
advancing apex leaves behind trailing ridges that elongate and turn the dune
into a hairpin form [76]. Some see the U-shaped dune as a further development
of a spot blowout [79,80].

It was recently found that barchan and transverse dunes turned into parabolic
dunes in areas where the human impact was reduced or curtailed (Fig. 17.19). As
mentioned above, the limiting factor for vegetation on dune sand is wind erosion.
Accordingly, vegetation should be able to germinate and sprout on those areas of
the dune that have little or no erosion. The rate of sand erosion or deposition is
proportional to the tangent of the angle of inclination of the dune surface (17.5).
According to the profile of barchan or transverse dunes (Fig. 17.8) erosion on
the windward slope of the dune diminishes gradually toward the crest, which
is an area of neither erosion nor deposition. Hence, once human impact stops,
vegetation will recover on the barchan crest, thereby starting the process of
transformation of these dunes into parabolic ones [81] (Fig. 17.19). The pioneer
plant in this process of recovery is Ammophila arenaria, which is the hardiest
shrub in shifting sand areas, able to withstand transport and burial by sand-
baring erosion [82,83].

The dynamics and steady state of barchan or transverse dunes are disturbed
once vegetation clutches at the dune crest. Some of the sand that is eroded from
the windward side is trapped on the crest by clumps of Ammophila arenaria
and is not deposited on the lee side. Sand deposition on the crest gradually
changes the profile of the windward side of the dune from convex to concave
(Fig. 17.19). The rate of wind erosion on the windward side of parabolic dunes
increases because the airflow tends to compress when encountering the concave
slope, both vertically and horizontally, and the velocity gradient above the dune
increases [84]. Such a flow over the concave parabolic dune is characterized by
funneling which strengthens the bed scour. Once vegetation is established, the
dune will advance with sand eroded from the concave, windward slope, becoming
trapped by the vegetation on the crest and the lee slope. The strong bed scour
on the upper windward slope undercuts the shrubs and exposes their roots, thus
forming a knife-edge shape at the inner apex of the dune, which is supported
by the exposed roots [76]. The knife-edge shape divides the windward erosional
slope from the vegetated depositional face. Where undermining breaks the edge,
a wind channel may cut through [74]. Hence, the parabolic dune advances by
undermining the frontal row of vegetation on the windward part of the crest.
This last mechanism differs from that presented in the theory based on the
anchoring of trailing arms by vegetation and the relative high advance forward
of the central apex.

17.6.3 Foredunes

Foredunes are the most commonly found vegetated sand ridges on sandy back-
shores where pioneer vegetation can grow and trap aeolian sand (Fig. 17.20).
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Fig. 17.19. Parabolic dunes (looking downwind) formed from transverse and barchan
dunes a few years after the human impact was significantly reduced. The picture shows
the bare windward slope of the dune, which is being eroded. Vegetation has recovered
preeminently on the crest where there is little erosion

Foredunes develop into continuous vegetated ridges, which lie parallel to coast-
lines exposed to onshore wind energy. The foredune is the only dune type that
involves the exchange of sand with the beach. Other coastal dunes are mostly
transgressive types (barchan, transverse, and parabolic dunes), formed when
sand is transferred inland where foredunes are absent, or through blowouts
(wind-excavated gaps through which sand is transport landward) in the fore-
dune ridges [85].

Two types of foredunes are distinguished by Hesp [86] – incipient and es-
tablished. The incipient foredunes are newly developing dunes formed by the
trapping of sand in pioneer plant seedlings (mostly Ammophila arenaria). In-
cipient foredunes are small (less than 2 meters high) and may be seasonal if
formed in annual plants. Established foredunes develop from incipient foredunes
when other vegetation species, generally woody plants, colonize the foredune.
They can reach heights of up to 30–35 m but in most cases are less than 20 m
[87]. Foredunes are undermined by storm waves, a process followed by some
avalanching and retreat of the dunes’ seaward slope. Between eroding storms,
sand returns to the dune slopes in a recovery cycle [88].

Established and densely vegetated foredunes with no blowouts can obstruct
the transmission of sand inland. Foredunes were formed on the west coast of
North America after the introduction of Ammophila arenaria more than 100
years ago. The establishment of the foredunes cut off the sand nourishment
to the coastal dunes. As a result, the sand surface leeward of the foredunes
deflated to the level of the water table [82,89]. Erosion of the foredunes, which
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Fig. 17.20. Foredune about 5m high formed on the backshore where pioneer vegeta-
tion can thrive

is commonly known to begin when vegetation is disrupted by human activities
(trampling, traffic, fire or for pasturing livestock) may form blowouts.
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18 Dunes and Drumlins
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18.1 Introduction

18.1.1 Dunes

Dunes are landforms which occur when a turbulent fluid flow occurs above an
erodible substrate. The most obvious example occurs in deserts, where the wind
blows sand into a wide variety of different shapes (see Chap. 17 for many illus-
tration of such dunes). Linear dunes, or ‘seifs’, are ridges which form parallel to
the prevailing wind direction, while transverse dunes are ridges perpendicular
to the wind. A variety of other shapes can occur, amongst them star dunes and
barchan dunes.

Dunes also occur under rivers, for similar reasons. Because the flow in this
situation is uni-directional, such exotica as star dunes do not occur. On the other
hand, when the flow is rapid enough, anti-dunes occur; these are associated with
waves at the water surface which are in phase with the underlying bed forms.

Dunes occur due to an instability which arises through a coupling between
the bed transport rate and the overlying flow. In rivers and deserts, the bed
material is transported (in rivers as bedload) through the imposition of a wind or
water driven shear stress. If a perturbation in the bed elevation occurs, then the
increased roughness alters the bed shear stress, and hence the bed transport rate.
It is this feedback which causes the instability. As we shall see, the instability
relies crucially on the fact that the perturbed shear stress is out of phase with
the perturbed bed form.

18.1.2 Drumlins

Drumlins are small oval hills. They occur in swarms in regions which were for-
merly covered by ice sheets (in the last ice age). For example, much of the
northern part of Ireland is covered by drumlins. They are typically formed of
subglacial till, which is a dispersion of coarse, angular rock fragments in a matrix
of finer grained material. Drumlins have typical dimensions of 100–1000 metres
in length, and 10–50 metres elevation. As in the case for dunes, drumlins come
in many different forms. In particular, analogues to various different dune types
exist. Rogen moraine consists of ridges aligned perpendicular to the former ice
flow, while glacial flutes and mega-flutes are lineations parallel to the ice flow.
The three-dimensional drumlin forms themselves also have varying styles, such
as spindle drumlins and barchanoid drumlins, and it has been suggested that

N.J. Balmforth and A. Provenzale (Eds.): LNP 582, pp. 430–454, 2001.
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they occur through the action of massive subglacial floods, which erode the bed-
forms by analogy with dunes. While this is not inconceivable, it does require
subglacial floods on a scale more massive than is commonly thought possible.

In this paper we show how an erosional theory for dune formation can be
provided, and we will also show how the analogous theory for ice sheet flow
can predict drumlin-forming instabilities, despite the vast disparity in Reynolds
number. Notes and references to some of the literature can be found at the end
of the paper.

18.2 Dunes

The basic geometry of the system is shown in Fig. 18.1. The water surface is
z = η, where z is a coordinate normal to the mean bed slope, and the bed is z = s.
For simplicity we consider only two-dimensional motions, so that s = s(x, t),
η = η(x, t). The water depth is thus

h = η − s , (18.1)

and the basic equation which describes the evolution of s is the Exner equation

(1− n)∂s
∂t

+
∂q

∂x
= 0 . (18.2)

Here, n is the porosity of the bed and q is the bedload transport, usually written
as a prescribed function of the mean basal shear stress τ ; a typical example is
the Meyer–Peter and Müller [23] law

q = q(τ) = C(τ − τc)3/2
+ , (18.3)

where [x]+ = max(x, 0), and τc is a yield stress, called the Shields stress (after
Shields [30]); bedload transport only occurs for stresses above this value.

h

z = s

z

z = η

Fig. 18.1. Geometry for dune model. Water of depth h flows over an erodible bed
z = s

The bedload transport q is an increasing function of τ , which itself depends
on the mean flow velocity ū, for example we can take

τ = fρwū
2 , (18.4)
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where ρw is the density of water, and f is a dimensionless friction factor having
a typical value of 0.05. It varies somewhat with flow speed and bed roughness,
but can be taken as constant in an initial study.

18.2.1 St. Venant Equations

The equations (18.1)–(18.4) provide four equations for the six variables s, q, τ, ū,
h, η, and two further equations are necessary to complete the set. These arise
from mass and momentum conservation, and an attractive possibility is to use
the St. Venant equations to express these.

The St. Venant equations are the classical averaged equations which are used
to describe turbulent river flow. They can be derived by taking cross-sectional
averages (or, for a wide channel with no cross-stream variation of depth, depth
averages) of the Navier–Stokes equations. For a two-dimensional velocity field
(u, 0, w) down a slope S, using depth averages, we obtain

∂h

∂t
+
∂

∂x

∫ η

s

u dz = 0,

∂

∂t

∫ η

s

u dz +
∂

∂x

∫ η

s

u2 dz = gh(S − ηx)− μ

ρw

∂u

∂z

∣∣∣∣
z=s

, (18.5)

using in addition the assumption of a shallow flow, so that the pressure is ap-
proximately hydrostatic,

p ≈ ρwg(η − z) , (18.6)

and neglecting longitudinal stress terms.
The average velocity ū is defined by

ū =
1
h

∫ η

s

u dz, (18.7)

and the system is closed by the two additional constitutive assumptions, that∫ η

s

u2dz = hū2 , (18.8)

and that the basal shear stress is

τ = μ
∂u

∂z

∣∣∣∣
z=s

= fρwū
2 . (18.9)

These conditions, particularly the latter, can be derived providing some suitable
assumptions about the form of the turbulent shear flow near the boundary are
made. The classical St. Venant equations are then (now writing ū = u)

∂h

∂t
+
∂

∂x
(hu) = 0 ,

∂u

∂t
+ u

∂u

∂x
= g(S − ηx)− fu

2

h
. (18.10)
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Suppose the volume flux (per unit width) of the river is Q0, and is prescribed.
We non-dimensionalise the St. Venant equations using length scales h0, velocity
scale u0, time scale t0 and bedload transport scale q0, chosen so that

u0h0 = Q0 , gS =
fu2

0

h0
, t0 =

h2
0

q0(1− n)
, (18.11)

where q0 is chosen so that q ∼ q0 when τ ∼ fρwu
2
0. The resulting dimensionless

Exner–St. Venant model is

∂s

∂t
+
∂q

∂x
= 0 ,

ε
∂h

∂t
+
∂

∂x
(uh) = 0 ,

F 2
(
ε
∂u

∂t
+ u

∂u

∂x

)
= −ηx + δ

(
1− u

2

h

)
, (18.12)

and the parameters are defined by

ε =
(1− n)q0
Q0

, F =
u0√
gh0

, δ = S . (18.13)

Typical values are ε ∼ 10−2, δ ∼ 10−3, F < 1 (if we restrict our attention to
dunes), and the simplifying assumptions ε→ 0, δ → 0 lead to

uh = 1 ,
1
2F

2u2 + η = 1
2F

2 + 1 , (18.14)

referring to a basic (scaled) state u = h = 1, s = 0. These provide the extra
two equations to complete the model. Note that the specific assumptions ε	 1,
δ 	 1 (both realistic) obviate the necessity to specify (18.8) and (18.9). However
(18.14) does require the water flow to be slowly varying (and specifically, s	 1
or ∂s/∂x	 1).

Elimination of h and η yields s = s(u),

s = 1− 1
u

+ 1
2F

2(1− u2) , (18.15)

and since also q = q(τ) = q(u), then q = q(s), and the Exner equation is simply

∂s

∂t
+ q′(s)

∂s

∂x
= 0 , (18.16)

or equivalently
∂q

∂t
+

1
s′(q)

∂q

∂x
= 0 . (18.17)

For example, the (scaled) choice q = τ3/2 = u3 leads to

v(q) =
1
s′(q)

=
3q4/3

1− F 2q
. (18.18)
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When F < 1, the wave speed v(q) is an increasing function of q (at q = 1), so
that shocks form and propagate downstream. Dunes are indeed shocks (and do
propagate downstream); also

ds
dη

=
F 2 − h3

F 2 , (18.19)

so that for F < 1, ds/dη < 0 at h = 1, and the water surface is out of phase
with the bed, as is the case for dunes.

18.2.2 Instability

Of course, (18.16) does not predict instability, it simply evolves prescribed per-
turbations into dunes. The key to instability lies in the observation that the
presence of a perturbation of the bed causes a disturbance to the flow, and this
is not manifested in the St. Venant model. However, it is not in fact the shallow
water assumptions (18.14) that are at fault, but rather the prescription of the
shear stress in (18.9). From (18.15) u = u(s), and du/ds = u2/(1 − F 2u3); at
u = 1, du/ds = 1/(1 − F 2) > 0 for F < 1: u is exactly in phase with s. Hence
also τ is exactly in phase with s.

This is not realistic, because the presence of the bump perturbs the flow,
and intuitively we expect that the shear stress will be greatest on the upstream
face of a bump. One simple way to represent this is to replace the dimensionless
version of (18.9), τ = u2, by

τ = u2|x+l , (18.20)

so that the shear stress leads the velocity (and thus the bed). This idea was
introduced by Kennedy [19], and leads to instability, since with

q = q[s(x+ l, t)] , (18.21)

linearisation of the Exner equation via

q = 1 + q̄eikx+σt , s = s̄eikx+σt , (18.22)

yields
q̄ = q′(0)eikls̄ , σs̄+ ikq̄ = 0 , (18.23)

and thus
σ = kq′(0)(sin kl − i cos kl) , (18.24)

and instability for l > 0. The model (18.21) is not actually very good (σ ∼ k at
k → ∞ indicating ill-posedness), but it does point out the modification which
needs to be made.
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18.2.3 The Orr–Sommerfeld Model

In order to compute the effect of the bed on the shear stress, we must consider
the structure of the shear flow above the bed. The simplest model for the tur-
bulent flow is one in which there is an eddy viscosity, which we take to be μT ,
and independent of position (for simplicity). The governing equations for the
two-dimensional time-averaged velocity field (u, 0, w) (note u is not the depth-
averaged mean, but reverts to its original meaning) are

ut + uux + wuz = − 1
ρw

∂p

∂x
+ νT∇2u+ gS ,

wt + uwx + wwz = − 1
ρw

∂p

∂z
+ νT∇2w − g ,

ux + wz = 0 ; (18.25)

here νT = μT /ρw is the kinematic eddy viscosity. If the downstream slope is
S = sinα, then g in the second equation is an approximation for g cosα, but the
difference is slight.

Boundary conditions are those of zero stress at the top surface, and no slip
at the base (modifications may be necessary for more realistic eddy viscosity
models). The object is to calculate the basal shear stress

τ ≈ μT
∂u

∂z

∣∣∣∣
z=s

(18.26)

for s small but non-zero (whence the approximation in (18.26) is valid). We take
as a reference point the supposition that τ = fρwū

2 when s = 0; this will provide
us with a consistent (flow-dependent) definition of μT .

In the uniform state where s = 0, we find

u =
gS

νT

(
hz − 1

2
z2
)
, (18.27)

so that
ū =

gS

3νT
h2 , (18.28)

and these are consistent with τ = fρwū
2 providing we have

νT = εT ūh , (18.29)

and we choose
εT = f/3 . (18.30)

Thus, we suppose νT is defined by (18.29) and (18.30), and this reproduces (18.9)
for a uniform flow.

Now we want to modify the solution to find an expression for τ when s = 0.
First we scale the model as before, and scale p−ρg(h0−z) with ρwu

2
0. Neglecting
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the small time derivatives as before (ε→ 0), we have

uux + wuz = −px +
1
R
∇2u+

S

F 2 ,

uwx + wwz = −pz +
1
R
∇2w ,

ux + wz = 0 , (18.31)

and the new parameter is the turbulent Reynolds number

R =
u0h0

νT
=

1
εT
. (18.32)

Although in general, ū and h may differ (when s = 0) from u0 and h0, we note
that ūh = u0h0, and thus it is consistent to define the eddy viscosity νT = εTQ0,
so that for a given discharge it is constant, whether s is constant or not.

We specifically choose u0 to be the mean steady velocity (even if s = 0), so
that the dimensionless uniform velocity profile (when s = 0) is

U(z) = 3
(
z − 1

2
z2
)
. (18.33)

Now we write
(u,w) = (U(z) + ψz,−ψx) , (18.34)

where ψ is small (as s is), and thus the model is linearised: we find

U∇2ψx − U ′′ψx =
1
R
∇4ψ . (18.35)

The condition of zero normal stress at the surface becomes, approximately,

η ≈ 1− F 2p|z=1 , (18.36)

and if we conveniently suppose F 2 	 1, then we can take η ≡ 1 in the perturbed
flow. The linearised boundary conditions for the flow are then

ψ = ψzz = 0 at z = 1 ,

ψ = 0 , ψz = −U ′
0s at z = 0 , (18.37)

where U ′
0 = U ′(0) = 3.

If we can solve this problem, then the dimensional basal shear stress is

τ = ρwεTu
2
0U

′
0

(
1 + s

U ′′
0

U ′
0

+
1
U ′

0
ψzz|z=0

)
, (18.38)

and since f = 3εT = εTU
′
0, u0 = ū, this is

τ = fρwū
2
(

1 +
sU ′′

0

U ′
0

+
1
U ′

0
ψzz|0

)
. (18.39)
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We write (time dependence is implicit)

s =
∫ ∞

−∞
ŝ(k)eikx dk ,

ψ = −U ′
0

∫ ∞

−∞
ŝeikxΨ(z, k) dk, (18.40)

so that Ψ satisfies

U(Ψ ′′ − k2Ψ)− U ′′Ψ =
1

ikR
(Ψ iv − 2k2Ψ ′′ + k4Ψ) , (18.41)

with

Ψ = Ψ ′′ = 0 on z = 1 ,
Ψ = 0 , Ψ ′ = 1 on z = 0 . (18.42)

Engelund [8] and Smith [31] solved this problem numerically, incorporating
it into a linearised model of the Exner equation, and finding instability to occur,
essentially because of the phase shift of the shear stress. However, since the
parameter 1/R = f/3 is relatively small (e.g. 1/R = 0.02 if f = 0.06), an
alternative approach is to derive an asymptotic solution based on the limit R�
1.

This can be done using an analysis pioneered by Bill Reid, and expounded in
the book by Drazin and Reid [6]. The neglect of the terms of O(1/R) in (18.41)
gives a second order equation which can be solved by Frobenius’s method to give
power series solutions in z. Near z = 0, there is a boundary layer of (complex)
thickness (ikRU ′

0)
−1/3, in which the approximating equations can be solved in

terms of a class of generalised Airy functions introduced by Reid [25], defined
explicitly by contour integral representations, whose asymptotic form far from
z = 0 can be explicitly computed. Matching of the two expansions can be carried
out, and it is found that

Ψ ′′(0) ∼ −3(ikRU ′
0)

1/3Ai(0) +O(1) (18.43)

for k > 0, where i1/3 = eiπ/6 (and Ψ ′′(0,−k) = Ψ ′′(0, k), where the overbar
denotes the complex conjugate).

Now the basal stress is, from (18.39),

τ = fρwū
2
[
1− s−

∫ ∞

−∞
eikxŝ(k)Ψ ′′(0, k) dk

]
, (18.44)

and by use of the convolution theorem, this is

τ = fρwū
2
[
1− s+

∫ ∞

−∞
K(x− ξ)∂s

∂ξ
dξ
]
, (18.45)

where the kernel K(x) is

K(x) = − 1
2π

∫ ∞

−∞

Ψ ′′(0, k)
ik

eikx dk . (18.46)
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Writing c = 3(RU ′
0)

1/3Ai(0) in (18.43), we have

K(x) =
c

π

∫ ∞

0
cos(kx− π

3 )
dk
k2/3 , (18.47)

and this can be evaluated to give

K(x) =
μ

x1/3 , x > 0 ,

= 0 , x < 0 , (18.48)

where

μ =
32/3R1/3

Γ ( 2
3 )2

≈ 1.98R1/3 . (18.49)

Thus (18.45) is

τ = fρwū
2
[
1− s+ μ

∫ ∞

0
ξ−1/3 ∂s

∂x
(x− ξ, t) dξ

]
: (18.50)

the shear stress is corrected by a weighting which increases its value upstream of
maxima of s, consistent with our previous heuristic expectations. For stability
purposes, note that with

K(x) =
∫ ∞

−∞
K̂(k)eikxdk, (18.51)

then

K̂ = −Ψ
′′(0, k)
2πik

=
c

2πk2/3 e−iπ/3 , k > 0 . (18.52)

18.2.4 Orr–Sommerfeld–Exner–St. Venant Model

As explained previously, as long as s is small, the shallow water approximation
(18.14) applies, and thus s ≈ s(u). In fact, when F is small, then η ≈ 1, h ≈ 1−s
and thus

u ≈ 1
1− s . (18.53)

The dimensionless Exner model thus becomes

∂s

∂t
+
∂q

∂x
= 0 ,

τ ≈ 1
1− s +

1
(1− s)2

∫ ∞

−∞
K(x− ξ)∂s

∂ξ
(ξ, t) dξ , (18.54)

where q = q(τ). We write s = ŝeikx+σt, τ = 1+ τ̂eikx+σt, and then a linearisation
of (18.54) yields

σŝ+ ikq′(1)τ̂ = 0 ,



18 Dunes and Drumlins 439

τ̂ = ŝ+ 2πikK̂ŝ , (18.55)

whence (for k > 0)

σ = 2πk2q′(1)K̂ − ikq′(1)
= cq′(1)k4/3e−iπ/3 − ikq′(1) . (18.56)

The growth rate is thus
Reσ = 1

2cq
′(1)k4/3 , (18.57)

which is positive, denoting instability; the wave speed is

− iσ
k

= q′(1)

(
1 +

√
3

2
ck1/3

)
, (18.58)

and waves propagate downstream.

18.2.5 Well-posedness

This model is also ill-posed because of the rapid growth of short wavelength
disturbances. The remedy here is to account for the local slope of the bed on
the mobility. For a particle of grain diameter Ds, the buoyancy-induced stress τp
acting in the x direction on the particle is approximately τp = −ΔρgDs∂s/∂x,
where Δρ = ρs − ρw, ρs is sediment density, for small s. Thus the effective
driving stress for bedload transport is τ + τp, and we should take q as a func-
tion of τ + τp. Equivalently we add τp to the definition of τ , and when this is
non-dimensionalised, we replace (18.54)2 (the notation (a)b indicates the b-th
equation of the equation set (a)) by

τ =
1

1− s +
μ

(1− s)2
∫ ∞

0
ξ−1/3 ∂s

∂x
(x− ξ, t) dξ − β ∂s

∂x
, (18.59)

where
β =

ΔρgDs

fρwu2
0

=
ΔρDs

ρwSh0
. (18.60)

Typical values of Ds = 1 mm, h0 >∼ 1 m, S >∼ 10−3, give values β ∼ O(1). The
extra term is diffusive, and the growth rate (18.57) is modified as

Reσ = q′(1)
(

1
2ck

4/3 − βk2
)
, (18.61)

and high wave number disturbances decay.
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18.2.6 The Canonical Dune Equation

The linear integral correction to the stress is computed on the basis that s is
small compared to the depth, and also uses the fact that R is large. On the face
of it, this implies that only the linearisation of (18.59) gives a self-consistent
approximation. However, it is possible to argue that some nonlinear terms in
(18.59) may be included, at least formally, in certain circumstances. Suppose
the amplitude of variations in s is of order s0 	 1 and varies on a length scale
L � 1. Then if s0 ∼ μ/L ∼ β/L, a self consistent approximation correct to
O(s20) is

τ ≈ 1 + s+ s2 + μ
∫ ∞

0
ξ−1/3 ∂s

∂x
(x− ξ, t) dξ − β ∂s

∂x
, (18.62)

and if we write

q(τ) ≈ q(1) + q′(1)(τ − 1) +
q′′(1)

2
(τ − 1)2 +O(τ − 1)3 , (18.63)

and define the moving spatial coordinate

X = x− q′(1)t , (18.64)

then we find that, correct to terms of O(s3),

∂s

∂t
+

∂

∂X

[
{q′(1) + 1

2q
′′(1)}s2 + μ

∫ ∞

0
ξ−1/3 ∂s

∂X
(X − ξ, t) dξ − β ∂s

∂X

]
= 0 ,

(18.65)
and by a suitable rescaling of s, t and X we obtain the canonical equation

∂s

∂t
+

∂

∂X

[
1
2s

2 +
∫ ∞

0
ξ−1/3 ∂s

∂X
(X − ξ, t) dξ − ∂s

∂X

]
= 0 . (18.66)

We propose this equation as a first canonical equation for the study of nonlinear
dune formation. It bears comparison to the Kuramoto–Sivaskinsky equation, and
we may hope that the properties of its solutions may be dune-like.

18.2.7 Caveats

The principal feature of real dunes which we have neglected, but which it would
be essential to include in future models, is that of boundary layer separation
at the dune crest. Essentially, we may expect growth of unstable perturbations
to lead to shock formation (smoothed by the diffusion term), but in fact when
the bed slope reaches the angle of repose, spontaneous slip occurs, and it is a
familiar feature of desert dunes that there is separation at the resulting slope
discontinuity.

It may in fact still be possible to model the separated flow in the same way,
except that in the lee of the dune a constant pressure (or vorticity) cavity exists,
whose extent is unknown a priori, but this is a more difficult problem to address.
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18.3 Drumlins

The basic geometry of the model for drumlin formation is shown in Fig. 18.2;
it is similar to the fluvial dune geometry of Fig. 18.1. We suppose the ice flows
over a layer of till lying above an impermeable basement. Typical ice sheet
thicknesses are on the order of kilometres, and it is commonly the case that
the basal ice reaches the melting point, due to geothermal heat input, together
with the insulating effect of the ice cover. In this situation, basal meltwater is
produced and the underlying till will become deformable if its pore pressure is
high enough (within about a bar of the overburden pressure). The resulting ice
motion may then be almost entirely due to deformation of the till, which can
be thought of as acting like a power-law viscous fluid, with an effective viscosity
which decreases as the pore water pressure increases. This is the situation we
study. The vertical coordinate is z, the ice-till interface is z = s, and the top
surface is denoted by z = η, thus the ice depth is h = η − s.

till

ice flow

η

sz =

z =

z

Fig. 18.2. Geometry for the drumlin model. Ice flows over a layer of deformable till

In the uniform state, h and s are constant, and a uniform shear flow exists in
the ice. There are two features (other than scale) which distinguish the ice-till
flow problem from the water-sediment flow problem. The first is that the flow
of till is thought to depend both on basal stress (as for bedload) and on the
effective pressure N , defined as the difference between overburden pressure and
the interstitial pore water pressure within the sediments. Without this depen-
dence, the instability does not occur. The second is that the Reynolds number
for ice flow is essentially zero. Despite these differences, the problems are similar
in structure. In particular, it is essential to the instability to take account of the
effect of a perturbed bed on the basal stress.

18.3.1 The Hindmarsh Model

The basic model is due to Hindmarsh [16,17], and the present formulation is due
to Fowler [13]. For a slow, two-dimensional flow in s < z < η, we define a stream
function ψ and the reduced pressure Π via

p = pa + ρig(η − z) +Π , (18.67)
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where pa is atmospheric pressure and ρi is ice density. Then Stokes’s equations
are

ρigηx +Πx = μ∇2ψz ,

Πz = −μ∇2ψx , (18.68)

where μ is the viscosity of ice, which we take to be constant, and we require
conditions of stress continuity at z = η, and stress and velocity continuity at
z = s. (Velocity continuity implies no flow of ice into the till, and also implies
that the ice does not slip over the till. This is reasonable, though it may be
inaccurate, but there is little information on which to base a description of such
slip.) The normal and tangential stresses at z = s are, respectively,

τnn = − 2μ
1 + s2x

[(1− s2x)ψxz + sx(ψzz − ψxx)] ,

τ =
μ

1 + s2x
[(1− s2x)(ψzz − ψxx)− 4sxψxz] , (18.69)

and similar expressions apply at z = η (simply replace s by η).
The flow in an ice sheet is driven by the surface slope ηx; η varies on a length

scale of order 1000 km, so that ηx ∼ 10−3. On the more relevant drumlin length
scale of <∼ 1000 m, it is convenient to take ηx as small and constant, but also to
take η as approximately constant. We thus define

−ηx = δ ∼ 10−3 (18.70)

to be constant in (18.68), but we solve the resulting model equations assuming
the top surface η is constant.

These equations then have a uniform solution in which Π = 0, s = 0, η = h̄,
and the velocity and shear stress at the ice-till interface are ū and τ̄ , respectively.
This solution is (with zero shear stress at the surface)

ψ = ūz +
τ̄

2μ

(
z2 − z3

3h̄

)
, (18.71)

and the basal shear stress is
τ̄ = ρigδh̄ . (18.72)

In allowing uniform η, we are in fact letting δ → 0 while keeping τ̄ finite, an
approximation of Boussinesq type.

Next, consider the zero normal stress condition at the surface. Under a per-
turbation of the flow, the perturbation to the surface Δη is given from (18.67)
by

Δη = − (Π − τnn)
ρig

, (18.73)

and we can suppose Π− τnn <∼ μu/l, where u is ice velocity and l is the drumlin
length scale. Then

Δη <∼
μuδh̄

lτ̄
, (18.74)
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and with τ̄ ∼ μu/h̄, then Δη/h̄ ∼ δh̄/l ∼ δ. Thus we can consistently neglect
variations of η under flow perturbations (just as we did for dunes when the
Froude number was small).1

Now we perturb the flow, supposing s to be small relative to the depth, but
not zero, by writing

ψ = ūz +
τ̄

2μ

(
z2 − z3

3h̄

)
+ Ψ , (18.75)

so that Ψ satisfies

Πx = μ∇2Ψz ,

Πz = −μ∇2Ψx , (18.76)

with
Ψx = 0 , Ψzz = 0 on z = h̄ , (18.77)

and, correct to terms of O(s), (18.69) gives

τnn ≈ −2μΨxz − 2τ̄ sx ,
τ ≈ τ̄(1− s/h̄) + μ(Ψzz − Ψxx) , (18.78)

which can be taken to be evaluated on z = 0 rather than z = s.
If the horizontal till velocity at z = s is u, then the velocity continuity

conditions are
−ψx = st + usx , ψz = u at z = s , (18.79)

and, under linearisation about z = 0, these imply

u = ū+
τ̄ s

2μ
+ Ψz ,

−Ψx = st + ūsx , (18.80)

at z = 0.
The ice flow problem thus reduces to the solution of the biharmonic equation

∇4Ψ = 0 , (18.81)

together with the two conditions in (18.77), and the four conditions in (18.78)
and (18.80). Only two of these latter four are necessary, and so the solution gives
two extra relations, which can be taken to be those in (18.78), i.e. we obtain τnn

and τ as linear functionals of u and s. The model is now completed by relating
u to τ, τnn, and s through the dynamics of the deforming till. When this is done,
we can eliminate u to find τ and τnn in terms of s, and hence the till flux q can
be written in terms of s, and an Exner equation will provide a model for s.

We also need to specify boundary conditions as x→ ±∞, and if we suppose
s→ 0 there, then we would have Ψ → 0. This implies that we can replace (18.77)
with the conserved flux condition, thus

Ψ = 0 , Ψzz = 0 on z = h̄ . (18.82)

The solution of the problem is now completed by consideration of the till flux.
1 This observation is due to Christian Schoof.
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18.3.2 Till Rheology and Flow

This has been considered in some detail by Fowler [13]. The till is shallow, and
the velocity and flux can be determined explicitly. The principal feature of the
till flow is that it should increase with applied shear stress and also with pore
water pressure. A simple (empirical) choice is of the form

∂v

∂z
= A exp(ατ/pe) , (18.83)

where v is horizontal velocity and pe is the effective pressure within the till.
This has some basis in experimental measurements on deformation in clays and
in till, and is consistent with observed plastic-like behaviour when α is large.
The effective pressure increases with depth from the ice-till interface due to
hydrostatic effects:

pe = N + (1− n)Δρswg(s− z) , (18.84)
where N is the value at z = s, n is the till porosity, Δρsw = ρs − ρw, ρs is
sediment density, ρw is water density, and g is gravity. The shear stress is taken
as constant, while the interfacial effective pressure itself is given by

N = N̄ +Δρwigs+Π − τnn , (18.85)

evaluated on z = s, or (since linearised) on z = 0. Here N̄ is a reference value
which is supposed fixed, and corresponds to the effective pressure which we
suppose is determined by the subglacial drainage characteristics.

The upshot of these assumptions is that the till flux is (approximately)

q = A∗ζ∗2[1− (1 +X)e−X ] , (18.86)

while the ice-till interface velocity is

u = A∗ζ∗(1− e−X) , (18.87)

and the parameters are

X = s0/ζ
∗ , ζ∗ =

N2

αrτ
, A∗ = A exp(ατ/N) , (18.88)

where s0 is the till thickness, and we can take s0 = s̄+s, where s̄ is the (uniform)
till depth in the undisturbed flow; also the parameter r is defined by

r = Δρswg(1− n) ≈ 0.1 bar m−1 . (18.89)

These expressions give u = u(s, τ,N), q = q(s, τ,N), as shown in Fig. 18.3. From
(18.78), (18.80) and (18.85), we can write

u = L(s, τ − τ̄) , N − N̄ = M(s, τ − τ̄) , (18.90)

where L and M are bilinear (integral) operators. Thus the ice-till velocity is

u[s, τ, N̄ +M{s, τ − τ̄}] = L{s, τ − τ̄} , (18.91)

whence τ = P [s] and thus q = q[s]. We then evolve s via the Exner-type equation

∂s

∂t
+
∂q

∂x
= 0 . (18.92)
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Fig. 18.3. Profiles of u(s, τ) and q(s, τ) calculated using (18.87) and (18.86). Graphs
are shown for τ = 0.05, 0.1, 0.2, and 0.3 bars. The constants are taken as α = 10,
Δρswg(1 − n) = 0.1 barm−1, N = 1bar, A = 10 y−1

18.3.3 Fourier Integral Solution

We can write a solution of (18.76), (18.78), (18.80) and (18.82) in terms of Fourier
integrals. It is convenient to suppose that h̄ = ∞, corresponding to a limit in
which h̄/l� 1. This is in fact marginal, since we expect l ∼ 100–1000 m, and h̄ ∼
1000 m, but simplifies the algebra without (apparently) seriously compromising
the physics. We can then write the solution in the form

Ψ =
∫ ∞

−∞
(a+ bz)e−|k|zeikxdk,

Π = −
∫ ∞

−∞
2μikbe−|k|zeikxdk ,

u− ū =
∫ ∞

−∞
ũeikxdk ,

τ − τ̄ =
∫ ∞

∞
τ̃eikxdk,

s =
∫ ∞

−∞
s̃eikxdk,

N = N̄ +
∫ ∞

∞
Ñeikxdk , (18.93)

and the boundary conditions imply

b− |k|a = ũ− τ̄ s̃
μ
,

−ika = s̃t + ikūs̃,
τ̃ = −2|k|u(b− |k|a) ,
Ñ = −2μik|k|a+ 2ikτ̄ s̃+Δρwigs̃ , (18.94)
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from which we derive

τ̃ = −2|k|μũ+ 2|k|τ̄ s̃ ,
Ñ = 2μ|k|(s̃t + ikūs̃) + (Δρwig + 2ikτ̄)s̃ . (18.95)

Suppose also that s̃, Ñ , and τ̃ are small; then linearisation of the ice-till velocity
u(s, τ,N) gives the relation

ũ = uss̃+ uτ τ̃ + uN Ñ , (18.96)

where us = ∂u/∂s evaluated at s = 0, τ = τ̄ , N = N̄ , etc. Fowler [13] omitted to
include the second term in (18.95)1; he also argued that the last term in (18.95)2
was negligible, on the basis that, typically, Δρwig, 2kτ̄ 	 2μk2ū, for values of
interest when k−1 ∼ 100 m, and we do the same here.

From (18.95)1 and (18.96), we have

τ̃ = − 2|k|μ
1 + 2|k|μuτ

[(
us −

τ̄

μ

)
s̃+ uN Ñ

]
. (18.97)

The τ̄ /μ term (which arises from the second term in (18.95)1) is negligible if
τ̄ 	 μ∂u/∂s. Consulting Fig. 18.3, we see that a typical range of ∂u/∂s is 10–
100 y−1 for s < 10 m. Then if μ = 6 bar y, μ∂u/∂s >∼ 60 bar, and it is safe to
neglect this term. Thus we derive the approximations

Ñ = 2μ|k|(s̃t + ikūs̃) ,

τ̃ = − 2|k|μ
1 + 2|k|μuτ

(uss̃+ uN Ñ) ,

ũ =
uss̃+ uN Ñ

1 + 2|k|μuτ
. (18.98)

18.3.4 Linear Stability

If we now linearise the till-flux expression (18.86) and the Exner equation (18.92),
we obtain two further relations

q̃ = qss̃+ qτ τ̄ + qN Ñ ,

s̃t + ikq̃ = 0 , (18.99)

and from these we can derive the growth rate in the form

s̃t/s̃ = ρ− ikc , (18.100)

where ρ is the growth rate and c is the wave speed. Explicit expressions are given
by Fowler [13], for example the growth rate is

ρ =
2μk2|k|Δ1Δ2

(1 + 2μ|k|uτ )2 + 4μ2k4Δ2
2
, (18.101)
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where

Δ1 = (1 + 2μ|k|uτ )(ū− qs) + 2μ|k|qτus ,

Δ2 = qN + 2μ|k|[uτqN − qτuN ] . (18.102)

It is clear from these formulae that it is essential for instability that the flow law
for till depend on N , for otherwise Δ2 = 0 and thus stability is neutral.

Further simplification is possible, using the anticipated fact that k−1 ∼
100 m, whence typically 2μ|k|uτ � 1. In fact, if we define (cf. (18.88))

X = ξY , ξ =
rs̄

N
, Y =

ατ

N
, K =

2μαA|k|
r

, (18.103)

then we find that K � 1, and thence (for X,Y = O(1))

Δ1 ≈
A∗ζ∗W (X)KeY [Y − F (X)]

Y 2 ,

Δ2 ≈
qKeY J(X)
NY 2 , (18.104)

where the functions W , J and F are positive, and

F (X) =
1− 2Xe−X − e−2X

1− (1 +X)e−X
; (18.105)

F increases monotonely from 0 atX = 0 to 1 asX →∞. Roughly, F ≈ 1−e0.7X .
We suppose typical values s̄ ∼ 10 m, N ∼ 1 bar, α = 10, τ = 0.1 bar, so that
X,Y = O(1), and instability occurs (since Δ2 > 0) if

Y > F (X) = F (ξY ) . (18.106)

(We also require X > O(1/
√
K).) A delineation of the instability region is shown

in Fig. 18.4. We see that instability generally occurs for ξ, Y = O(1), and thus
in general for low effective pressures.

With the same approximation, that K � 1, we find that the growth rate can
be written in the approximate form

ρ ≈
(
AN

2μ

)1/2 [
D|k/k∗|3

B2 + C2(k/k∗)4

]
, (18.107)

where
k∗ =

r

(2μAN)1/2 , (18.108)

and B,C,D are O(1) functions of X and Y . This indicates that the preferred
wavelength of growth is O(k∗−1), and the growth time scale is (2μ/AN)1/2. We
find unstable wavelengths in the range 100–1000 m, and the growth time is of
order 1 year. Of course, the model is only two-dimensional, but we might expect
three-dimensional instability also, perhaps arising as a secondary instability on
the primary (Rogen moraine) ridge forms.
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Fig. 18.4. Instability region in Y , ξ space, bounded by the curves Δ1 = 0, Δ2 = 0 (see
(18.102)). A value of K = 120 (see (18.103)) has been used

18.3.5 A Nonlinear Model

With the approximation 2|k|μuτ � 1, (18.98) may be written in the approximate
form

Ñ = 2μ|k|(s̃t + ikūs̃) ,

τ̃ ≈ − (uss̃+ uN Ñ)
uτ

,

ũ ≈ (uss̃+ uN Ñ)
2|k|μuτ

, (18.109)

and Ñ and τ̃ can be explicitly inverted to obtain

N − N̄ = −2μ
π
−
∫ ∞

−∞

∂a

∂ξ

dξ
ξ − x , (18.110)

where the barred integral indicates that the principal value is taken, a is given
by

∂s

∂t
+ ū

∂s

∂x
= a , (18.111)

and

τ − τ̄ = − (uss+ uNN)
uτ

. (18.112)

The principal restriction used to obtain these formulae is that s	 k−1 (and
s	 h̄), while the assumption that perturbations in τ , s and N are small is only
used in linearising u(s, τ,N). However, the fact that the resulting perturbation
in u is approximately zero suggests that the restriction to small perturbations is
not essential. This suggests that the formulae (18.110) and (18.112) can be used
in the Exner model, but retaining the full nonlinear prescription for q(s, τ,N);
in this way we obtain a nonlinear evolution equation for s.
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It is appealing to seek the weakly nonlinear form of this by expanding q for
small s out to quadratic terms in s, just as we did for the dune model. We retain
only linear terms in τ − τ̄ and N − N̄ ; the result of this is

∂s

∂t
+
(
qs −

qτus

uτ

)
∂s

∂x
+
∂

∂x

[
1
2qsss

2 − 2μ(qNuτ − qτuN )
uτ

H(ax)
]

= 0 , (18.113)

where H(g) is the Hilbert transform

H(g) =
1
π
−
∫ ∞

−∞

g(ξ) dξ
ξ − x (18.114)

(whose Fourier transform Ĥ(g) = −πĝ sgnk), and a is given by (18.111).
Define the parameters

f = ū+
qτus

uτ
− qs ,

G = 2μ(uτqN − uNqτ )/uτ . (18.115)

With 2|k|μuτ � 1, then (18.102) implies

Δ1 ≈ 2μ|k|uτf , Δ2 ≈ |k|uτG . (18.116)

We define
Z = x− ūt ; (18.117)

then in the Z frame moving with the interfacial velocity, a = ∂s/∂t, and the
equation (18.113) for s can be written in the form

∂s

∂t
− f ∂s

∂Z
+
∂

∂Z

[
1
2qsss

2 −GH
(
∂2s

∂Z∂t

)]
= 0 , (18.118)

and this is our candidate canonical nonlinear evolution equation for drumlins
(or more properly, their two-dimensional version – Rogen moraine).

Finally, it is convenient to write the model in non-dimensional form. We use
the length and time scales suggested by the stability results, namely

l =
(2μAN̄)1/2

r
, [t] =

(
2μ
AN̄

)1/2

, (18.119)

and thus the velocity scale is

[u] =
l

[t]
=
AN̄

r
. (18.120)

The scale for s is taken as s̄. Following [13], we find

f = [u]v(X,Y ) , G = l2γ(X,Y ) , (18.121)
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where the O(1) functions v and γ are defined by

v =
eY [Y − F (X)]

Y [(Y − 1)U +XU ′]
, γ =

L(X)eY

Y 2[(Y − 1)U +XU ′]
, (18.122)

the subsidiary functions being

U = 1− e−X ,

W = 1− (1 +X)e−X ,

L = UW +X(U ′W − UW ′) . (18.123)

Recall that, from (18.103), X = αrs̄τ̄/N̄2, Y = ατ̄/N̄ . In terms of the scaled
variables, the dimensionless version of (18.118) is

∂s

∂t
− v ∂s

∂Z
+
∂

∂Z

[
1
2βs

2 − γH
(
∂2s

∂Z∂t

)]
= 0 , (18.124)

where the parameter β is defined by

β =
s̄qss

[u]
. (18.125)

Using the expression (18.86) for q we find

qss =
q

s2

[(
XW ′

W

)2

−
(
XW ′

W

)
+X

(
XW ′

W

)′]
, (18.126)

and thus

β =
W eY

XY

[(
XW ′

W

)2

−
(
XW ′

W

)
+X

(
XW ′

W

)′]
, (18.127)

and is indeed O(1). A Fourier transform of the linearisation of (18.124) gives a
growth rate of

σ =
−ikv + k2|k|vγ

1 + k4γ2 , (18.128)

which, since v ∝ Δ1 and γ ∝ Δ2, reproduces (18.102). Instability occurs if
vγ > 0; and with γ > 0, this is essentially v > 0: the resulting waveforms
move forwards relative to the ice flow. (18.124) closely resembles the integrable
Benjamin–Ono equation st + ssx = H(sxx) [24].

18.4 Discussion

The canonical equation for both dune and drumlin evolution follows from the
Exner equation

∂s

∂t
+
∂q

∂x
= 0 , (18.129)
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together with a suitable prescription for q. In the case of fluvial dunes, q = q(τ),
and the basal shear stress depends on the mean flow speed u and the bed eleva-
tion s. When s is small, the stress can be calculated by linearisation of a suitable
turbulent flow model over a flat bed. When the turbulent Reynolds number is
reasonably large (which is typically the case), then an explicit asymptotic ap-
proximation for τ can be determined, in the form of a Fourier convolution of
a kernel function with the bed slope. In this way we derive (18.54), which is a
nonlinear model for bed evolution. The essence of this model is captured by the
reduced form (18.65), or (18.66).

Ideally, one wants an extension of the model to three dimensions, although
fluvial dunes are essentially two-dimensional features. Such a generalisation is
the Exner equation

∂s

∂t
+ ∇.q = 0 , (18.130)

together with q = q(τ ), where the basal stress vector must now be computed
from the Orr–Sommerfeld equation. It seems this should be relatively straight-
forward to do, simply involving a double Fourier transform.

Fig. 18.5. Separation in the lee of a dune

A more important extension is to allow for boundary layer separation in the
lee of dunes. Within the present framework, this could be done by supposing, for
example, that the recirculating wake is a region of constant pressure or vorticity
(see Fig. 18.5). The analysis is the same, but now s is unknown in the wake,
whereas the pressure (or vorticity) is prescribed there. Presumably we can write
the pressure as a linear functional of the bed, so that we would gain an extra
equation to solve for s in the wake. It remains to be seen whether this strategy
is feasible.

For drumlins, the extension to three dimensions is more essential, but seems
equally straightforward. In addition, inclusion of a finite depth is straightforward,
though perhaps messy. There is also a nice analogy with the formation of wakes,
because the generation of bedform is likely to cause cavities to occur, and we
can imagine that sediment deposition in such cavities may be one way in which
layered stratigraphy is formed in drumlins, through successive fluvial deposition
events. Cavity formation also complicates the prescription of the shear stress,
although in this case the problem becomes one of Hilbert type, and it is possible
to solve this [11].
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Apart from such developments in the mathematical model, the equations
(18.66):

∂s

∂t
+

∂

∂X

[
1
2s

2 +
∫ ∞

0
ξ−1/3 ∂s

∂X
(X − ξ, t) dξ − ∂s

∂X

]
= 0 , (18.131)

and (18.124):
∂s

∂t
− ∂s

∂Z
+
∂

∂Z

[
1
2s

2 −H
(
∂2s

∂Z∂t

)]
= 0 (18.132)

(where we can put β = γ = v = 1 by appropriate rescaling of s, Z and t), are in-
teresting nonlinear evolution equations, whose study in the context of dynamical
systems is of interest in its own right. In particular (18.131) bears comparison
with the Kuramoto–Sivashinsky equation, while (18.132) similarly resembles the
Benjamin–Ono equation. While we may expect the dune equation (18.131) to
provide a coherent model with the stabilising diffusion term, it is less clear that
the drumlin model will be. In this context, it may be worth noting that there is
a further stabilising term which could be included, since till will also creep down
pressure gradients.

Notes and References

Dunes. Principles of sediment transport are described in the book by Allen [1].
Theories of dune formation are given by Kennedy [19], Reynolds [26], Engelund
[8] and Smith [31]. A review of this and other work is by Engelund and Fredsøe
[9]. Subsequently, theoretical development has been hindered by the necessity of
solving the Orr–Sommerfeld equation numerically, and this has precluded the
development of nonlinear theories other than through direct numerical compu-
tation.

A description of desert dunes can be found in [14] and in Chap. 17. Recently,
theoretical models similar to the nonlinear models proposed here have been
advanced by Herrmann and co-workers to explain the form of barchan dunes [22];
they use an integral correction for the bed shear stress proposed by Jackson and
Hunt [18]. The correction is similar to that used in (18.131), but the convolution
kernel is of Cauchy type. The mechanics of the resulting instability is very similar
though.

River flow. The hydraulics and processes of river flow are described in the
books by Chow [4], Richards [28] and Knighton [21]. An account which is aimed
at applied mathematicians is in the book by Fowler [12], and there are also the
classic accounts of Stoker [32] and Whitham [36].

Drumlins. The literature on drumlins is substantial; their formation has been
debated for well over one hundred years. However, the debate has been largely ge-
ological, and the dynamical concept of an instability is virtually absent. Amongst
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early authors, the papers of Davis [5], Upham [35] and Tarr [34] may be men-
tioned, as well the seminal paper of Kinahan and Close [20] – the last not easily
accessible, but a copy may be obtained from The Royal Irish Academy, Dawson
Street, Dublin. Useful early reviews are by Charlesworth [3] and Gravenor [15],
and later developments can be followed in [7] and [33]. The erosional and flood
theories are expounded by Boulton [2] and Shaw [29], for example. The insta-
bility theory derives from Hindmarsh [16]. A voluminous bibliography is that of
Everett [10].
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16145 Genova, IT

2 Dipartimento di Ingegneria Idraulica, Marittima e Geotecnica, Università di
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19.1 Introduction

The aim of the present review is to expose the average reader (assumed to have
little previous knowledge of morphodynamics) to an overview of some aspects of
estuarine morphodynamics tackled from a mechanical perspective. It will appear
that the tidal analogue of several phenomena which are extensively discussed
and fairly well understood in the fluvial literature, still await to be fully ex-
plored. When writing reviews of this kind, authors are usually confronted with a
dilemma: either treating superficially a large number of aspects of the problem
or discussing fewer topics in greater depth. In the present case we have chosen
the former alternative, which seems appropriate to the non specialistic audience
assumed above, though space limitation will not allow a systematic treatment of
the subject. The reader interested in achieving a more advanced understanding
is referred to the extensive literature quoted in the paper.

Part One: Morphology

19.2 Large-Scale Tidal Patterns

We define as large-scale tidal patterns those coastal features which are character-
ized by spatial scales of the order of the distance reached by the hydrodynamic
and morphodynamic effects of tide propagation. Two main large scale tidal pat-
terns will be discussed below, namely estuaries and tidal landforms, often called
wetlands.

19.2.1 Estuaries

Definition

The definition of estuaries has been the subject of considerable debate in the
geomorphological community [77].

N.J. Balmforth and A. Provenzale (Eds.): LNP 582, pp. 455–499, 2001.
c© Springer-Verlag Berlin Heidelberg 2001
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Fig. 19.1. Estuary of the Heuningnes River (Western coast of South Africa)

A sufficiently comprehensive definition which seems generally acceptable has
been proposed by Perillo [77]: An estuary is a semienclosed coastal body of water
that extends to the effective limit of tidal influence, within which sea water en-
tering from one or more free connections with the open sea, or any other saline
coastal body of water, is significantly diluted with fresh water derived from land
drainage and can sustain euryhaline biological species for either part or the whole
of their life cycle.

Genetic Classification of Estuaries

Estuaries have been classified according to their geological origin by Pritchard
[80,81,82], who identifies four classes: drowned river valleys, bar-built estuaries,
fjords and tectonic estuaries.

• Drowned river valleys
Such estuaries originated from the flooding of Pleistocene–Holocene river

valleys following the sea level rise by about 100–130 m during the Flandrian
transgression (roughly 15000–18000 years ago). Such estuaries are widespread
throughout the world and may be found along coastlines with relatively wide
coastal plains (the type called coastal plain estuaries by Pritchard, [80], of which
a notable example is provided by Chesapeake Bay along the eastern coast of
U.S.A., Fig. 19.10) as well as along mountain and cliffy coasts (the type called
rias [84], of which notable examples are found along the northern coast of the
Iberian peninsula).

These estuaries are typically characterized by a funnel shape, depths of the
order of 10 m, increasing towards the mouth, V-shaped cross sections with aspect
ratios ranging from 10–100 in rias to thousands in coastal plain estuaries (see
sketch in Fig. 19.2).
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Fig. 19.2. Sketch of a drowned river valley estuary

• Fjords
Fjords have been formed by the drowning of river valleys at high latitudes

covered by glacial troughs. They are typically extremely deep (several hundred
meters), U-shaped and bounded by steep rock walls. A shallow sill (as shallow as
4 m at some locations along the Norwegian coast, up to 150 m along the coast of
British Columbia) is typically present at the mouth of the estuary and constrains
the tidal exchange between the estuary and the sea (Fig. 19.3). Sediments are

Fig. 19.3. Sketch of a fjord
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typically coarse at the head of the estuary, while the absence of significant water
circulation leads to deposition of the fine suspended fraction along the muddy
bottom. Examples of this type of estuaries are found in high latitude mountain-
ous regions, like Alaska, Norway and New Zealand (Fig. 19.4).

Fig. 19.4. Aereal picture of a fjord in Alaska

• Bar-built estuaries
The mouth of rivers debouching into seas characterized by small tidal range or

undergoing rapid sedimentation with the formation of deltas is often surrounded
by sand barriers, consisting of chains broken by inlets; a bar-built estuary, in
the form of a bay or a lagoon aligned parallel to the coastline, then forms (see
sketch in Fig. 19.5).

Fig. 19.5. Sketch of a bar-built estuary
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Typically, such offshore estuaries are shallow, except close to the inlets kept
deeper by the erosive action of the tidal currents. They are strongly influenced
by littoral transport and wind action which plays a stirring role comparable with
that associated with tidal motion. The embayment is most commonly bounded
by tidal flats and salt marshes, dissected by highly sinuous tidal creeks. An im-
portant example of bar-built estuary is the lagoon of Venice (Fig. 19.6).

Fig. 19.6. The Lido and Malamocco inlets of the Venice Lagoon

• Tectonically formed estuaries
In this category Pritchard [80] includes all the estuaries which cannot be

clearly recognized as belonging to any of the other three classes, and in particular
‘... coastal indentures formed by faulting or by local subsidence, and having an
excess supply of freshwater inflow....San Francisco Bay is an example of this
group of estuaries.’

Tidal Range, Estuarine Morphology and Mixing

While the genetic classification discussed above helps us tracing the origin of
more recent estuarine processes, it does not allow us to associate unique mor-
phological characteristics to each class of estuaries.

Hayes [45] and Davies [23] pointed out that a major controlling factor of
estuarine morphology is tidal range. The intensity of tidally driven transport
processes is indeed determined by the intensity of tidal currents which are in-
creasing functions of the tidal range. The latter authors have then proposed a
classification whereby estuaries are grouped according to their tidal range in
three classes.
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• Micro-tidal estuaries
When the tidal range does not exceed about 2 m the estuary is convention-

ally described as microtidal. Hayes [45] has pointed out the existence of a strong
correlation between the occurrence of such tidal range and the observed forma-
tion of barrier islands and sand spits, which are associated with the formation
of bar-built estuaries, as pointed out in Sect. 19.2.1. The latter features result
from the dominant landward effect of freshwater which leads to the formation of
a delta at the mouth of the estuary, along with the dominant seaward effect of
wind action which leads to the delta being enclosed by sand structures broken by
inlets (Fig. 19.5). Microtidal estuaries are generally wide (typical width 10 Km)
and shallow (typical depth 1 m).

• Mesotidal estuaries
When the tidal range falls between 2–4 m, the estuary is conventionally de-

scribed as mesotidal. These are the most common estuaries whose morphology
is characterized by the following main features:

• the upstream reaches are usually strongly meandering;
• the estuary mouth displays the formation of a composite delta (Fig. 19.7),

which has a seaward side (called ebb-tide delta) and a landward side (called
flood-tide delta) [13];

• the estuary is bordered by tidal flats and salt marshes.

Fig. 19.7. Sketch of a mesotidal estuary with ebb-tide and flood-tide deltas formed at
the mouth

• Macrotidal estuaries
When the tidal range exceeds about 4 m, then the estuary is conventionally

described as macrotidal. The morphology of such estuaries is determined by
the dominant effect of strong tidal currents, which may be felt at distances of
hundreds of kilometers from the mouth. In this case, the mesotidal deltas are
replaced by a pattern of so called ‘elongated tidal bars’ (see Sect. 19.3.3) and the
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alignment of the estuary is weakly meandering and strongly tapered displaying
a typical funnel shape (Figs. 19.8, 19.9).

Fig. 19.8. Typical funnel shape of several macrotidal estuaries

The classification of estuaries based on tidal range is probably the most
significant. However, the geomorphological definition, which relies on the actual
physical value of tidal range, should more conveniently be formulated in terms of
the ratio between the volume of saline water exchanged between the sea and the
estuary in half a tidal cycle (the so called tidal prism) and the volume of fresh
water discharged by the river into the estuary in the same period. ‘Macro-’, ‘me-
so-’ and ‘micro-tidal’ estuaries then correspond to the latter ratio being ‘much
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larger than’, ‘of order’ and ‘much smaller than’ one, respectively. This modified
criterion also allows to classify estuaries according to the degree of stratification
of the flowing stream.

Fig. 19.9. Macrotidal estuary of the Schelde River, picture taken from a satellite

In fact, another major physical mechanism active in estuarine environments
is the mixing between fresh water and salt water induced by the interaction
between the river flow and the tidal currents and by the secondary circulation
driven by flow stratification. The latter also affects the nature and intensity of
sediment transport. In particular, river flow tends to form a layer of fresh water
flowing seaward, clearly separated from a layer of salt water adjacent to the
bottom intruding into the main stream. Tidal currents tend to break the interface
between the above two layers producing an intense turbulent mixing through part
or all of the vertical column. The structure of the resulting circulation depends
on the balance between the latter two effects and varies considerably in different
estuaries: this led Stommel [108] to propose a classification of estuaries based
on the characteristics of the estuarine circulation. Essentially, Stommel identifies
two limiting cases and an intermediate one.
• The first limiting case: salt wedge estuaries.
This is the case when fresh water flow dominates, i.e. the estuary is microtidal.

The salt water forms a wedge intruding into the river and separated from the
upper layer of fresh water by a sharp interface, which would be horizontal in the
absence of friction. The effect of friction leads to a weak slope of the interface in
the seaward direction, which, for a stationary salt wedge, drives a weak landward
directed residual current of sea water. The mixing of salt water and fresh water
is basically localized at the interface of the salt wedge and is relatively weak.
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The position of the salt wedge is dependent on the river flow, the penetration of
the salt wedge inland increasing for lower discharge.

The flow field within the salt wedge is usually too weak to drive a signifi-
cant bedload transport but some ‘residual’ suspended load can indeed be carried
landward through the residual current described above. Nevertheless, the fresh
water flowing seaward above the salt wedge layer is actually the major source
of sediment transport, which may occur in the form of both bedload and sus-
pended load upstream to the tip of the salt wedge: downstream, the coarser bed
load fraction is left behind while the suspended fraction is carried by the fresh
water flow. As a result, typical morphological features of such estuaries are the
formation of a bar consisting of the coarser fraction at the tip of the salt wedge
layer [115] and the formation of a delta where the suspended load carried by
the river is subject to deposition depending also on the intensities of littoral
and tidal currents [119]. As noted by Dyer [31], unlike almost all other tidal
environments, grain size increases landward in such estuaries.

A major example of salt wedge estuary characterized by the formation of a
typical delta and of a strong deposit (which can reach values of the order of a
meter per week) at the tip of the salt wedge layer is the Mississippi.

• The second limiting case: well mixed estuaries.
This is the case when tidal flow dominates, i.e. the estuary is macrotidal.

Under such conditions tidal currents drive an intense vertical mixing such that
variations of salinity throughout the water column are quite small. Of course
significant longitudinal variations of salinity, which increases from the head to
the mouth of the estuary, are driven by the progressive effect of tidal mixing.

Lateral variations of salinity are also induced when the width to depth ra-
tio of the channel is sufficiently large for Coriolis force to give rise to a lateral
slope of the free surface able to drive a significant secondary circulation: under
these conditions salt and fresh water are found to flow in opposite directions in
distinct portions of the channel adjacent to the bank located on their right side
(in the northern hemisphere). This secondary circulation also drives a distinct
transport of upland sediment by the fresh water flow and of marine sediments
by the salt water flow.

• The intermediate case: partially mixed estuaries.
An intermediate behaviour between the two extreme cases treated above is

typical of (mesotidal) estuaries characterized by tidal currents able to induce ver-
tical mixing such to give rise to a distinct vertical variation of salinity, increasing
from the free surface to the bottom. Two layers of flow can still be distinctly
recognized, with the upper layer flowing seaward and the lower layer flowing
landward, though no sharp interface exists. As the ratio between the fresh wa-
ter discharge and the tidally driven discharge varies, the degree of stratification
experienced by the flowing stream may vary significantly. Seasonal variations of
the degree of stratification are also experienced by this type of estuary.
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Note that the net entrainment of salt water by the upper layer is such that
the flow discharge in this layer may be an order of magnitude larger than the
river discharge: hence, mixing further enhances the ability of tidal currents to
transport marine sediments both as bed load and as suspended load, a behaviour
in contrast with that of salt wedge estuaries, which are dominated by river
sediments.

In fact, a striking feature of partially mixed estuaries is the existence of a
peak in the spatial distribution of sediment concentration (the so called turbidity
maximum), roughly located where the salt water intrusion ceases. A classical
example of the occurrence of such a peak is the so called ‘Barking Mud Reaches’,
located a few miles from the mouth of the Thames estuary in Great Britain [52].

A further feature of this type of estuaries is the occurrence of a grain sorting
process whereby larger particles are found close to the mouth, while finer parti-
cles are progressively selected upstream [30]. In other words, grain size decreases
landward, in contrast with the observed behaviour of salt wedge estuaries.

Important examples of partially mixed estuaries are the Thames [52] and the
Chesapeake Bay (Fig. 19.10), in particular the James River extensively investi-
gated by Pritchard [80].

19.2.2 Wetlands

Tidal flats and salt marshes

The land bordering the incised portion of estuaries is periodically or intermit-
tently subject to inundation or exposition. The lateral portions of most estuaries
(typically tide-dominated estuaries and the inner portions of microtidal estuar-
ies and deltas) are then characterized by a sequence of fairly flat environments
whose morphology and sedimentology depends on the frequency of inundation-
exposition they experience.

Geomorphologists (see the reviews [6] and [69]) have proposed various clas-
sifications of such environments. A gross distinction, which is generally agreed,
may be made between tidal flats and salt marshes.

Tidal flats (Fig. 19.11) are those areas which belong to one of the following
classes:

• areas which are intermittently inundated as their elevation falls between mean
high water spring tides and mean high water neap tides;

• areas which are inundated by every tide as their elevation falls between mean
high water neap tides and mean low water neap tides;

• areas which are intermittently exposed as their elevation falls below mean low
water neap tides.

The latter three regions (respectively called higher, middle and lower tidal
flats) define what is called the intertidal region [58,117], bounded by the upper
supratidal and by the lower subtidal regions.

Salt marshes are ‘environments high in the intertidal zone where a generally
muddy substrate supports varied and normally dense stands of halophytic plants’
[5].
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Fig. 19.10. A picture of Chesapeake Bay taken from the space shuttle

Fig. 19.11. Partially submerged tidal flat
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Both the tidal flats and the vegetated areas occupied by salt marshes are
fed by intricate networks of tidal creeks. In salt marshes creeks are flooded at
each high tide, while the surface of the marsh itself is inundated only during the
highest spring tides (Fig. 19.12).

Fig. 19.12. The salt marshes of Saaftinge (Westerschelde, Netherlands) with the net-
work of tidal creeks

Sandy versus Muddy Tidal Flats

As pointed out by Amos [6], tidal flats contain sub-environments characterized
by distinct slopes, grain size range and floral–faunal diversity. From the analysis
of several tidal flats Amos suggests that they be distinguished into two groups,
depending on the value of the mean inorganic suspended sediment concentration:
sandy tidal flats, characterized by a fairly low value of concentration (say less
than 1 g/l) and muddy tidal flats, characterized by larger values of concentration
(say larger than 1 g/l).

In sandy tidal flats the higher, middle and lower tidal flats are, respectively,
muddy, mixed sandy- muddy and sandy (Fig. 19.13). Channels are largely com-
posed of sand and exhibit the presence of meso- and small-scale bed patterns.
On the contrary, in muddy tidal flats, sandy regions are lacking while muddy
and mixed regions dominate. Furthermore, biological diversity is much lower.

Examples of muddy tidal flats are found along nearly 50% of the coast of
China [116] and at the mouths of the Orinoco and La Plata rivers. In all these
cases mudflats are fed by huge amounts of suspended silt and clay discharged
by the rivers into the ocean.

Examples of sandy tidal flats are found along the Dutch [79,109] and English
[35] coasts of the North Sea. Sandy tidal flats are also typically found in the
Venice Lagoon.
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Fig. 19.13. Sketch of a sandy tidal flat

Elements of Salt Marsh Morphology

As pointed out by Pethick [78] ‘the typical mature marsh profile is convexo–
concave; the convex seaward margin giving way to a flat central section and a
steeper concave landward edge’.

Creeks have typically a funnel shape with exponentially decreasing channel
width and a meandering planimetric pattern. Typically they deepen in time [38]
and migrate, at a decreasing rate the more densely vegetated is the neighbouring
area [118]. A systematic analysis of the geometry of tidal creeks has been recently
reported by Marani et al. [70]. Note that, in spite of the apparent similarity
between tidal and fluvial networks, the oscillatory character of tidal flow and
the presence of tidal flats determines a distinct function of tidal creeks which,
rather than playing the role of drainage channels, behave essentially as small
tidal estuaries [72,78]. The tidal control on creek morphology is also suggested
by Adams [1], who points out that density and tortuosity of the creek network
depends on the tidal range as well as on sediment size, with moderate tidal
ranges and finer sediments being associated with more complex patterns.

The ecology of salt marshes, which also plays an important role in marsh
dynamics, is outside the scope of the present review (see [1]).

19.3 Mesoscale Patterns

19.3.1 Bars

We define as mesoscale estuarine patterns those patterns which scale with chan-
nel width. In the fluvial literature such patterns are called bars and have been the
subject of extensive investigations stem from the fundamental works of Leopold
and Wolman [67] and Kinoshita [57]. Since the latter contributions, it has been
recognized that three distinct channel morphologies, namely straight, meander-
ing and braiding, can be distinguished. Straight natural rivers, the exception
rather than the rule, do not exhibit the presence of mesoscale forms. Meander-
ing rivers are typically characterized by sediment deposition at the inner bends
(point bars) and scour (pools) at the outer bends, arranged in fairly regular se-
quences. In a braided river a highly dynamic multichannel pattern is formed
with bars and pools forming a multiple row array, continuously rearranged in
response to flood events.
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The development of a mechanistic viewpoint in the analysis of river morpho-
dynamics in the last three decades has led to recognizing bars as the basic mor-
phodynamic constituents of rivers, which control their altimetric and planimetric
evolution. Extensive reviews of the mechanics of bars, in meandering as well as
braiding rivers, have been published in the recent literature [96,98,101,114] to
which we refer the interested reader. Here, it suffices to point out that, from
a mechanistic viewpoint, bars can be distinguished into free and forced [98], a
classification based on the mechanism underlying their formation. Let us clarify
this point.

19.3.2 Free Bars

Free bars arise spontaneously as a result of a bottom instability: they are mi-
grating bedforms observed both in relatively narrow channels, in the form of
alternate sequences of riffles and pools with diagonal fronts (alternate bars) and
in wide channels where they form multiple row sequences (multiple row bars).
The observed wavelength of such bedforms is of the order of six–ten times the
channel width and the migration speed ranges about metres/day. Alternate bars
have also been observed in estuaries by Barwis [9] for tidal creeks in South
Carolina, and by Dalrymple et al. [20,21] in the Cobequid Bay-Salmon River
estuary. As pointed out by Dalrymple and Rhodes [19] a spectrum of bar shapes
is found depending on channel sinuosity. No information is reported about the
possible migrating character of such forms. The theory of Seminara and Tubino
[99,100], which will be outlined in Sect. 19.6, suggests that, due to the oscilla-
tory character of the basic tidal flow, in the absence of residual effects, estuarine
free bars are non migrating features. However, Dalrymple et al. [20,21] report
that alternate bars are asymmetric in the direction of the local net transport, an
observation which suggests the possibility that bars may exhibit a weak migra-
tion speed. The wavelength of estuarine alternate bars measured in the works
quoted above have been plotted versus channel width by Dalrymple and Rhodes
[19] (Fig. 19.14). In spite of the oscillatory character of the basic state and of
the dominant suspended load prevailing in tidal environments, the dependence
of wavelength on channel width seems to conform to the relationship valid for
fluvial alternate bars under bedload dominated conditions. Little information is
available about the shape of estuarine alternate bars.

Fewer observations of multiple row bars are available. Zaitlin [120] and Dal-
rymple et al. [20] describe multiple braid bars in the Cobequid Bay-Salmon River
estuary. The shape of such bars appears to be fairly elongated (with lengths and
widths ranging 150–1500 m and 50–200 m respectively) and asymmetric, with
low bar amplitude (0.3–1.5 m) and small slopes of the lee face (< 5◦ − 10◦).

No laboratory observations of estuarine free (either alternate or multiple
braid) bars are known to the present authors. An extensive research appears to
be needed in this area.
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Fig. 19.14. The wavelength of estuarine alternate bars observed by Barwis [9] in tidal
creeks of South Carolina and by Zaitlin [120] in the Salmon River estuary, Bay of Fundy,
is plotted versus channel width (from [19]). Note that data concerning both free bars
in straight or weakly sinuous channels and forced (point) bars in sinuous channels are
included

19.3.3 Forced Bars

A second class of bars is associated with forcing effects acting on the erodible
channel bottom.

The Forcing Effect of Curvature: Point Bars and Tidal Meanders

An important forcing effect is curvature of channel axis, which leads to the
establishment of a secondary flow able to let sediment transport deviate from
the longitudinal direction. As a result, sediments are found to accumulate in the
inner bends and be eroded from the outer bends, leading to the classical point
bar-pool pattern of meandering channels. Such pattern is self-sustaining as bank
erodibility leads to a progressive shifting of the outer bend with the eroded
material depositing along the inner banks, hence reinforcing the meandering
process. Such mechanism, which has been widely investigated in the fluvial case
(see [50]), has recently been extended to the tidal case [104,106] and will be
discussed in Sect. 19.5.

Point bars have been observed in tidal environments by Barwis [9] and Zaitlin
[120] (see also [20,21]). Note that, unlike the fluvial case where the unidirectional
character of the flow leads to an asymmetric configuration of the point bar, which
lags ahead of channel curvature, in the tidal case, the flow being oscillatory, the
point bar structure has distinct flood and ebb components which may lead to a
symmetric or weakly asymmetric pattern depending on the degree of asymmetry
of the basic flow field.

The shape of meanders is the result of the planimetric development of the
channel. In the fluvial case the latter arises from a combination of outer bank
erosion and inner bend deposition, which progressively leads to lateral shifting
of the channel axis and meander migration, keeping the channel width essen-
tially constant. Kinoshita [57] has suggested that the shape of fully developed
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fluvial meanders can be described by adding third harmonics to the so called
sine generated curve of Langbein and Leopold [61], such that one may write:

c(s) = c0(cosλs+ cF cos 3λs+ cS sin 3λs) (19.1)

with cF and cS fattening and skewing coefficients respectively. Figure 19.15
clarifies the meaning of such coefficients.
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Fig. 19.15. The role of fattening and skewing coefficients in determining the shape
of fully developed fluvial meanders according to Kinoshita’s curve (i.e. (19.1)). The
various curves have been obtained by setting c0 = 0.12 and (a) cF = cS = 0; (b)
cF = −0.4, cS = 0; (c) cF = 0, cS = 0.4; (d) cF = 0, cS = −0.4; (e)
cF = −0.4, cS = 0.4; (f) cF = −0.4, cS = −0.4

In fact, (19.1) involves three contributions, a fundamental component (the
sine generated curve) which generates symmetric shapes, a ‘fattening’ contribu-
tion which tends to widen the meander lobes while keeping the shape symmetric
and a ‘skewing’ contribution which distorts the meander shape with the skewing
being directed either downstream or upstream, depending on the coefficient cS
being positive or negative.

Meandering is also an ubiquitous feature of tidal environments (Fig. 19.16),
though a systematic investigation of the shape of tidal meanders has only re-
cently been performed [70]. An interesting result of the latter analysis is the ob-
servation that, unlike fluvial meanders, tidal meanders do not exhibit a distinct
preferential direction of skewing of meander shape. Moreover, the mathematical
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representation of the shape of tidal meanders can be given a form similar to
(19.1) with the inclusion of second harmonics.

Fig. 19.16. Meandering is an ubiquitous feature of tidal environments: the figure rep-
resents a portion of the tidal channel network extracted from the Venice Lagoon (from
[37])

Elongated Tidal Bars

Near the mouth of macrotidal (and sometimes mesotidal) estuaries a peculiar
type of bar has been observed by various authors: the main feature of such,
so called elongated tidal bars, is their large size. According to Dalrymple and
Rhodes [19], typical bar lengths are of the order of 1–15 km with corresponding
widths ranging between 0.2–4 Km and amplitudes which can reach 20 m. Bars
are inclined at a small angle relative to the dominant tidal flow and are usually
asymmetric with the steeper side in the direction of the dominant sediment
transport.

In smoothly converging estuaries bars are typically organized in chains dis-
sected by diagonal channels (swatchways, [87]) and separating ebb- from flood-
dominant channels. This is the case e.g. of Cobequid Bay, Bay of Fundy, sketched
in Fig. 19.17, as well as of Thames estuary [87] and Gironde estuary [110]. In
other cases, where the estuary mouth exhibits a local constriction with a sub-
merged sill, the bar pattern is more complex and apparently less organized with
interconnected flood- and ebb-channels separated by zig-zag bars. This is the
case e.g. of Moreton Bay [46] and of Chesapeake Bay [68].
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Fig. 19.17. Sketch depicting the pattern of elongate tidal bars at Cobequid Bay, Bay of
Fundy. Note that the upper channel (to the north) as well as the western portion of the
central channel are flood-dominant, while the south channel and the eastern portion
of the central channel are ebb-dominant. Also note the presence of several swatchways
(reproduced from [20])

Delta-like Patterns

A further forcing effect arises from abrupt changes of geometry which give rise to
delta-like patterns. Information on the main characteristics exhibited by delta-
like patterns can be found in [53].

19.4 Small-Scale Patterns

The word small-scale refers to bedforms which scale on flow depth: the most
important of such bedforms are called dunes by analogy with the correspond-
ing bedforms observed in the fluvial environment, though various alternative
names have been proposed in the geomorphological literature (e.g. sandwaves or
megaripples). A systematic description of the geomorphology of estuarine dunes
is given in [19].

Dunes have been observed in several estuaries, e.g. at the mouth of tide dom-
inated estuaries where they form on elongated tidal bars, in the tidal inlets and
tidal channels of coastal plain wave-dominated estuaries, in the lower portions
of tidal flats and sandy tidal channels of lagoons.

Geomorphic classification of dunes [8] have been based on three main criteria,
namely size (small, medium, large and very large plan form shape, 2D and 3D)
and possible presence of smaller superimposed dunes (simple versus compound
dunes). A few examples of estuarine dune patterns are represented in Fig. 19.18,
reproduced from [19].

As mentioned above, the spatial scale of dunes is flow depth H. Allen [2],
reports two plots where dune wavelength L and dune amplitude A are corre-
lated with flow depth: data refer to either fluvial or tidal dunes and, in spite of
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Fig. 19.18. A few examples of dune patterns observed in tidal environments. (a) Small,
simple nearly 2D dunes observed in the Gironde estuary (France) superimposed over
elongate tidal bars [4]. (b) Small 3D simple dunes observed in the ebb-tidal delta of
North Inlet, South Carolina [9]. (c) 2D oblique medium simple dunes superimposed
over large 2D compound dunes formed over elongate tidal bars observed in Coquebid
Bay, Bay of Fundy [20]

considerable scatter, they confirm the simple observation that large dunes are
observed only in subtidal channels and tidal inlets while small-medium dunes
form on intertidal flats. The scatter of data in such plots suggests that the ra-
tios A/H and L/H do not keep constant. In fact, theoretical investigations on
the mechanism of dune formation (see Sect. 19.6) and laboratory observations
[44,85] of fully developed dunes in steady currents suggest that the latter ratios
depend on the excess Shields stress, i.e. a dimensionless form of the excess aver-
aged stress acting on the cohesionless bottom, the word ‘excess’ referring to the
threshold of sediment motion.

The role played by such parameter is confirmed by the observation that, as
the flow speed increases, for given values of other flow parameters, dune ampli-
tude increases up to a maximum and then decreases till dunes disappear being
replaced by a flat bed or antidunes. Field observations [90] confirm that dune
amplitude may decrease proceeding from the estuary mouth landward despite
an increase in water depth due to a decrease in water speed.

Less clear is the observed dependence of dune amplitude and dune wavelength
on grain size in spite of several laboratory investigations (see references in [19]).

Part Two: Mechanics
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19.5 Morphodynamic Equilibrium

The issue of whether morphodynamic patterns may achieve equilibrium condi-
tions, at least on time scales of decades is, needless to say, of major importance
for all aspects related to the management of tidal environments. In spite of its
relevance, the problem has only been partially investigated and still awaits to
be fully explored. Below, we outline some fairly recent results concerning the
equilibrium of tidal channels and tidal inlets. In describing theoretical devel-
opments, below we will often refer to equations introduced in the companion
paper (Chap. 16). Furthermore note that hereafter a star apex will denote a
dimensional quantity.

19.5.1 Equilibrium of Tidal Channels

Equilibrium Profile of Straight Convergent Tidal Channels

Let us examine the issue of the possible existence of a long term longitudinal
equilibrium or quasi-equilibrium profile in estuaries and tidal channels. We con-
sider the case of tide-dominated well-mixed estuaries. A mechanistic analysis of
this problem can be performed employing a one-dimensional model. A glance at
the one dimensional version of the evolution equation of the bed interface (16.7)
immediately suggests that, in the absence of lateral exchange of sediments be-
tween tidal channels and adjacent tidal flats, in order to achieve equilibrium in
an averaged sense, i.e. such that the average bed elevation in a tidal cycle does
not vary, the net sediment flux in a tidal cycle must vanish. The reader should
note that the latter condition does not imply that the instantaneous sediment
flux must vanish. The field evidence analyzed by Friedrichs [40] does not contra-
dict the latter statement. Several factors contribute to determine the sediment
balance in a tidal channel, namely:

i) channel geometry, i.e. the degree of convergence of the channel induced both
by its funnel planimetric shape and by the sloping character of the bed and
the degree of channel sinuosity, which controls the hydrodynamics of tide
propagation along the channel;

ii) the harmonic content of the tidal oscillation acting at the inlet;
iii) the fluvial transport of sediments discharged by the river at the upstream

end of the estuary;
iv) the lateral exchange of sediments between the channel and the adjacent tidal

flats.

A sound theoretical approach can be constructed by isolating each of the
latter factors in the context of idealized models reproducing only part of the
actual process. This research line has been recently pursued theoretically by
Lanzoni and Seminara [62,63] and experimentally by Bolla Pittaluga et al. [12].
In the latter contributions only the factor i) was examined, considering a straight,
convergent channel close at one end and connected at the other end with a
tidal sea characterized by a tidal oscillation consisting of a single harmonic. The
possible presence of tidal flats was ignored.
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Theory

Under the latter conditions, the mathematical problem reduces to solving the
evolution equation of the bed interface (16.7), starting from some initial bottom
profile. This requires to evaluate the net flux of sediments at each instant and
at each cross section. The latter problem is clearly coupled to the hydrodynam-
ical problem, i.e (16.7) must be coupled to the one-dimensional continuity and
momentum equations of the fluid phase. Let us then consider a tidal channel
of length L∗

e and average flow depth at the channel inlet D∗
0 . We denote by B∗

the effective width of a rectangular cross section equivalent to the actual cross
section of the channel and assume:

B∗ = B∗
0 exp

(
− x

∗

L∗
b

)
, (19.2)

having denoted by L∗
b the so called convergence length and by x∗ a longitudinal

coordinate. Denoting by t∗, D∗, H∗, U∗ and C time, flow depth, free surface
elevation, cross-sectionally averaged flow speed and cross-sectionally averaged
conductance respectively, the governing equations in dimensionless form read:

1
ε
D,t + F (UD),x −KUD = 0 , (19.3)

SU,t + εSFUU,x +
1
ε
H,x +RU |U |C2D

= 0 , (19.4)

In (19.3)–(19.4) the following dimensionless quantities have been introduced:

t = ω∗t∗ , x =
x∗

L∗
0
, (D,H) =

(D∗, H∗)
D∗

0
, U =

U∗

U∗
0
, C =

C

C0
,

(19.5)
and the following scales have been employed:
L∗

0: longitudinal spatial scale determined by the dominant dynamic balance;
D∗

0 : characteristic flow depth, say the flow depth at the channel inlet;
U∗

0 : characteristic flow speed, say the maximum flow speed at the channel inlet;
C0: characteristic flow conductance, say the mean flow conductance at the chan-
nel inlet;
ω∗: angular frequency of the tidal wave.

Moreover, the following dimensionless parameters arise in (19.3)–(19.4):

ε =
a∗
0

D∗
0
, F =

1
ε

U∗
0

ω∗L∗
0
, K =

1
ε

U∗
0

ω∗L∗
b

, (19.6)

S =
F 2

0

ε

ω∗L∗
0

U∗
0
, R =

F 2
0

ε

L∗
0

C2
0D

∗
0
, (19.7)

where F0 is a characteristic Froude number constructed with the characteristic
scales U∗

0 and D∗
0 , and a∗

0 is a characteristic amplitude of the tidal wave. The
parameter K is a dimensionless measure of the degree of channel convergence;
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the parameter R measures the ratio between friction and gravity while S mea-
sures the ratio between local inertia and gravity; finally F is a dimensionless
measure of the ratio between the contribution to mass balance associated with
oscillations of the free surface and the contribution due to spatial variations of
flow depth and flow speed. In order to close (16.7) we need to evaluate the cross
sectionally averaged sediment flux Q∗

s. The bedload component of Q∗
s is readily

obtained from (16.15). The suspended load component is obtained from the one
dimensional form of (16.20), namely:

Q∗
ss =

√
Δgd∗3

s Qss =
∫ b∗/2

−b∗/2
dx∗

2

∫ H∗

η∗

(
CU∗ + 〈c′u∗′〉

)
dx∗

3 . (19.8)

Equation (19.8) shows that, in order to evaluate Qss, one would strictly need
to evaluate the spatial and temporal distribution of the local concentration of
suspended sediment averaged over turbulence C. However a simple scaling argu-
ment [42,63] shows that, at the leading order of approximation in an expansion
in powers of suitable parameters, C can be simply evaluated using relationships
established for the case of transport in suspension in uniform turbulent free sur-
face flows, i.e. resorting to the classical Rouse [88] solution. In fact, let us write
the convection–diffusion equation (16.21) in dimensionless form for the case of
plane flows (i.e. V ∗ = V ∗

2 = 0). Setting (x∗, z∗) = (x∗
1, x

∗
3), (U∗,W ∗) = (V ∗

1 , V
∗
3 ),

employing the scaling (19.5) and introducing the further dimensionless quantities

z =
z∗

D∗
0
, W =

W ∗

W ∗
s

, DT =
D∗

T

u∗0D∗
0
, (19.9)

one finds:

δ1
∂C

∂t
+ δ2〈U〉

∂C
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+ δ3〈W 〉

∂C

∂z
− kZ0

∂C

∂z
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∂

∂z
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DT
∂C

∂z
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+ δ4

∂
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(19.10)
where:

δ1 =
ω∗D∗

0

u∗0
, δ2 =

U∗
0D

∗
0

u∗0L∗
0
, δ3 =

W ∗
s

u∗0
, δ4 =

D∗2
0

L∗2
0
, (19.11)

having denoted by k the von Karman constant, by Z0 (= W ∗
s /ku∗0) the so called

Rouse number, which controls the vertical distribution of concentration, and by
u∗0 a typical value of the friction velocity. Simple estimates immediately suggest
that the parameters Z0 and DT are O(1) quantities, while the parameters δ1 and
δ4 are definitely small: in fact, with ω∗, D∗

0 and u∗0 ranging about 1.4 ·10−4 s−1,
10 m and 5 cm/s respectively, one finds that δ1 ranges about 0.028. On the other
hand, with L∗

0 of the order of kilometers δ4 is of order 10−3. Finally, since the
vertical velocity associated with tide propagation may reach, at most, a fraction
of mm/s, the parameter δ3 is also at most of order 10−2. More delicate is the
role of the longitudinal advective term: in fact with U∗

0 ranging about 1 m/s
and with D∗

0/L
∗
0 of order 10−2 the parameter δ2 would range about 0.2. The

above arguments suggest that the solution for C can be expanded in powers
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of the small parameter δ2 possibly including the effects of vertical convection,
longitudinal turbulent diffusion and local variations of mean concentration once
suitable relationships are established among the sizes of the various small pa-
rameters appearing in (19.10). At the leading order of approximation (19.10)
reduces to the classical uniform balance between vertical depositing flux asso-
ciated with the settling speed and mean upward vertical flux associated with
turbulent diffusion. Lanzoni and Seminara [63] have restricted their analysis to
such approximation, which allowed them to calculate the mean total sediment
flux by means of classical relationships (e.g. [34,85]) established for uniform free
surface flows, evaluated in terms of the local instantaneous conditions determined
at each cross section by tide propagation. We refer the reader to the above au-
thors for details of the numerical procedure employed to solve continuity and
momentum equations. In this respect, we note that two difficulties arise in per-
forming the above calculations: firstly, the transient evolution of the bed profile
starting from arbitrary initial conditions may give rise to the formation of fairly
sharp fronts which must appropriately be dealt with in the numerical scheme;
secondly, at the landward end, the front reflects leading to the emergence of the
bottom with the consequent formation of a wetting and drying portion of the
computational domain. Both features were conveniently treated by Lanzoni and
Seminara [63]. In particular, their results suggest that a long term longitudinal
equilibrium or quasi-equilibrium profile in tide-dominated, well-mixed estuaries
may indeed be reached on time scales of the order of hundreds of years. More
precisely, given a tidal input at the mouth of the tidal channel, a width distri-
bution of the channel and the sediment size, it is shown that the longitudinal
bed profile of the channel evolves from an arbitrary initial condition towards
some equilibrium configuration characterized by an upward concavity increasing
as the channel convergence increases. The final equilibrium configuration of the
bed profile is characterized by a length determined by the emergence of the bed
in the inner portion of the channel. Furthermore, the depth at the inlet section is
uniquely determined by the final equilibrium state. Finally, the relationship be-
tween tidal prism and cross-sectional area in each section of the channel is found
to evolve from its initial arbitrary distribution towards a linear relationship of
Jarrett’s type (see Sect. 19.5.2).

The problem treated in [63] has also been analyzed theoretically by Schutte-
laars and de Swart [94,95]. The approach employed by the latter authors differs
from the approach of Lanzoni and Seminara [63] in several respects. Space does
not allow to discuss various assumptions employed by the above authors which
we feel to be questionable. The interested reader is referred to [63].

Experiments

Experiments were carried out in the laboratory of the Department of Environ-
mental Engineering of the University of Genova (Italy), on a large indoor plat-
form. A straight rectangular channel, closed at one end and connected to a basin
representing the sea at the other end, was built over the platform. The apparatus
for tidal wave generation, installed in the basin, consisted of a cylinder controlled
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by an oleodynamic mechanism driven by a control system which could generate
the desired law of motion. The flume was filled with crushed hazelnut shells
characterised by a density of 1480 Kg/m3 and median grain size d∗

50 = 0.31 mm.
Sediment were chosen light enough to be entrained into suspension throughout
most of the tidal cycle with the values of friction velocity typically generated
in the experiments. The scaling rules employed to achieve similarity between
the process reproduced in the laboratory and the actual natural process, are
discussed in [12].

Fig. 19.19. Comparison between the observed equilibrium profile in the experiments
of Bolla et al.[12] and the theoretical prediction of Lanzoni and Seminara [63]

Preliminary experiments, reported in the latter work were characterised by
an initial mean flow depth D∗

0 = 0.082 m constant throughout the channel,
dimensionless tidal amplitude at the mouth ε = 0.32 and tidal period T ∗ = 180.
Starting from a flat bottom configuration, sediments were found to be scoured
by the tidal motion in the seaward portion of the channel, driven landward and
deposited in the inner part of the channel. Comparison between the bed profiles
at 50 h and 100 h suggested that the latter pattern was quite close to equilibrium.
Note that the weak upward concavity of the final bottom profile is consistent
with field observations concerning both tidal estuaries and coastal lagoons and
with the theoretical findings of Lanzoni and Seminara [63].

A detailed comparison between observations and theoretical predictions has
been recently pursued [12] and is shown in Fig. 19.19. It appears that the time
scale of the evolutionary process observed in the experiments is samewhat faster
that the one predicted theoretically, a feature possibly related to the inability
of the model to reproduce accurately the actual bedforms present in nature (see
Sect. 19.6.2). However, the equilibrium profile eventually reached shows a very
good agreement with theoretical predictions.
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Equilibrium Cross Section: Why are Tidal Channels Convergent?

The theoretical and experimental results discussed above clearly show that the
flow depth of tide dominated estuaries decreases landward. This finding is di-
rectly relevant to the understanding of the spatial variations of width of tidal
channels. In fact, though the problem of equilibrium of channel cross section
in tidal environments has not been tackled yet, both the theoretical knowledge
established in the fluvial literature [49,75,76,113] and the empirical evidence
concerning the equilibrium cross section of rivers [66,93] give us a clue to pos-
tulate possible mechanisms for the observed development of a funnel shape in
tide dominated estuaries. The well known observations reported by Leopold and
Maddock [66] suggest that an empirical correlation can be established between
river width and a power of the mean annual discharge with exponent typically
ranging about 0.5 (0.45 according to Schumm, [93]). Later, Schumm [93] has ex-
tended the latter observations showing that the proportionality constant of the
latter relationship depends on the average percentage of silt and clay present in
the material composing banks and bed. High percentages of silt and clay lead
to cross sections which are comparatively narrower than those typical of quasi
cohesionless channels. An attempt to interpret the latter observations has been
proposed by Parker [76] and later corrected by Ikeda and Izumi [49]. The scheme
employed in these contributions ignores the effects of bank cohesion. Under these
conditions and assuming sediment to be dominantly transported as suspended
load, Parker’s analysis [76] suggests that equilibrium is achieved when a balance
is established between the sediment flux driven by turbulent diffusion from the
central region towards the banks and the flux of sediment transported in the
opposite direction as bedload driven by gravity acting on particles rolling down
the banks. Ikeda and Izumi’s [49] approach leads to the so called regime relation-
ships. In particular, a relationship is found between channel width and formative
water discharge Q∗, in the form:

B∗

d∗
s

=

(
Q∗√
gd∗

s

)m

, (19.12)

with d∗
s grain diameter taken to be uniform and m exponent dependent on the

dimensionless settling speed,

ŵ =
W ∗

s√
Δgd∗

s

. (19.13)

Though the laboratory observations reported by Ikeda and Izumi [49] appear
to support the above results, however the exponent m estimated from their
figure ranges about 0.9, a value significantly larger than those suggested by field
evidence.

The role of bank cohesion as a controlling factor of the equilibrium cross sec-
tion of rivers has been given some attention by Osman and Thorne [74], Thorne
and Osman [112] and by Darby and Thorne [22]. Essentially, the latter authors
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assume that channel widening is associated with bank collapse and examine var-
ious mechanisms which may induce the latter phenomenon. In particular, in the
case of plane slip failure, typical of steep banks, a classical result of Taylor [111]
and Spangler and Handy [107] suggests that a critical bank height H∗

c exists,
above which uniformly cohesive banks collapse along a plane slip surface. Such
critical height reads:

H∗
c =

4c(sin θ cosφ)
γ[1− cos (θ − φ)] , (19.14)

where c is bank cohesion, θ is the angle that the bank surface forms with the
horizontal, γ and φ are the specific weight and the friction angle of bank ma-
terial, respectively. Various other mechanisms may affect bank failure: collapse
may occur along curved surfaces (rotational slip failure), may be of cantilever
type in composite banks characterized by finer more resistant material in the
upper layers, may be influenced by drying and wetting cycles associated with
the propagation of floods [86] and by the possible occurrence of piping induced
by the presence of tree roots or small tunnels excavated by animals underground.
The process may indeed be complex enough to defeat theoretical attempts to
describe it in detail. However, the main implication of the ‘cohesive’ approach
suggests that channels would continue widening until the formative discharge
is carried by the stream with flow depths not exceeding the threshold value for
bank collapse. It would be worth exploring whether both the ‘cohesionless mech-
anism’ of Parker [76] and the ’cohesive mechanism’ of Osman and Thorne [74],
may play a role in the establishment of an equilibrium cross section of sandy
rivers through an intermediate mechanism, whereby the stability of the upper
and steeper part of banks is dominated by bank cohesion, while the bank foot is
somewhat ‘sheltered’ by the formation of submerged cohesionless deposits (often
observed in nature), a sort of shallower submerged banks driven by a mechanism
of the type proposed by Parker [76]. While the empirical regime relationships
proposed by Leopold and Maddock [66] for rivers have been extended to tidal
channels [72], to our knowledge no attempt at extending to the tidal environ-
ments the theoretical interpretations mentioned above have been proposed so
far.

Equilibrium Topography of Tidal Meanders

As mentioned in part one, meandering channels are a common feature of both
fluvial and estuarine environments.

The problem of meandering of alluvial rivers has been widely investigated
(see [50]). In particular we know that river meanders are typically characterized
by the formation of a sequence of so called point bars, with depositional regions
typically located at the inner bank close to bend apexes and pools located at the
outer bank. These alternate sequences of deposits and scours propagate typically
(though not invariably) downstream at a very slow rate, of the order of metres
per year, as a result of the planimetric evolution of the meandering pattern.

Since the pioneering contribution of Rozovskij [89], it has been known that
the point bar-pool pattern is maintained through the development of secondary
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flows which act on sediment particles. In constant curvature channels a cen-
trifugally driven secondary flow is established, which arises from the imbalance
between two transverse forces acting on fluid particles: on one hand the force
associated with the lateral pressure gradient induced by the development of a
lateral slope of the free surface; on the other hand an apparent centrifugal force
increasing in the vertical direction driven by streamline curvature. Sufficiently
far from the bed entrance for flow and bed topography to be uniform in the
longitudinal direction and in the absence of coexisting free bars, the resulting
secondary flow is constrained by continuity to have a vanishing depth average
and is directed inwards close to the bed where the pressure gradient exceeds the
centrifugal force and outwards close to the free surface. Furthermore, sediment
continuity constrains the lateral component of sediment transport to vanish. Two
lateral forces act on bedload particles: an inward drag force associated with the
secondary flow and an outward directed lateral component of particle weight.
Equilibrium is achieved for a lateral slope increasing outwards, giving rise to
deposition at the inner bank and scour at the outer bank.

In the case of meandering channels, flow continuity forces the development
of an additional, topographically driven, component of the secondary flow which
has a non vanishing depth average and transfers longitudinal momentum from
each pool to the next one. Furthermore, sediment continuity forces a lateral
component of bed load transport, which gives rise to an additional contribution
to the lateral slope. The balance between centrifugal and topographic effects
give rise to a bar-pool pattern which displays a phase lag relative to curvature,
depending on meander wavenumber for given flow and sediment characteristics.

Tidal meandering channels exhibit distinct novel features with respect to the
fluvial case, namely the oscillating character of the basic flow and the changing
character of sediment transport throughout the tidal cycle. Due to the oscillatory
character of the basic flow, which reverses its direction at each half cycle, the bar-
pool pattern, unlike in the fluvial case, oscillates in time. It is worth noticing that,
as one may expect, the pattern of secondary flow is not sensitive to the direction
of the basic flow. The character of sediment transport changes throughout the
tidal cycle, with periods of slack water characterized by the absence of any
entrainment and the presence of deposition of previously suspended sediments,
followed by periods where bedload transport occurs and eventually by a stage
dominated by transport in suspension. Such variability does affect the lateral as
well the longitudinal fluxes of sediments, hence the amplitude and the phase lag
of the bar-pool pattern. However, note that the general features of the latter do
not change qualitatively.

The study of bottom topography in meandering tidal channels has been re-
cently tackled by Solari et al. [106] who considered channels formed by inerodible
banks and cohesionless bottom. The sediment size distribution was taken to be
uniform and the grain diameter small enough to be suspended by turbulence
throughout most of the tidal cycle. Curvature of the longitudinal channel axis
was taken to follow the so called ‘sine-generated curve’ of Langbein and Leopold
[61] (recall (19.1)). Recent observational evidence, illustrated in [106], suggests
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that meander wavelength scales with the local channel width; therefore, at the
meander scale and at the leading order of approximation, width variations may
be safely neglected. Furthermore, tidal meandering channels are characterized
by sufficiently large aspect ratio, though smaller than that typically observed in
the fluvial case, and fairly low curvature ratio ν (defined as ratios between chan-
nel width and radius of curvature at the bend apex). Such features allow one to
formulate a 3D model of flow and bed topography in meandering tidal channels
along the lines of the classical framework developed in the fluvial context, where
the role of side walls is ignored and the flow and bed topography are treated as
slightly perturbed with respect to the basic configuration.

We refer the reader to [106] for details of the analysis. Here it suffices to state
that, taking advantage of the weakly meandering character of the channel, the
solution has been expanded in powers of the small parameter ν. At the leading
order of approximation, one finds the basic solution, parametrically dependent
on time, for a tidal wave propagating in a long, weakly meandering channel,
i.e. at the meander scale, the basic flow structure is spatially uniform at least
at leading order. At the first order in ν, the curvature induced perturbation of
the flow field and bottom topography is obtained. The dimensionless parameters
which play a role in the analysis are: width ratio β, particle Reynolds number Rp,
curvature ratio ν and relative roughness ds. Typical values applying to Venice
lagoon have been adopted.

Results have been obtained assuming ‘quasi-equilibrium’, i.e. assuming that
the bottom configuration adapts instantaneously to changes of the flow field
throughout the tidal cycle. However, at a more careful examination, it turns out
that the latter assumption is unduly severe and can be readily removed [105].
The latter authors have shown that, starting from an initial configuration char-
acterized by a flat bed with a uniform flow depth along the channel, the system
reaches an equilibrium topographic pattern such that throughout a tidal cycle
the bottom displays relatively low amplitude oscillations around a mean level
which does no longer change in time. It is found that the system attains ‘quasi-
equilibrium’ conditions only when two limiting cases are approached; namely
when the tidal wave is so ‘long’ that the system is able to adapt instantaneously
to the changing flow configuration or when transport in suspension is extremely
‘strong’.

Figure 19.20 shows the patterns of deposition and scour at the positive (t = 0)
and negative (t = π) peaks of the tidal cycle (the arrow indicates the direction of
the basic flow), respectively. Note the symmetrical position of the point bar-pool
with respect to the bend apex; due to the periodicity of the basic flow throughout
the tidal cycle, the point bar-pool pattern migrates alternatively forward and
backward in a symmetric fashion: in other words no net bar migration in a cycle
is present.

During the tidal cycle the instantaneous Shields number varies in time from
zero to some maximum value at the tidal peak. As the Shields number θ increases,
sediments are transported at first as bed load; for larger values of θ, suspension
becomes an appreciable fraction of the total transport while dunes appear on
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Fig. 19.20. The pattern of scour and deposition at the positive (t = 0) (a) and negative
(t = π) (b) peak of the tidal cycle. (β = 6, λ = 0.05, Rp = 4, θ0 = 0.6, ds = 2 · 10−5,
dune-covered bed)

the bottom surface. The oscillatory character and the intensity of the point bar
are shown in Fig. 19.21 which shows position and amplitude of the location
where occurs maximum scour during half a tidal cycle. Note that ΨDmax denotes
the phase lag (in radians) of the location of the maximum flow depth Dmax
relative to the bend apex. It appears that the location of the maximum scour
oscillates in time with maximum displacement of the order of a fraction of a
radiant, hence a small value relative to meander wavelength. It appears that,
as the intensity of the basic flow decreases, the point bar migrates upstream
decreasing its amplitude.

Approaching basic flow reversal, the Shields number reaches some threshold
value below which part of the channel cross section becomes inactive. In other
words, starting at the inner bend, the flow can be so weak that the Shields
number is not high enough to allow any sediment transport. Due to the above
mechanism the present analysis fails for Shields stresses ranging about 2–3 times
θcr, which, in the fluvial case, corresponds to the minimum Shields stress for the
occurrence of sediment transport throughout the whole cross section [97].

19.5.2 Equilibrium of Tidal Inlets

The problem of maintaining tidal inlets in equilibrium is of major importance for
its obvious implications on navigation and, in general, on the morphodynamics
evolution of estuaries and lagoons.

Tidal inlets on littoral drift shores attain typically quasi-equilibrium condi-
tions characterized by relatively small geometric changes affecting their location,
planform, cross sectional area and shape [14]. This quasi-equilibrium configura-
tion depends on the balance among the effects of the littoral drift carried to
the entrance by flood currents, of the ebb tidal currents and of the wave action.
Several studies have been devoted to investigate the stability of tidal inlets, the
word stability referring to the ability of the cross section to maintain its shape.
Most of these studies have proposed empirical relationships relating the tidal
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Fig. 19.21. Temporal variations of the position and amplitude of the maximum flow
depth during half a tidal cycle. The continuous line describes the temporal distribu-
tion of the basic flow field |U0|, the dashed lines indicate the phase lag between the
cross section where the maximum flow depth is located and the cross section at the
bend apex (ΨDmax), the bold continuous lines denote the intensity of the maximum
dimensionlessflow depth (Dmax). (β = 6, λ = 0.05, Rp = 4, θ0 = 0.6, ds = 2 · 10−5,
dune-covered bed)

prism to the cross sectional area of the channel crossing the barrier connecting
the ocean with the bay or lagoon (gorge) [54,73]. Others relate the degree of sta-
bility of the tidal inlet to the ratio of the tidal prism to forces by waves causing
littoral drift, i.e. the material transport to the tidal entrance [15]. A review of
such investigations can be found in [14]. Here, we briefly recall the very popular
empirical relationships proposed by O’Brien [73] and Jarrett [54]. For tidal inlets
with a semi-diurnal tide range, O’Brien [73] proposes an empirical relationship
between the tidal prism P ∗ corresponding to the semi-diurnal spring tidal range
and the minimum cross sectional area A∗

min characterizing the entrance channel
(gorge) at M.S.L.:

A∗
min = 4.96 · 10−4P ∗0.85 (19.15)

with A∗
min in square feet and P ∗ in cubic feet. A more comprehensive study of the

relationship between the tidal prism and the inlet area was carried out by Jar-
rett [54] on the basis of data collected along the Atlantic and Pacific coasts and
concerning un-jetted, single-jetted and two-jetted inlets. Jarrett [54] observed
that un-jetted and single-jetted inlets on different coasts exhibit a different rela-
tionship owing to differences in the tidal and wave characteristics. Jarrett’s [54]
analysis does not account for the length of jetties. The regression curve for all
the data reads:

A∗
min = 5.74 · 10−5P ∗0.95 (19.16)
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with A∗
min in square feet and P ∗ in cubic feet. Jarrett’s relationship differs con-

siderably from that of O’Brien’s [73]. Indeed, a general relationship can hardly
been proposed on purely empirical ground. In fact, the inlet geometry depends
strongly on the morphology of the seaward bar which is controlled by the com-
plex balance between the ebb and flood tidal currents, the sediment transport
due to the wave induced littoral drift, and the flux of wave energy into the
entrance [14].

The complexity of the problem is confirmed even under the idealized con-
ditions examined in the laboratory experiments carried out by Bolla Pittaluga
et al. [12]. In fact, even in the absence of significant wave action the flow field
around the mouth of the channel is highly asymmetric throughout the tidal cy-
cle. At the initial stage of the experiment, with the ‘sea’ bottom flat, the near
inlet flow field is nearly irrotational during the flood phase and behaves like an
unsteady turbulent jet during the ebb phase. The hydrodynamics of such flow
configuration was thoroughly investigated theoretically and experimentally by
Arato et al. [7]. Flood flow was indeed modelled as irrotational while the ebb
flow was modelled as inviscid and rotational employing well established vortex
shedding techniques from the sharp edges of the tidal inlet. The outcome of the
analysis was quite interesting: vortex shedding leads to the formation of a pair
of counterrotating vortices which abandons the generation area as a result of
the velocity that each of the vortex induces on the other. The asymmetry of the
flow field seems to imply that a net flux of sediments may be imported into (or
abandon) the estuary at each tidal cycle.

However, the problem turns out to be more complex as the evolution of bed
topography drives a modification of the hydrodynamics until a final equilibrium
is reached. Whether the latter is ‘static’ in nature, i.e. associated with the es-
tablishment of threshold conditions for sediment motion throughout the channel
cross section (as assumed by Marchi, [71]), or dynamic, i.e. such that sediment
transport is still present at equilibrium (as found by Lanzoni and Seminara, [63]
throughout the tidal channel) is still unclear. The pattern of bottom topography
in the near inlet region at the initial and final stages is reported in Fig. 19.22,
while the cross sections plotted in Fig. 19.23 suggest that the eroding action
of the jet flow excavates a submerged channel in the sea bottom, with depth
decreasing in the seaward direction.

19.6 Morphodynamic Stability

19.6.1 The Formation of Tidal Free Bars

It is well known from the fluvial literature that free bars are mesoscale forms
which develop spontaneously due to a bottom instability. The formation of free
bars in ‘infinitely’ long tidal channels has been recently investigated by Seminara
and Tubino [99,100]. The problem was tackled studying the altimetric instability
of a cohesionless bottom in a weakly convergent channel with a rectangular cross
section of width 2B∗ and non-erodible banks, subject to the propagation of a
tidal wave.
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Fig. 19.22. Near inlet region bottom topography after (a) 1 h and (b) 100 h. The
channel inlet is between 2y∗/B∗ = −1 and 2y∗/B∗ = 1 at the transverse cross section
2x∗/B∗ = 0. The origin of the longitudinal landward directed axis x∗ is in correspon-
dence of the channel inlet. The origin of the transverse axis y∗ is set in the mid of the
channel inlet

As a first step the analysis neglects various features such as the presence
of tidal flats flanking the main channels. The bed was taken to be cohesionless
and the sediment homogeneous. Furthermore, the channel was considered long
enough to allow neglecting the effects of end conditions on the process of bar
formation. At the scale of bars the role played by channel convergence and spa-
tial variations of the tidal wave propagating along the channel turns out to be
negligible at the leading order of approximation; hence bars feel the tidal wave
as an oscillatory longitudinally uniform flow associated with a horizontal con-
figuration of the free surface which oscillates in time. Furthermore, local inertia
is found to be negligible at leading order. Perturbations of the flow field and of
sediment transport induced by the formation of free bars have been investigated
by means of a three dimensional model. We refer the reader to [100] for details;
it suffices here to state that the formulation of the problem followed the lines dis-
cussed in Sect. 19.5. The latter problem was set at the basis of a linear stability
analysis whereby the growth of infinitesimal perturbations of the bed interface,
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Fig. 19.23. Cross section of the near inlet region at (top) 2x∗/B∗ = −1 and (bottom)
2x∗/B∗ = −3

in the form of normal modes scaling on channel width, was determined. Insta-
bility turns out to be of Mathieu type: in other words a net growth (or decay)
of perturbations in a tidal cycle is found to superimpose on a purely oscilla-
tory response, in analogy with the classical behaviour of solutions of Mathieu
equation. Results have been obtained in the case of a tidal wave whose cross
sectionally averaged velocity consists of a single harmonic. No subharmonic or
ultraharmonic response was found. The stability analysis provides a dispersion
relationship for the net growth rate in a tidal cicle and the migration speed of
bars as functions of dimentionless bar wavenumber λ (λ=λ∗B∗), width ratio β0
(β0=B∗/D∗

0), Shields parameter Θ, particle Reynolds number Rp and relative
roughness ds (ds = d∗

s/D
∗
0). Such dispersion relationship allows one to determine

neutral stability curves (or surfaces) in the space of relevant parameters. An ex-
ample of a neutral curve for alternate bars is reported in Fig. 19.24. Note that
such curve displays a minimum which provides critical or threshold conditions
for bar formation. For values of β0 larger than the critical value βc, any linear
perturbation characterized by a wavenumber falling within the neutral curve is
unstable, hence bars are expected to form. The critical value for the formation
of multiple row bars of order m can be shown to be m times the critical value
for the formation of order one bars (alternate bars).

Results also show that, since the basic flow is periodic with zero mean, tidal
bars, unlike river bars, do not exhibit a net migration over a tidal cycle. In other
words during a tidal cycle, bars migrate alternatively forward and backward
in a symmetric fashion. The role played by transport in suspension is quite
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Fig. 19.24. Marginal stability curves for different values of peak Shields stress (Rp = 4,
ds = 2 · 10−5)

significant: it turns out that the critical value of the aspect ratio βc above which
alternate bars form tends to vanish when the Shields stress attains a value so
large that transport in suspension becomes dominant. Also note that, when the
flow is characterized by a high value of the Shields stress, several unstable modes
may be simultaneously excited for relatively low values of the aspect ratio.

Such feature indicates that the resulting bar pattern is likely to arise from a
complex nonlinear competition among different unstable modes. A comparison
between the neutral curves reported in Fig. 19.24 and those obtained by Colom-
bini et al. [18] for fluvial channels with dominant bed load transport, suggests
that suspension leads to a significant reduction of the width of the unstable
region which is gradually shifted towards smaller values of λ. Such behaviour in-
dicates on one hand that suspension plays a stabilizing role at sufficiently large
wavenumbers, on the other hand that a longer straight reach is required to al-
low for the development of free bars when the suspension is dominant. The bar
wavenumber characterized by the maximum growth rate as a function of the
aspect ratio is plotted in Fig. 19.25 for various values of the peak Shields stress
Θ0 and given values of the particle Reynolds number Rp and relative roughness
number ds. Note that the bar wavelengths range between 8–30 times the channel
width for values of the peak Shields stress and of the aspect ratio falling in the
ranges 0.6–2 and 5–30 respectively.

Various developments of the above work remain to be pursued, in particular
the role of channel convergence (likely to induce a slowly varying character of
bars in the longitudinal direction), the non linear evolution of tidal free bars
and their interaction with forced bars induced by channel curvature discussed
in Sect. 19.5.1. The role of a finite length of the channel has been given some
attention by Schuttelaars and de Swart [95], who claim that bar modes scaling
on channel length may be unstable. A discussion of the framework on which the
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Fig. 19.25. The wavenumber λmax characterized by maximum growth is plotted versus
the width ratio β0 for different values of the peak Shields stress Θ0 (Rp = 4, ds =
2 · 10−5)

latter work is based is given by in [100]. The role of nonlinearity has been widely
investigated in the fluvial context [18,17,91].

19.6.2 The Formation of Dunes in Tidal Channels

The formation of dunes in erodible channels is a classical topic, which has been
thoroughly investigated in the fluvial literature, since the pioneering work of
Kennedy [55], recently revisited by Coleman and Fenton [16]. The linear aspects
of the problem of dune formation under steady conditions appear to be rela-
tively well understood: instability of small amplitude perturbations of bottom
topography are driven by a phase lag between sediment transport and bottom
topography, due to several competing effects, some of which play a destabilizing
role (friction and particle inertia) while others tend to damp dune formation
(gravitational effects on sediment transport and suspended load). The reader
interested in such features is referred to [33]. Less understood are the non linear
aspects of dune development. In fact, the latter soon leads to flow separation,
a feature which severely modifies the structure of the flow field, as discussed by
Smith and Mc Lean [103]. It has been argued that the occurrence of separation
in the early stages of dune formation is a major controlling factor of wavelength
selection: in other words, due to flow separation, finite amplitude effects would
dominate even in the initial stage of dune development. No attempt to examine
how the latter picture is modified when dunes form in tidal channels is known
to the present authors. However some qualitative arguments can be put forward
to gain some understanding of the latter process. The major novel aspect to
be accomodated when dealing with tidal environments is the oscillatory char-
acter of the basic flow, which, at the dune scale, can be considered as spatially
uniform. Oscillations drive a continuous variations of the characteristics of the
basic flow, whose Froude number oscillates around some mean value. Associated
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with the latter oscillations are oscillations of the intensity and nature of sedi-
ment transport: at very low Froude numbers no transport occurs, except for the
deposition of sediments possibly present in suspension; as the Froude number
increases, sediment is initially entrained as bedload and later both as bedload
and as suspended load. Correspondingly, the stability characteristics of the ba-
sic tidal flow vary throughout the tidal cycle: the instantaneous flow, treated as
steady, would be stable close to slack water, later dunes would tend to form with
growth rate increasing initially as the tidal velocity increases and then decreas-
ing for larger instantaneous Froude numbers. Close to the peak of tidal velocity,
the stabilizing effect of suspended load tends to damp the amplitude of dunes.
The latter qualitative arguments suggest the following three possible scenarios
for dune formation in tidal channels.

i) The time scale of dune growth T ∗
d is much smaller than the tidal period T ∗: in

this case, dunes form and disappear during each tidal cycle with characteristics
in equilibrium with the local and instantaneous properties of the basic tidal
flow.

ii) The time scale of dune growth is much larger than the tidal period: in this
case, dunes may form as a result of their net growth in a sequence of tidal
cycles.

iii) The time scale of dune growth is of the order of the tidal period: in this case,
dunes will form but their properties will be out of phase relative to the basic
state and will oscillate during each tidal cycle.

Fig. 19.26. Dimensionless growth rate of dunes characterized by dimensionless
wavenumber scaled by flow depth equal one for any given (steady) Froude number

In order to ascertain which case is appropriate to typical tidal conditions,
one needs an estimate for the dune growth rate as a function of the relevant flow
parameters, namely the instantaneous Froude number F and the relative rough-
ness ds. Figure 19.26 shows such estimate (Colombini, personal communication)
for two typical tidal configurations: a prototype configuration characterized by a



19 Estuarine Patterns 491

value of ds equal to 3×10−5 with relative density of the sediments �s/� equal to
2.65 and the configuration employed in the laboratory observations discussed in
Sect. 19.5.1, characterized by a value of ds ranging about 3× 10−3 with relative
density 1.48. The quantity plotted in Fig. 19.26 is the dimensionless growth rate
of dunes characterized by a value equal to one of the dimensionless wavenum-
ber scaled by flow depth for any given (steady) Froude number. The growth
rate is scaled by the ratio between flow depth D∗

0 and cross sectionally averaged
speed U∗

0 : hence, the ratio T ∗
d /T

∗ can be estimated by multiplying the quantity
plotted in Fig. 19.26 by the parameter (T ∗U∗

0 /D
∗
0). The latter attains typical

peak values ranging about 2 · 10−4 in the prototype and 10−3 in our laboratory
model. Using the latter estimates, Fig. 19.26 suggests that the ratio T ∗

d /T
∗ is

strongly dependent on the peak Froude number F . Typical values of F in the
prototype range about 0.1 and the ratio T ∗

d /T
∗ is much larger than one, hence

the second scenario described above appears to apply under natural conditions.
The unavoidable distortion introduced when attempting to reproduce the ac-
tual phenomenon in the laboratory leads to larger values of F , (say 0.4), with
corresponding values of the ratio T ∗

d /T
∗ of order one. Hence, in the laboratory,

the third scenario described above is appropriate. In fact, formation of dunes
along the channel was observed since the very beginning of the experiment, dis-
playing a quasi 2D pattern, wavelengths ranging between 2 and 5 times the
local flow depth and amplitudes ranging roughly about 0.1 times the local flow
depth (Fig. 19.27). The damping effect of suspended load on dune development
was clearly detected, since during the flood phase dunes were washed out to
form again during the ebb phase which was characterized by lower values of sus-
pended sediment transport. Dunes migrated upstream during the flood phase
and downstream during the ebb phase, displaying a net upstream migration in a
tidal cycle due to the asymmetry of the velocity field. The flow was indeed flood
dominated. The quasi two-dimensional dune pattern was replaced by complex
three-dimensional patterns all along the channel after the first hours of experi-
ment. In the later stages of the process, when the channel profile has attained
quasi equilibrium conditions, dunes undergo very weak modifications through-
out each tidal cycle. In other words, the picture emerging from the experiments
suggests that dunes are essentially imprinted in the channel at some initial stage.

Theoretical attempts to explain dune formation under tide dominated con-
ditions have been proposed by Hulscher et al. [48], Hulscher [47] and Gerkema
[43]. Though the type of applications that the latter authors had in mind referred
to the tidally driven formation of sandwaves and sandbanks in coastal regions,
however in the absence of sea waves the problem turns out to be quite similar to
that governing dune formation in tidal channels. The contributions mentioned
above, which have been recently further developed by Komarova and Hulscher
and by Komarova and Newell [59,60], suggest that dune formation under natu-
ral conditions indeed falls in regime ii). Moreover, dune growth is claimed to be
driven by the formation of steady recirculatory cells associated with tide propa-
gation over a wavy bottom similar to those found by Blondeaux [11] in the case
of ripple formation under waves. However, a recent contribution of Besio et al.
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Fig. 19.27. Quasi two-dimensional dune pattern observed during the experiments of
Bolla Pittaluga et al. [12] throughout a reach of the tidal channel. Bottom elevation and
longitudinal coordinate (x∗) are scaled by the average local flow depth. The transverse
coordinate y∗ is scaled by half-channel width. Note that dune wavelenght ranges about
three times the local flow depth

[10] questions various assumptions employed in all the latter works and suggests
that the problem of dune formation under tide dominated conditions will still
require attention in the near future.

19.7 Morphodynamic Evolution

Predicting the short- and long-term morphodynamic evolution of estuaries is
the key problem of tidal morphodynamics. A traditional approach employed in
the engineering literature has been to employ empirical relationships between
the various quantities characterizing the estuarine geometry (say the cross sec-
tional area of tidal inlets, the cross sectional area of estuarine channels, the
area of the tidal flat-salt marshes) and the tidal prism [36,54]: the morphody-
namic development of the system is then interpreted as a tendency to move
from an equilibrium configuration to another. A second approach, more recently
employed by engineers, attempts at constructing simplified models of the whole
estuarine system, based on modeling assumptions providing zero order descrip-
tions of the processes occurring in each portion of the system [26,27,28]. While
the latter approaches play the important role to attempt providing qualitative
answers to urgent practical questions, parallel to the latter, a so called ’reduc-
tionist approach’ is needed, focusing on a detailed understanding of the various
mechanisms whereby departures from equilibrium may arise in each part of the
estuarine environment. The latter research line is still at its infancy. Below, we
briefly outline some suggestions for future research.
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19.7.1 Evolution of Tidal Channels

The process whereby an equilibrium bed profile may be reached in a straight tidal
channel has been discussed in Sect. 19.5.1. Departures from the equilibrium
discussed above may originate from a net exchange of sediments through the
tidal inlet, possibly forced by littoral currents or by anthropic effects (like the
construction of jetties at the inlets of Venice lagoon). The perturbing effects
of a net sediment load carried by a river debouching into the estuary will also
require attention: can an equilibrium profile of the channel still be reached and
maintained? A similar question arises when the tidal channel is bounded by
tidal flats: in fact, a net exchange of sediments between the channel and the
neighbouring tidal flats-salt marshes is induced by various mechanisms discussed
below.

Tidal channels undergo also a planimetric development somehow similar to
that observed in the fluvial environments: as discussed in Sect. 19.5.1, tidal chan-
nels develop often a meandering pattern. The mechanism which controls such
planimetric development is associated with the role of bank erosion. Fluvial me-
anders shift laterally their axis keeping their width fairly constant, through a
process, suggested by field observations, whereby the material eroded at the
outer banks is deposited at the inner bends. The latter process has been widely
investigated in a series of papers of Parker’s school and, more recently, in [102].
In particular, in the latter paper, the authors derive a planimetric evolution
equation of meandering rivers in the form of a non linear integro-differential
equation, its integro-differential character accounting for the history of the de-
formation of the channel axis, while nonlinearity arises from the kinematics of
the deformation process. Seminara et al. [102] were able to show that periodic
solutions of the latter equation exist, which display all the features of the fluvial
meandering process, in particular:

• Meanders develop a Kinoshita shape, which turns out to be intrinsically em-
bedded into the cubic non linearity of the planimetric evolution equation;

• Meanders migrate typically downstream (though upstream migration turns
out to be possible under appropriate conditions) with a migration rate which
decreases monotonically from incipient formation to cutoff;

• Meander amplitude increases with a rate of the order of metres per year, which
increases up to a maximum and then decreases slowly;

• Neck cutoff invariably occurs at the late stage of meander development;
• No equilibrium solution (i.e. meanders of permanent form) may exist.

Further interesting features emerge when meander development is allowed to
evolve from an arbitrary initial condition, the solution displaying then the typical
characteristics of the solutions of the Ginzburg–Landau equation. Furthermore,
the formation of compound loops of the type typically observed in nature, arises
from the calculations.

The tidal analogue of the latter process could be readily investigated and,
indeed, Solari et al. [106] have extended the linear, so called ‘bend stability’,
analysis to the tidal case. However, along with the ‘cohesionless’ mechanism
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outlined above, one may be tempted to envisage an alternative ‘cohesive’ mech-
anism of development of tidal meanders: in other words, the formation of tidal
meanders might be embedded in the purely erosive process whereby an initial
incision in a cohesive tidal flat, widens tending to reach its equilibrium width.
A slight longitudinal perturbation of the widening process might lead to the
development of a periodic width perturbation essentially equivalent to the de-
velopment of a meandering pattern. The analysis of such mechanism will require
attention in the near future: note that the feasibility of the latter might also
explain the occurrence of second harmonics in the Fourier representation of the
channel axis, as well as the apparent tendency of tidal meanders to reach an
equilibrium configuration in contrast with the behaviour observed in the fluvial
case (most tidal meanders of Venice lagoon have been practically inactive for
decades).

19.7.2 Evolution of Tidal Flats and Salt Marshes

The morphodynamic development of tidal flats and salt marshes is strictly con-
nected with the dual problem concerning the effects of tidal flats and salt marshes
on the morphodynamic equilibrium of tidal channels.

In fact, various mechanisms contribute to determine a net exchange of sedi-
ments between channels and tidal flats.

A major mechanism is associated with the role of vegetation. In fact, marsh
grass is known to induce deposition of inorganic sediments, associated with the
strong deceleration of the flowing stream as it expands over the flats and the
trapping effect of marsh grass. Deposition rates have been documented [32] which
may reach values of the order of five times that of unvegetated adjacent flats.
A second mechanism of marsh accretion is driven by the production of organic
matter.

Further contributions to the exchange of sediments are associated with the
asymmetric character of the velocity and concentration fields in the tidal flat
region during the flood and ebb phases (some aspects of this mechanism were
discussed by Schijf and Schönfeld [92] and by Dronkers [29]) and to the instability
of the shear layer forming at the boundary between the faster channel flow
and the slower flow in the tidal flats. The latter mechanism has been widely
investigated in the fluvial context [51] but is totally unexplored in the tidal case.

Tidal range also play an important role. In macrotidal marshes, tides typically
provide an accretionary contribution to marsh evolution, sufficiently strong to
counteract the effects of sea level rise, leading to the establishment of conditions
of dynamic equilibrium [38]. In mesotidal and, more evidently, in microtidal
marshes the stirring action of wind and waves during storm events are more
effective in delivering sediments to the marsh [64,65].

Marsh degradation may be driven by various competing effects. While it is
unlikely that tide induced flow over healthy marshes may ever lead to net erosion
[39], marsh regression is typically driven by the collapse of the banks of tidal
channels fringing the marshes due to tidal currents undermining the marsh at
bar pools [3] or to the direct attack of wind waves [25].
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Salt marsh grasses like Spartina Alterniflora do not stand waterlogging, i.e.
excessive submergence [24,83], which may be driven by sea level rise, subsidence
or reduced sediment supply. Note that all the latter mechanisms have been active
in the recent development of Venice lagoon.

Finally various anthropic effects associated with clam fishing, outboard nav-
igation, dredging as well as organic and minerogenic inputs may affect marsh
degradation.

The picture emerging from the above discussion (but see also the recent
review [41]) suggests that marshes are systems in delicate dynamic equilibrium:
vertical accretion reduces the period of submergence, which in turns reduces
inorganic accretion. However, such dynamic equilibrium may be disrupted by
effects like an accelerated sea level rise, an enhanced subsidence or a strong
reduction in sediment supply: vegetated flats respond quite rapidly, sometimes
catastrofically, to such variations of the forcing mechanisms.

Incorporating all the above effects into comprehensive models of the evolution
of the whole estuarine system will require an intense interdisciplinary effort which
is likely to keep the next generation of engineers and scientists quite busy!
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20.1 Introduction

Longshore bars are often found on many gently sloping beaches of large lakes,
bays and sea coasts. A beautiful example can be seen in Fig. 20.1 which gives the
aerial view of the Escambia Bay in Florida. Several other typical observations are
summarized in Table 20.1. In contrast to bars found in rivers where the flows are

Table 20.1. Sample data of observed sand bars

Site Beach slope Number of bars Bar wavelength (m)

Lake Michigan [1] 0.0072-0.012 3-4 38-321

Cape Cod [2] 0.0014-0.0029 6-8 40-105

Alaskan Artic [3] 0.0041-0.0057 4-5 141-479

Chesapeake Bay [4] 0.0017-0.0052 4-17 12-70

essentially unidirectional and characterized by very long time scales (see Chap.
15), coastal bars are usually the products of waves. Of scientific interests are the
detailed physics of their generation by waves, as well as their influence on the
propagation of waves.

To prepare for Normandy landing by Allied Forces near the end of the sec-
ond World War, Keulegan [6]1 conducted the first laboratory research on the
formation of sand bars on beaches. He sent sinusoidal waves on a plane beach
covered by sand, and found that the rolling crests of breaking waves excavate
sand particles from the originally plane beach, bring them into suspension, then
deposit them slightly offshore. After many wave periods a bar is formed along
the breaker line.

Laboratory studies have continued at a slow pace since the second world
war. Herbich, Murphy & Van Weele [7] found, in a laboratory wave flume with
a wave-maker at one end and a steep wall at the other, that sand bars are
1 The report was written in 1944 and declassified in 1948.

N.J. Balmforth and A. Provenzale (Eds.): LNP 582, pp. 500–527, 2001.
c© Springer-Verlag Berlin Heidelberg 2001
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Fig. 20.1. Aerial view of submarine sandbars in Escambia Bay, Florida, USA. From [5]

formed at the wavelength roughly equal to one half of the incident wave length.
To explain this special ratio considerable attention has been paid to the fluid
dynamics of induced streaming in the boundary layer of an oscillating flow. As
first explained for sound waves by Rayleigh, the time-averaged Reynolds stresses
in the viscous boundary layer created by an oscillatory flow can induce steady
streaming inside the boundary layer. Extension of Rayleigh’s theory to water
waves has been made by Longuet-Higgins [8]. If a two dimensional (long-crested)
partially reflected wave of small amplitude exists above a horizontal rigid bed
at depth h (−∞ < x < ∞, z = −h), there is a viscous boundary layer of the
thickness of the order δ =

√
2ν/ω where ν and ω denote the kinematic viscosity

and frequency respectively. If Uo is the amplitude of the inviscid flow velocity
just outside the boundary layer, then the first-order horizontal velocity inside
the viscous layer is given by Stokes’ solution:

u1 = Re
[
Uo

(
1− e−(1−i)ξ

)
e−iωt

]
, where ξ =

z + h
δ

. (20.1)

At the second order, time averaging of the horizontal momentum equation gives

−ν ∂
2u2

∂z2
= UI

∂UI

∂x
− ∂u1u1

∂x
− ∂u1w1

∂z
. (20.2)
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Thus Reynolds stresses from the convective inertia of wave fluctuations drive
a mean shear stress across the boundary layer, leading to a steady Eulerian
streaming with the horizontal component u2. The associated drift velocity of a
fluid particle uL is the sum of u2 and the Stokes drift

uL = u2 +
(∫

u1 dt
)
∂u1

∂x
. (20.3)

The result is also known as the Lagrangian mass transport velocity. For long-
crested partially reflected waves over a horizontal seabed, the amplitude of the
first order velocity just outside the boundary layer is

Uo =
−ωA

sinh kh
(
e−ikx −Reikx

)
, (20.4)

where A and RA denote respectively the free surface amplitude of the incident
and the reflected waves, with R being the reflection coefficient. Longuet-Higgins
[8] found the horizontal component of the mean drift to be

uL =
kωA2

4 sinh2 kh

[
(1−R2)

(
8e−ξ cos ξ − 3e−2ξ − 5

)
+ 2R sin 2kx

(
8e−ξ sin ξ + 3e−2ξ − 3

)]
. (20.5)

His attention was focussed more on the mass transport at the outer edge of the
boundary layer for its possible implication on the suspended sediments. Hunt
& Johns [9] extended the theory to bi-directional gravity waves and to tides
where the effects due to earth rotation are important. Carter, Liu & Mei [10]
used this theory to analyze the current in the boundary layer under a partially
reflected waves whose envelope has periodic maxima (antinodes) and minima
(nodes) at half wave-length intervals. If the reflection coefficient is greater than
0.414, the current in the boundary layer form closed cells. Very close to the bed,
ξ = (z + h)/δ 	 1, ūL converges towards parallel lines beneath the envelope
nodes. Near the upper edge of the boundary layer, uL converges instead toward
parallel lines beneath the antinodes. Heavy or large sand grains rolling or sliding
on the bottom would tend to accumulate beneath the nodal lines, while light
and small grains suspended at the top of the boundary layer would gather under
the antinodal lines. Since the adjacent nodes and antinodes are separated at
half-wavelength intervals, the bar crests should be separated likewise. With a
monolayer of sand sparcely laid on an smooth bed surface Carter et al. found that
visual observations support these theoretical predictions qualitatively. The mean
circulation in the boundary layer may also explain the observed phenomenon of
sediment sorting, i.e. fine sand is more likely found around the bar troughs and
coarse sand near the bar crests.

Since on gentle beaches wind waves lose most of the energy by breaking,
reflection must be weak. Why are bars frequently found near the shore? One
possible reason is that there are steep seawalls at the end of the gentle beaches,
another is that the breaking point bars found by Keulegan may be quite large.
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Still another possible reason is that bars formed at half wavelength intervals
can increase the reflection coefficient by Bragg resonance. Though well-known
in optics and solid-state physics, this resonance was first demonstrated for water
waves in laboratory experiments by Heathershaw [11] who installed on the hori-
zontal bottom of a wave flume 10 rigid bars with amplitudes much smaller than
the water depth. By tuning the incident waves he found that up to 60% of the
incident wave energy can be reflected. Thus, a few bars created by past storms
can produce larger reflection in the next storm, and induce more and higher bars
by mass transport. This experimental demonstration has stimulated many theo-
retical studies on the effects of rigid bars on waves ([12,13,14,15,16,17,18,19]) as
well as a number of small laboratory studies on sand bar formation ([20,21,22]).

Given the multitude of factors affecting the coastal environment (intensity
and time variability of the wave climate, current, sand size distribution, bathy-
metric variations, etc.), there are of course other mechanisms contributing to the
interaction of fluid flow and sand bars. In experiments for long waves of finite
amplitude in a shallow tank, Bozar-Karakiewicz et al. [23] made extensive ob-
servations of sand bar formation on horizontal and sloping sandy beds for very
long times of up to several days. Their focus was on the nonlinear effects of har-
monic generation in long waves and the associated transient evolution of sand
bars. In their bed profiles, half wave-length bars are prominent at the early stage
before waves change significantly by nonlinearity. A sample record is plotted in
Fig. 20.2. Later development was strongly modified by the effects of harmonic
generation in waves [5,24,25]. The half-wavelength bars were then replaced by
much longer bars with periods comparable to the beat length of the first and
second harmonics. Theoretical models accounting for suspended sediments only
have been pursued by Karakiewicz, Bona and associates [26,27].

In this review we shall limit our attention to progresses made on the interac-
tion of waves and bars where Bragg resonance plays a central role. We begin with
the effects of rigid bars on waves, including the linear aspect of strong reflection
and the second-order nonlinear effects of setdown waves. Lastly, recent work on
the mutual influence of waves and bars will be discussed.

20.2 Linear Bragg Resonance by Rigid Bars

Motivated by the experiments of Heathershaw, Davies [12] gave a linearized
theory for waves scattered by a rigid bed with m periods of sinusoids on an
otherwise horizontal bottom:

b(x) = D cos #x, 0 < x < 2mπ/# , (20.6)

where b(x) denotes the bar height about the mean depth z = −h, and D the bar
amplitude. For bars of amplitudes much smaller than the depth, the scattering
is weak in general. The leading-order velocity potential is simply that of the
incident wave:

φI = − igA
2ω

cosh k(z + h)
cosh kh

eikx−iωt + c.c. , (20.7)
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Fig. 20.2. Bed development over an initially sloping sandy beach (top figure). The
incident wave period is T = 2.6 s. At t = 90, 000T periodic bars are developed at half-
wavelength spacings (approximately 2m, see middle figure). At t = 141, 231T bars are
replaced by longer bedforms due to nonlinear changes of waves (bottom figure). From
[23]

where x, z are the horizontal and vertical coordinates with origin in the mean
sea surface, the wave number k and frequency ω are related by the dispersion
relation,

ω2 = gk tan kh . (20.8)

At the next order in kD, the reflected wave on the side x < 0 is

− igAR
2ω

cosh k(z + h)
cosh kh

e−ikx−iωt + c.c. , (20.9)

where the reflection coefficient is:

R =
(

4k2D/#

sinh 2kh+ 2kh

)
sin(2kmπ/#)
(2k/#)2 − 1

. (20.10)

This result indicates that if the condition for Bragg resonance 2k = # is satisfied,
i.e. the bar wavelength is half of the surface wavelength, the reflection coefficient
becomes

R→ 2kD
sinh 2kh+ 2kh

mπ

2
(20.11)

and is unbounded with increasing m. Mathematically the reason for this reso-
nance can be found from the approximate boundary condition at z = −h

∂φ

∂z

∣∣∣
z=−h

≈ − ∂

∂x

(
b
∂φI

∂x

)
. (20.12)
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When the Bragg condition is met,

b =
D

2
(
e2ikx + c.c.

)
,

then
∂φ

∂z

∣∣∣
z=−h

≈ ikDgkA
4ω cosh kh

(
−e−ikx−iωt + 3e3ikx−iωt + c.c.

)
.

The first forcing term is a natural mode representing a left-going wave, and
must induce resonance of reflection. This is a special case of triad resonance
where quadratic products of the incident wave (±ω,∓k ), and the wavy bottom
(0,±2k), gives rise to reflected waves of the same wave number and frequency
(±ω,±k). Physically, wave crests reflected by each bar differ in phase by integral
multiples of 2π, i.e. 2nπ, hence they reinforce one another; reflection is resonant.

This physical problem has two sharply contrasting length scales: the bar
wavelength, and the much greater total extent of the bar field (or the length scale
of resonant growth). Mei [13] developed a theory uniformly valid near resonance
for narrow-banded waves over nearly periodic bars on a gentle beach with depth
contours parallel to the shoreline. He employed the WKB method well-known
in the theory of wave refraction by using slow coordinates x1, t1 = ε(x, t), where
ε 	 1 is a small parameter characterizing all of the following: the ratio of bar
wavelength to the total domain of bars, the narrowness of the frequency band,
and the amount of detuning from resonance. At the leading order both incident
and reflected waves are allowed

φ =
(
ϕ+

0 + iεϕ+
1 . . .

)
eiS+/ε +

(
ϕ−

0 + iεϕ−
1 . . .

)
eiS−/ε , (20.13)

where ϕ+
n and ϕ−

n are the amplitude functions at the n−th order in ε, and are
functions of z and the slow coordinates x1, y1. The phase functions of the incident
and reflected waves are represented by

S+ =
∫
α(x1) dx1 + βy1 − ωt1 , S− = −

∫
α(x1) dx1 + βy1 − ωt1 (20.14)

respectively. The local wave number vectors representing incident and reflected
waves are

k+(x1) = (α(x1), β) , k−(x1) = (−α(x1), β) ,

and the local angle of incidence θ is

tan θ(x1) =
β

α(x1)
. (20.15)

The bars are assumed to be parallel to the depth contours

b =
1
2
D(x1, y1)

[
exp

(
2i
∫
αdx1

)
+ exp

(
−2i

∫
αdx1

)]
and in resonance with the incident wave. Note that D(x1, y1) is now allowed to
vary with the slow coordinates.
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By assuming that the surface waves and bars are comparably gentle, and
imposing the condition that at the order O(ε) the problem for ϕ±

1 must be solv-
able, the evolution equations coupling the envelopes of the incident and reflected
waves (A and B) are derived,

∂A

∂t1
+ Cgx

∂A

∂x1
+ Cgy

∂A

∂y1
+
∂Cgx

∂x1

A

2
= −iΩo cos 2θB , (20.16)

∂B

∂t1
− Cgx

∂B

∂x1
+ Cgy

∂B

∂y1
− ∂Cgx

∂x1

B

2
= −iΩo cos 2θA . (20.17)

The coupling coefficient

Ωo =
gkD

4ω cosh2 kh
(20.18)

is proportional to the bar amplitude, and

C±
g =

(
Cgx, Cgy

)
=
ω

2k

(
1 +

2kh
sinh 2kh

)
k±

k
(20.19)

are the group velocities of the incident and reflected waves. In the limit of con-
stant mean depth and normal incidence, θ = ∂/∂y1 = 0, the two equations can
be combined to give the Klein–Gordon equation

∂2

∂t21

(
A
B

)
− C2

g

∂2

∂x2
1

(
A
B

)
+Ω2

o

(
A
B

)
= 0 , (20.20)

well-known in modern physics. It is easy to see that the envelopes are dispersive
waves on the long scale.

As analytical examples for demonstrating the physics, we first discuss the
simple case of a finite patch of bars 0 < x1 < L on an otherwise horizontal seabed.
The bar amplitude D is constant. A train of slightly detuned incident waves of
prescribed amplitude arrives from x1 ∼ −∞. Reflected waves are generated over
the bars and propagate back towards x1 ∼ −∞. In general, some transmitted
waves can pass the end at x1 = L towards x∼∞.

We distinguish two cases in the following subsections.

20.2.1 No Reflection from x > L

Consider first the case where there is no reflection from x1 ∼ ∞, simulating
crudely an idealized beach which absorbs all the incident wave energy. Let the
envelope of the incident waves be

A = Ao exp[iK(x1 − Cgt1)] ,

where Ω ≡ KCg with εΩ, εK = O(ε) corresponding to small detuning from
perfect resonance. Then the governing equation in the region covered by bars is
of the form

d2

dx2
1

(
A
B

)
+

1
C2

g

(
Ω2 −Ω2

o

)(A
B

)
= 0 . (20.21)



20 Longshore Bars and Bragg Resonance 507

The solution changes character depending on the sign of Ω − Ωo. Specifically
the solution is monotonic in x1 if the detuning is below cutoff, Ω < Ωo, and is
oscillatory in x1 if the detuning is above cutoff. This difference is also present
in the reflection coefficient R(x1) ≡ B(x1)/A(x1). For subcritical detuning (0 ≤
Ω < Ωo), the reflection coefficient is monotonic in space,

|R|2 =
sinh2

{
ΩoL
Cg

[
1− Ω2

ω2
o

]1/2 (
1− x1

L

)}
cosh2

{
ΩoL
Cg

[
1− Ω2

Ω2
o

]1/2
}
− Ω2

Ω2
o

. (20.22)

For supercritical detuning (Ω > Ωo), R is oscillatory

|R|2 =
sin2

{
ΩoL
Cg

[
Ω2

ω2
o
− 1
]1/2 (

1− x1
L

)}
− cos2

{
ΩoL
Cg

[
Ω2

ω2
o
− 1
]1/2

}
+ Ω2

Ω2
o

. (20.23)

The limit of perfect tuning (Ω = 0) is given by:

|R|2 =
sinh2

(
ΩoL
Cg

(
1− x1

L

))
cosh2 ΩoL

Cg

. (20.24)

As shown in Fig. 20.3, this theory checks very well with the experiments by
Heathershaw whose incident waves are precisely tuned to Bragg resonance with
the bars.

For imperfect tuning, envelope dispersion and cutoff frequency are the dis-
tinctive features of the theoretical results. These have been further studied the-
oretically and experimentally by Hara & Mei [14]. A typical prediction is shown
in Fig. 20.4 in which the symbols for time τ and space x are the dimensionless
equivalents of x1 and t1. An initial wave packet with a bell-shaped envelope
was sent to a zone of periodic bars, distributed in the dimensionless region of
0 < x < 1. At τ = 0 the incident wave packet first arrives at the edge x = 0. At
τ = 3π, envelopes of both transmitted and reflected waves have split into mul-
tiple groups showing dispersion. At τ = 6π dispersion of |A| and |B| continues.

To confirm the predicted dispersion of envelopes, wave-packet experiments
were performed in a long tank with a wave-maker at the end x = −9.1 m In
the stretch 0 < x < 12 m the bed is covered with periodic bars of plexiglass
construction. The end x = 12 m is closed by a vertical and perfectly reflecting
wall. Figure 20.5 shows the comparison between prediction and measurement of
an incident wave packet for Ω = Ωo. The time records of incident and reflected
waves at three stations are shown in the figure. Up to its arrival at the edge
x = 0m, the incident wave packet has a bell-shaped envelope. At the mid-point
of the zone of bars, x = 6 m, dispersion into two groups is evident. Dispersion
increases as the waves strike and are turned back by the reflecting wall at x =
12 m.
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Fig. 20.3. Comparison between theory (20.24) and experiments by Heathershaw [11]
for perfectly tuned waves. From [13]

To check the predicted cutoff frequency for steady incident waves, experi-
ments were performed for a much long time with very small wave amplitude so
as to avoid nonlinear effects of side-band instability. The linearized theory of Mei
was further improved to include O(kA), O(kD) as well as O(k2D2) terms. Not
surprisingly the evolution equation for the wave envelopes include higher order
dispersion:

∂

∂t1

(
A
B

)
± Cg

∂

∂x1

(
A
B

)
+ iΩo

(
A
B

)
= ε

[
ip
∂2

∂x2
1

(
A
B

)
∓ q ∂

∂x1

(
B
A

)
+ ir

(
A
B

)
∓ s

(
B
A

)]
, (20.25)

where p, q, r are functions of kh. With these corrections the agreement between
theory and measurements is very good quantitatively, as shown in Fig. 20.6. The
change from monotonic to oscillatory behaviour when Ω crosses the threshold
Ωo is indeed verified.

For further discussions on oblique incidence and on the mean slope of seabed,
see [13] and [15].

20.2.2 Finite Reflection from x1 > L

In the preceding subsection, both the incident and reflected waves decrease
monotonically toward the transmission end of the finite bar batch, when Ω < Ωo.
Based on this result, it has been suggested that a bar patch well tuned to the
incident waves can serve as a breakwater for protecting the shoreline [15,28,29].
Field attempts have so far not been successful.

On natural beaches, finite reflection from the shore is inevitable. In a nu-
merical study, Kirby & Anton [30] considered a vertical wall at some distance
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Fig. 20.4. Predicted envelopes of the incident (|A|) and reflected (|B|) waves and the
induced long waves (ζ). Bars are distributed in 0 < x < 1. In this figure reproduced
from [14], x corresponds to x1/L and t to t1Cg/L in this article

downwave of a patch of several rigid bars, and found that near Bragg resonance
the amplitude of the free-surface oscillations at the wall can vary between 1 to 3.6
times the amplitude of the incident waves, depending on the distance between
the bars and the wall region between the end of the bar patch and the wall.
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Fig. 20.5. Comparison between theory and experiments for wave packets. Predicted
envelopes are shown by dashed curves, and measured free surface by solid curves. From
[14]
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Fig. 20.6. Comparison between theory and experiments on cutoff frequency. Measured
wave heights at antinodes and the corresponding values of Ω/Ωo are + : 2.04; � :
1.02; squares: −1.02; ◦ : −2.04. From [14]

Suppose that a finite patch of bars is present not too far from a shore along
which breaking does not completely destroy all the incident wave energy. Some
waves must be reflected toward the bar patch. Yu & Mei [31] carried out an
explicit analysis by allowing finite reflection coefficient RL at the transmission
end of a finite patch of bars in 0 < x1 < L, again over a constant mean depth.
The boundary condition becomes:

∂A

∂t1
+ Cg

∂A

∂x1
=

iDωkRL

2 sinh 2kh
A, at x1 = L .

For an incident wave of the form

A = A0 exp[i(Kx1 −Ωt1)] at x1 ≤ 0 ,

from side x1 < 0, it can first be shown that the energy flux rate at any given
station is the same:

Cg(|A|2 − |B|2) = constant , (20.26)

although |A|2 and |B|2 vary in x1 in general. Thus |A| and |B| depend on x1
similarly. While the explicit formulas can be given, it suffices to summarize the
qualitative behaviour of A and B on x1 in the complex plane of R̃L, as shown
in Fig. 20.7, where

R̃L = |RL| exp[−i(θRL + θD)] ,

and θRL and θD are the phases of RL and D respectively. The unit circle rep-
resents the maximum shore reflection |RL| = 1 with all possible phase angles
0 ≤ θRL < 2π. The second circle given by(

Re (R̃L) +
Ω

Ω0

)2

+
(

Im (R̃L)− QCg

Ω0
coth 2QL

)2

=
(
QCg/Ω0

sinh 2QL

)2

, (20.27)
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where Re (f) and Im (f) denote the real and imaginary parts of f , and

Q =
√
Ω2

o −Ω2/Cg .

Since |RL| ≤ 1, all attainable reflection coefficients lie within the unit circle. The
angle θRL represents the phase lag between a crest of the incident wave and a
bar crest at x1 = L, at a chosen instant t. Now the shoreward variation of the A
or B is qualitatively different in different parts of the unit circle. In Region I, i.e.
the lower half of the circle where the phase angle of RL lies between π and 2π,
A and B decrease monotonically towards the transmission end, implying that
bars protect the shore. In the doubly hatched region (II), the opposite is true,
i.e. wave amplitudes increase toward the transmission end, hence the shore line
is adversely affected by the bars. When the complex reflection coefficient is in
the singly hatched region III, the wave amplitudes first decrease then increase
toward the transmission end. Since for fixed bars the phase of RL is determined
by the uncontrollable phase of the incident waves, artificially constructed bars
are not a viable alternative to conventional breakwaters.

Fig. 20.7. Distinguishing behaviour of |A| and |B| as x increases shoreward (from 0
to L). In Region I (semicirle in the lower half plane), |A|, |B| decrease monotonically.
In Region II (doubly hatched), |A|, |B| increase monotonically. In Region III (singly
hatched), |A|, |B| first decrease and then increase

20.3 Long Waves Generated
by Short Waves Scattered by Bars

It is known for smooth seabeds that, due to nonlinear interactions, gentle short
waves with a narrow frequency band can generate long waves (setdown). Though
second-order in steepness, these long waves can reach greater depths than their
parents, hence may have important effects on the evolution of sand bars. Recent
experiments by Dulou, Belzons & Rey [32] are begining to shed light on these
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effects. For rigid bars, Mei [13] and Hara & Mei [14] have shown that the free
surface displacement ζ of the long wave is governed by the forced wave equation

∂2ζ

∂t21
− g∇1 · (h∇1ζ) = g∇1 ·

(
h∇1

[
k(|A|2 + |B|2)

2 sinh 2kh

])
− g

2ω
∂

∂t1

[
α
∂

∂x1

(
|A|2 − |B|2

)
+ β

∂

∂y1

(
|A|2 + |B|2

)]
, (20.28)

where ∇1 ≡ (∂/∂x1, ∂/∂y1) and α and β are the components of the local inci-
dent wavenumber vector k. The forcing terms are associated with the radiation
stresses similar to Reynolds stresses in turbulence, hence long-wave generation
by short waves is somewhat analogous to sound generation by turbulent fluctua-
tions. Sample predictions of long waves are also shown in Fig. 20.4 in normalized
slow variables. Before the wave packet reaches the bars located in the dimen-
sionless range 0 < x < 1, there is only one long wave which travels at the group
velocity of the short waves, hence is bound to the wave packet; this is the clas-
sical set-down, also known as the bound or forced long wave. After reflection
by the bars, two kinds of long waves, bound and free, can be seen. As the re-
sponse to forcing by the local radiation stresses, the set-down long waves are
the inhomogeneous solutions to (20.28). The free long waves correspond to the
homogeneous solutions to (20.28), and travel at the higher speed

√
gh in both

directions, hence ahead of the wave packets. These two long waves are particu-
larly evident at τ = 6π where the free long wave on the reflection side has outrun
the reflected wavepacket and the set-down wave. Experimental confirmation of
the long waves can also be seen in Fig. 20.5.

When the bars are sufficiently large or numerous, the first-order short waves
can be totally reflected. However the second-order free long waves can still be
radiated into the shadow. While the short wave is dominant on the incidence
side, the free long wave is dominant on the transmission side. Thus bars can
alter the wave spectrum of the near shore region2. The lee side of a region with
bars may be free of short choppy seas, but is not necessarily a safe haven for
fishing vessels since long waves may resonate the mooring system whose natural
frequency is usually much lower than that of the wind waves.

We now turn to the interaction of waves with a sandy bed.

20.4 Sand-Bar Formation Dominated by Bedload

While the theory of mass transport in waves over a rigid bed suggests certain
qualitative trends in the formation of sand bars, recent laboratory experiments
[20] on a sandy bed have revealed a more complex physics. In particular bars
can form even when the reflection coefficient is well below 0.414 predicted by
Carter et al. [10].

2 A wide zone of bars can be likened to a thick sound-transforming wall. While a
soprano sings on one side, a baritone is heard on the other.



514 C.C. Mei, T. Hara, and J. Yu

In nature there can be two modes of sediment transport. Suspended load
prevails when the particles are fine and waves are strong, while bedload domi-
nates when particles are coarse and waves are weak. In nature both sand sizes
and wave intensities vary over a wide range depending on the bathymetry and
seasons, hence a complete theory ought to account for both modes of sediment
motion. This task is so far unfulfilled. In [26] and [27] only suspension is included.
In [33], only bedload is taken into account.

In the rest of this article we sketch the work of Yu & Mei [33] which is
aimed at coarse sand and/or weak waves in the shoaling zone where the typical
wave lengths of sand bars and surface waves are comparable to the water depth.
They assumed monochromatic gravity waves propagating over water of constant
mean depth h. Let A0 denote the typical free-surface wave amplitude and kb

and D denote the typical wavenumber and amplitude of sand bars. The typical
horizontal amplitude of wave oscillations just above the bed,

Ab =
A0

sinh kh
, (20.29)

is taken as the scale of orbital motion. Appropriate for the shoaling zone we take

kh = O(1) ,
kb

k
= O(1) . (20.30)

Both surface waves and sand bars are assumed to have gentle slopes characterized
by the small parameter ε,

ε ≡ Abk = O(Dkb) 	 1 . (20.31)

In the field the bar surface is sometimes covered by ripples, which are much
smaller in amplitudes, and grow to full size much faster than the bars. Conse-
quently, ripples will be treated as fixed roughness in a turbulent boundary layer
above the seabed. For simplicity we adopt the Boussinesq model of constant eddy
viscosity ν whose value is estimated from the wave characteristics and sand diam-
eter through an empirical procedure known in the coastal engineering literature
(see [33] for details). To have some quantitative ideas, for incident wave of the
same period T = 8 s, but two sets of amplitudes and depths A0 = 20 cm, h = 8 m
and A0 = 25 cm, h = 7 m, and sand diameter of d = 0.3 mm, the empirical
estimate gives the following eddy viscosities: ν = (2.63, 4.75) cm2/s. The corre-
sponding boundary layer thickness is of the order δ =

√
2ν/ω = (2.59, 3.48) cm,

which is much smaller than the typical wavelength. In the perturbation theory
we take specifically

kδ = O(ε2) , (20.32)

implying that

O

(
Ab

δ

)
= O

(
D

δ

)
= O(ε−1) . (20.33)

The typical sand diameter d is assumed to be much smaller than the thickness
of the boundary layer,

d/δ = O(ε)	 1 . (20.34)
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Under these assumptions we first derive the relation between the bar evolu-
tion and the flow properties in the water above, by employing an empirical law of
sediment transport. The flow above is then examined theoretically to complete
the analytical framework. The evolution equations for sand bars and waves are
finally solved numerically.

20.5 Laws of Bedload Transport

Ignoring suspended load, the kinematic law of mass conservation reads

(1− n)∂b
′

∂t′
+
∂q′

∂x′ = 0 , (20.35)

where q′ is the volume discharge rate of the bedload, b′ is the mean bar height
(after averaging over the small ripples) measured from the mean position of the
bottom, and n is the bed porosity. Primes are used here to distinguish variables
with physical dimensions. For spatially uniform but time-periodic flows over
a plane bed of sand, Sleath [34] has given an empirical relation between the
sediment discharge rate and the Shields parameter which depends solely on the
local bed shear stress. With uneven bed surface the discharge must be affected
by the local slope, for gravity tends to pull down sand grains. We follow an idea
due to Fredsøe [35] for sand bars in steady river flows, and modify the Shields
parameter by adding a term proportional to the bed slope. Specifically, Sleath’s
formula is first assumed to hold locally for spatially varying flow,

q′(x′, t′) =
8
3
Q′

s(x
′)

{
Θ(kx′, ωt′ + dϕ)

Θ̂(kx′)

}2

sgn [Θ(kx′, ωt′ + dϕ)] , (20.36)

where Θ(kx′, ωt′ + dϕ) is the local Shields parameter, Θ̂(kx′) denotes the lo-
cal maximum of Θ within a wave period, Δϕ an empirical phase lag which is
immaterial later after time averaging, and

Q′
s(x

′)√
(s− 1)gd3

=

⎧⎨⎩Cs

[
Θ̂(kx′)−Θc

]1.5
Θ̂(kx′) > Θc

0 Θ̂(kx′) ≤ Θc .
(20.37)

Second, we redefine the Shields parameter by combining the effects of bed shear
stress and bed slope,

Θ(kx′, ωt′ + dϕ) =
τ ′
b(x

′, t′ + dϕ/ω)
ρ(s− 1)gd

− β ∂b
′

∂x′ . (20.38)

When (20.36) is substituted into (20.35), an evolution equation for h′ can
be obtained. Based on a heuristic argument Fredsøe [35] suggests that β =
O(Θc/tanφs), where φs is the angle of repose. From the Shields diagram (e.g.
[36]), Θc is about 0.05 for medium size sand and φs = O(30◦) typically, β ∼
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O(0.1). The introduction of the term β∂b′/∂x′ is crucial, since it gives rise to
a second derivative of b′ in x′, and leads to a forced diffusion equation for b′,
where the diffusivity is proportional to gravity. The mechanics of bar formation
is therefore different from that of ripples whose growth is a consequence of insta-
bility which must initiated by a small perturbation [37]. In contrast, sand bars
can grow from a perfectly plane bed by the nonuniformity of fluid shear stress
which is present for all but the purely progressive waves of uniform amplitude.
Since no comprehensive data is yet available, the numerical value of β can only
be chosen to fit observational data. Physically this slope term is reasonable and
has been employed in modeling small ripples in oscillatory flows [37,38,39] as
well as large sand bars due to tides [40].

From (20.36) and (20.37), the magnitude of the transport rate is

q′ ∼
√

(s− 1)gd3O(Θ̂1.5) . (20.39)

Due to the gentle bar slope, the modified Shields parameter (20.38) is dominated
by the first term, i.e. the plane-bed Shields parameter, whose order of magnitude
can be estimated as:

O(Θ̂) ∼ Abων

(s− 1)gdδ
≡ Θ0 . (20.40)

Introducing the following dimensionless variables without primes,

q′ =
8Cs

3

√
(s− 1)gd3Θ1.5

0 q , b′ = Abb , t′ =
t

ω
, x′ =

x

k
, (20.41)

(20.35) can be written in the dimensionless form

(1− n) a

Θ1.5
0

∂b

∂t
+
∂q

∂x
= 0 , (20.42)

where a is another dimensionless parameter,

a =
3

8Cs

Abω

k
√

(s− 1)gd3
. (20.43)

The ratio a/Θ1.5
0 is the dimensionless time scale normalized by ω−1. Under the

assumptions made at the beginning of this section, Θ0 = O(1), a = O(ε−3.5). The
ratio a/Θ1.5

0 is very large, hence at the leading order b does not vary significantly
over a few wave periods. Denoting by (b̄, q̄) the period-averages of (b, q),

b̄ =
ω

2π

∫ t+2π/ω

t

b dt , q̄ =
ω

2π

∫ t+2π/ω

t

q dt , (20.44)

we get from (20.42) that

(1− n) a

Θ1.5
0

∂b̄

∂t
+
∂q̄

∂x
= 0 . (20.45)
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The part of q that oscillates at the wave frequency contributes to a small cor-
rection to b.

As a preliminary step, let us derive the form of the bar evolution equation in
terms of the stream function ψ′ in the boundary layer, details of which will be left
to the next section. First we introduce a boundary-conforming, non-orthogonal
coordinate system (x′, η′) with η′ = z′ − b̄′ measured from the bar surface, and
next the following normalization,

η = η′/δ , ψ = ψ′/Abωδ . (20.46)

Let us also redefine ε ≡ Abk which is assumed to be of the same order of magni-
tude as the small ratios in the WKB analysis of Sect. 20.2. Upon expanding the
normalized stream function in powers of ε, ψ = ψ0 +εψ1 + · · · , the instantaneous
modified Shields parameter (20.38) can be approximated by:

Θ = Θ0
∂2ψ0

∂η2 + ε
(
Θ0
∂2ψ1

∂η2 + β
∂h

∂x

)
+O(ε2) on η = 0 . (20.47)

Expanding the discharge rate similarly q = q0 + εq1 + ε2q2 + · · · , and taking the
time average, we get from (20.36)

q̄0 = 0 , q̄ = εq̄1 , (20.48)

with

q̄1 = 2Qs0
|ψ0,ηη| (ψ1,ηη − hxβ/Θ0)(

ψ̂0,ηη

)2 , (20.49)

where

Qs0 =

⎧⎪⎨⎪⎩
(
ψ̂0,ηη −

Θc

Θ0

)1.5

ψ̂0,ηη > Θc/Θ0

0 ψ̂0,ηη ≤ Θc/Θ0

(20.50)

is, in dimensionless form, the leading order approximation of Q′
s in (20.37). Here

ψ̂0,ηη denotes the maximun amplitude of ψ0,ηη within a wave period.
After substituting (20.48) into (20.45), and renormalizing time,

t̄ =
εΘ

1/2
0

a
t , (20.51)

the normalized evolution equation for the bar height b̄ is obtained to the leading
order,

∂b̄

∂t̄
− ∂

∂x

(
Dν
∂b̄

∂x

)
= −∂qτ

∂x
, (20.52)

where

Dν =
2β

1− nQs0
|ψ0,ηη|(
ψ̂0,ηη

)2 (20.53)
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is the diffusivity and

qτ =
2Θ0

1− nQs0
|ψ0,ηη|ψ1,ηη(
ψ̂0,ηη

)2 (20.54)

is the integrated forcing. Equation (20.52) is the forced diffusion equation, as
anticipated. Note that both the source term and the diffusivity are affected by
the wave-induced bed stresses, and depend on the local boundary layer flow, to
be sketched next.

20.6 Fluid Flow

In most of the flow above the bed, the inviscid approximation suffices and the
flow is describable by a potential theory. Inside the bottom boundary layer the
flow is rotational. We shall first treat the two regions separately and then require
them to be asymptotically matched.

20.6.1 The Potential Core

In the inviscid core the flow field can be described by a velocity potential Φ′,
(u′, w′) = ∇′Φ′. Since attention from now on will be focussed on the bed, the
coordinates are shifted so that the mean bed surface coincides with z′ = 0. Allow-
ing for slow modulations of the surface waves due to either narrow-bandness or
Bragg resonance, we can perform a perturbation analysis similar to that in [13].
Only the results need to be cited here, in terms of the dimensionless variables
defined before in (20.41) and (20.46), plus the following,

Φ = kΦ′/Abω , z = kz′ , (20.55)

where ζ denotes the free surface displacement.
At the leading order O(ε0), the bottom is flat. The linearized solution is

Φ0 = − i
2

cosh z
(
Aeix −Be−ix) e−it + c.c. (20.56)

Here the amplitudes A and B of the incident and reflected waves are normalized
by Ab.

At the next order O(ε), the solution for Φ1 is the superposition of three time
harmonics e±imt with m = 0, 1, 2, i.e.

Φ1 = Φ
[0]
1 + Φ[1]

1 + Φ[2]
1 . (20.57)

We quote the result for Φ[2]
1 which will be needed to determine the boundary

layer flow in the next section,

Φ
[2]
1 = − 3i

16
cosh 2z
sinh2 kh

(
A2e2ix +B2e−2ix) e−2it + c.c. (20.58)
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For the first-harmonic component, slow variations are allowed in space for res-
onant growth and in time for narrow frequency-band, so that A and B depend
on the slow coordinates x1 = εx, t1 = εt. Now Φ0 is the homogeneous solution
to a linear boundary value problem, and Φ[1]

1 can be shown to be governed by
the same boundary value problem with inhomogeneous forcing and boundary
conditions. Fredholm alternative imposes a condition of solvability for Φ[1]

1 and
leads to the evolution equations for the amplitudes A and B:

∂A

∂t1
+

1
2

(
1 +

2kh
sinh 2kh

)
∂A

∂x1
=

iD1B

2 sinh 2kh
, (20.59)

∂B

∂t1
− 1

2

(
1 +

2kh
sinh 2kh

)
∂B

∂x1
=

iD∗
1A

2 sinh 2kh
, (20.60)

where D1 and its complex conjugate D∗
1 are the first harmonic amplitudes of the

bar profile

b =
1
2

∞∑
m=0

(
Dme2imx +D∗

me−2imx
)

m ∈ N . (20.61)

Since the phase difference between the incident wave and the bars is yet un-
known, we allow Dm to be complex. The two equations (20.59) and (20.60) are
formally the same as those obtained by Mei [13] for rigid bars. However the first
harmonic amplitude D1 is now unknown a priori and is a part of the solution.

20.6.2 The Boundary Layer

Inside the boundary layer, the flow is rotational and the dimensionless vorticity
equation for the stream function ψ is, in the non-orthogonal coordinates (x, η),

∇2ψt − ε
∂(ψ,∇2ψ)
∂(x, η)

=
1
2
∇2∇2ψ , (20.62)

where

∇2 =
(
kδ
∂

∂x
− ε∂h

∂x

∂

∂η

)2

+
∂2

∂η2 . (20.63)

From either observations in the laboratory or order estimates based on bedload
transport formulas, the thickness of moving sand is no more than a few grain
diameters, and much less than the boundary layer thickness (cf. (20.34)). Hence
the no-slip boundary condition can be approximately applied at the bed surface
η = 0. Specifically, we can deduce that [33],

∂ψ

∂x
= O(ε4) on η = 0 , (20.64)

∂ψ[1]

∂η
= O(ε) ,

∂ψ[0]

∂η
=
∂ψ[2]

∂η
= O(ε2) , on η = 0 , (20.65)

where the superscripts in brackets indicate the time-harmonics.
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As boundary conditions at the upper edge of the boundary layer, ψ must join
smoothly with the stream function Ψ(x, z, t) of the inviscid flow. Now the inviscid
stream function can be found at various orders as the harmonic conjugate of the
corresponding velocity potential Φ by the Cauchy-Riemann condition. Thus, at
the leading order the conjugate of (20.56) is

Ψ0 =
1
2

sinh z
(
Aeix +Be−ix) e−it + c.c. (20.66)

At the next order the conjugate of the second-harmonic part (20.58) is

Ψ
[2]
1 =

3
16

sinh 2z
sinh2 kh

(
A2e2ix −B2e−2ix

)
e−2it + c.c. (20.67)

The limiting form of these two expressions at z → 0 must be matched to the
boundary layer solution as η →∞.

To solve the boundary layer problem we assume a multi-scale expansion

ψ = ψ0(z, x, x1, t, t1, t̄ ) + εψ1(z, x, x1, t, t1, t̄ ) + · · · (20.68)

and deduce from (20.62), (20.64) and (20.65) the perturbation problems at the
first two orders. By a straightforward analysis, the solution at leading order
O(ε0) is just the Stokes solution in the new plane (x, η),

ψ0 =
1
2

[
η − 1 + i

2
(1− e−(1−i)η)

] (
Aeix +Be−ix) e−it + c.c. (20.69)

At the second order O(ε), ψ1 is the sum of the zeroth, first and second
harmonics in time. The solutions, when expressed in the (x, η) coordinates, are
formally the same as the classical results of Longuet-Higgins [8]. Only the zeroth
and second harmonics are needed for use in (20.54),

ψ
[0]
1 =

{(
1
4
η +

3− 5i
8

)
e−(1+i)η − 1 + i

8

(
e−(1−i)η +

1
2
e−2η

)
+

3− 3i
8

η

−3− 13i
8

}(
|A|2 − |B|2 +AB∗e2ix −A∗Be−2ix

)
+ c.c. (20.70)

ψ
[2]
1 =

{
1 + i
2
√

2

(
3

8 sinh2 (kh)
+

1
4

)(
e−√

2(1−i)η − 1
)

+
1
4
ηe−(1−i)η

+
3

8 sinh2 (kh)
η

}(
A2e2ix −B2e−2ix) e−2it + c.c. (20.71)

The terms ψ[0]
1 and ψ[2]

1 are respectively the wave-induced steady streaming and
the second harmonic field in the boundary layer. Note that the bottom shear
stresses associated with these two components, ψ[0]

1,ηη and ψ[2]
1,ηη on η = 0, do not

depend explicitly on the bar height b.
In the numerical examples to be discussed, we limit to case where the first-

order wave is monochromatic so that A and B do not depend on t1. Equations
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(20.59) and (20.60) are then ordinary differential equations in x1, with t̄ as a
parameter through D1. At each new time step in t̄, we use the known values
of A,B to compute ψ0, ψ

[0]
1 and ψ[2]

1 . The diffusivity (20.53) and forcing term
(20.54) can then be computed. The bar height b̄(x, t̄) is then solved for one time
step in t̄, subject to the requirement that b̄ be periodic over the wave period with
zero mean. By Fourier decomposition we get the first spatial harmonic D1, which
is then used to solve for the new wave amplitudes from (20.59) and (20.60) as
functions of the long spatial scale x1. The numerical procedure is then repeated
for the next time step for b̄, etc.

20.7 Properties of Bar Evolution Equation

Much insight can be gained before the numerical solution of the bar evolution
equation. The local evolution of the sand bar at a fixed x1 is controled by the
local amplitudes of the incident and reflected waves A(x1) and B(x1), which
define the local reflection coefficient R(x1) = B/A due to the bars themselves. In
general the forcing term (−∂qτ/∂x) and the diffusivity in the diffusion equation
(20.52) are both periodic on the short scale x with the period π, i.e. one half
of the surface wavelength. Thus, the wave-induced bottom stress tends to build
up sand bars with spacings equal to half of the water wavelength. On the other
hand by pulling particles down the slope, gravity limits this buildup through the
diffusion term with the coefficient β. The two counter-acting mechanisms are
both influenced by the local bed stress via Qs0/ψ̂0,ηη. In the limit of a purely
progressive wave (R = 0), ψ̂0,ηη and Qs0 reduce to constants. Consequently, the
diffusivity Dν is uniform in x and the forcing (−∂qτ/∂x) vanishes everywhere.
Without reflection, sand bars cannot be formed from a flat bed.

Omitting the details including the empirical estimates of the ripple height
and the wave friction factors, we show in Fig. 20.8 the forcing (−∂q̄τ/∂x) and
diffusivity Dν as functions of x within half of the surface wavelength between
two adjacent minima (or nodes) of the envelope.

As shown in Fig. 20.8(a), the forcing term (−∂qτ/∂x) is non-zero except for
purely progressive waves with R = 0, therefore bars can be generated as long as
there is some reflection, whether or not the mean current in the boundary layer
is cellular. The hydrodynamic threshold R = 0.414 predicted by Carter et al.
[10] for a rigid bed no longer applies to a sandy bed; this is consistent with the
laboratory finding of O’Hare & Davies [20]. For finite reflection coefficient R the
wave envelope has spatially periodic nodes (minima) and antinodes (maxima).
Under a node, the horizontal orbital velocity is the greatest near the bed; the
forcing is positive for all finite |R|, hence causes deposition of sand and forms
bar crests. Under an antinode, the horizontal orbital velocity is the smallest; the
forcing is negative, hence causes erosion and forms bar troughs.

From Fig. 20.8(b), Dν(x) is symmetrical in x with respect to a envelope
antinode for any finite |R|. The maximum of Dν occurs at a node and the
minimum at an antinode. This is attributable to the fact that the tangential
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Fig. 20.8. Diffusivity and forcing term of the diffusion equation, within half a local
wavelength

velocity above, and the shear stress on, the bed is the largest under a wave node
(near a bar crest) and smallest under an antinode (near a bar trough).

From these two figures we conclude that gravity counteracts the forcing due to
the bed shear and tends to limit the growth of bars. In principle, an equilibrium
state [33] can be achieved when the total transport rate becomes uniform within
a bar wavelength.

20.8 Numerical Simulation of a Laboratory Experiment

Computations have been carried out by solving the coupled equations for the
wave amplitudes, the stream function in the boundary layer, and the sand bar
height. In one class of problems the bed surface is initially flat; the reflection
at the far end of the transmission side is specified. In another class, there are a
finite number of sand bars in the range 0 < x1 < L. Incident waves are assumed
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to arrive from x = −∞ and transmitted to x1 ∼ ∞ without further reflection.
For details of these solutions, references can be made to [33] and [41].

As a check of the present theory, Yu & Mei simulated the experiments of Her-
bich et al. [7] from a fairly large flume (length= 20.6 m, width=depth= 61 cm).
Steady monochromatic waves are generated at one end and reflected by a steep
sea wall at the other. A layer of sand, initial flat and 12.7 cm thick, was placed
on the bottom of the tank for a distance of 11.28 m in front of the sea wall.
The mean diameter of the sand on the bed was d = 0.4826 mm. Half-wavelength
sand bars, with ripples superimposed on them, were found to form along the
bed. Only the spatially averaged depth of scour, measured from the mean bed
position to each bar trough, was reported in [7] as a function of time.

Numerical simulations of the bar evolution under waves have been performed
for three tests reported in [7]. For each test, β is so adjusted that the predicted
bar heights at late stages (i.e. close to steady state) agree with the data. Figure
20.9 shows the comparison of the averaged depth of the bar troughs throughout
the entire course of the evolution, for Test 1. The data include results for three
different wall inclinations 45◦, 67.5◦ and 90◦, all of which should give complete
reflection. That they fall nearly onto a single curve suggests that the phase of
the end-wall reflection θRL at x1 = L is not important to the bar height. With
β close to the value used by Fredsøe for river bars, the agreement between the
predictions and the data is fairly good during the entire course of transient
evolution.

In other numerical experiments, Yu & Mei [33] have examined the formation
of sandbars on a initially flat horizontal bed due to the reflection of monochro-
matic incident waves. The rate of growth and the ultimate bar size and form
depend on the incident wave characteristics, the reflection coefficient and sand
size. Naturally, large reflection leads to higher bars spaced at exactly one half of
the wavelength. There is no minimum threshold on R for bars to form.

20.9 Further Remarks on Sand Bars

20.9.1 On Scaling in Laboratory Experiments

There are several other laboratory experiments in relatively small flumes with
low reflection, aiming at greater details of bar formation. One outstanding feature
of these simulations is the exagerated prominence of ripples. O’Hare and Davies
[20,21] used a flume 10 m long and 0.3 m wide and 0.45 m deep. The water depth
was about 15 cm above the erodible bed. For sand with diameter d = 0.08 mm
the observed ripples were typically 2 cm in height (crest to trough), while the
bars were only 3 ∼ 4 cm. For ballotini grains with d = 0.11 mm, the observed
ripple height was 0.5 cm and bar height 1 ∼ 2 cm. In Rey et al. [22], the flume
was only 4.7 m long and 0.39 m wide, and the sediment size was d = 0.08 mm.
The water depth was 4.75 cm above the sand layer. The observed ripple height
was 0.23 cm, and bar height was 0.5 ∼ 0.7 cm. Thus, in both experiments the
ripples were quite prominent compared with the sand bars. In contrast, acoustic



524 C.C. Mei, T. Hara, and J. Yu

0 8 16 24 32 40 48 56
0

0.2

0.4

0.6

0.8

0 8 16 24 32 40 48 56
0

0.2

0.4

0.6

0.8

number of wave cycles (thousands)

re
la

tiv
e

de
pt

h
o

fs
co

ur

test 1
β = 0.250

Fig. 20.9. The averaged depth of bar trough (normalized by the surface wave height)
as a function of time. (Solid curve): the predicted height of bar crest above the mean
bed position. (Dashed curve): the predicted depth of bar trough below the mean bed
position

sounding records by Dolan [4] of natural bars in Chesapeake Bay do not show
such prominence of ripples.

We give below the reasons [41] that in a laboratory experiment dynamical
similarity can easily be achieved for ripples, but not for bars, especially those
generated by the bedload. The implication is that accurate laboratory simulation
of sand bars, hence definitive comparison between theory and measurement,
requires that experiments be performed in large flumes.

The bar evolution equation (20.52) depends on three parameters: a, Θ0 and
ε. To simulate nature in the laboratory, it is necessary that

(a)m

(a)p

=
(Θ0)m

(Θ0)p

=
(ε)m

(ε)p

= 1 , (20.1)

where the subscripts m and p stand for model and prototype, respectively. From
the similarity of wave steepness ε, we have (Ab)m/(Ab)p = kp/km. It then follows
that

(a)m

(a)p

=
(
km

kp

)−3/2
[

(tanh kh)m

(tanh kh)p

]1/2([
(s− 1)gd3

]
m

[(s− 1)gd3]p

)−1/2

. (20.2)

The dispersion relation has been used. The factor tanh(kh) can be made the
same for both the prototype and the model. Let natural sand and water be used
in the laboratory experiment. From (20.2), we must require

(kd)m � (kd)p (20.3)

in order to have the same a. For 1–to–50 ratio of length scales, this would mean
dm/dp ∼ 1/50, which is difficult to achieve with sand.
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Moreover,

(Θ0)m

(Θ0)p

=
(
km

kp

)−1/4
[

(tanh kh)m

(tanh kh)p

]3/4(
νm

νp

)1/2
(

[(s− 1)gd]m
[(s− 1)gd]p

)−1

. (20.4)

In order to have the same Θ0, we must have

νm

νp
=
(
km

kp

)1/2
(

[(s− 1)gd]m
[(s− 1)gd]p

)2

. (20.5)

This implies that νm/νp = (km/kp)
1/2 ∼ 7, if natural sands are used. Thus the

flow in a laboratory experiment needs to be more turbulent than that in the
field. This is certainly unlikely. Thus sand bars are not easily simulated in a
water tank with ordinary sand.

Ripple formation is quite different. Based on a bedload model, the linear
instability analyses of Blondeaux [37] and Mei & Yu [39] have revealed that the
parameters controlling the dynamics of ripples are the particle Froude number,

Fd =
Abω√

(s− 1)gd
, (20.6)

and the ratio of local wave orbital radius to ripple wavelength Abkr, where kr

is the ripple wavenumber. In particular the most unstable ripple wavenumber
is determined by an eigenvalue condition which is a relation between Abk and
Fd. To simulate the most unstable ripple wavelength it suffices to require only
(Fd)m = (Fd)p, which is not a severe constraint by using natural sand and water
in the laboratory.

20.9.2 Future Challenges on Sand-bar Theories

Since the crucial term representing gravity-induced diffusion depends on the
coefficient β of which we know only the order of magnitude, it would be highly
desirable to perform experiments to measure β in oscillatory flows over a sloping
sandy surface. Such experiments can be conducted in a U-tube with an inclined
section and oscillating pistons at two ends.

On a sloping beach, the waves must intensify while propagating towards
the shore. A greater fraction of sand is expected to be resuspended. Rational
treatment of both bedload and suspended load is therefore necessary. In addition,
small scale ripples, whose presence is only empirically accounted for here through
the eddy viscosity, deserves theoretical studies in their own right. Expected to
grow much faster than the bars, their length and amplitude, as well as their
migration, must depend on their position on the bars. Indeed their migration
may contribute to the bed load transport on the bar surface.

For sufficiently steep waves, nonlinear dynamics of waves should introduce
unsteadiness of much longer time and spatial scales. In particular the infragravity
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waves, generated through nonlinearity by narrow-banded short waves, should
have profound influence on, and be altered by, the long-time evolution of the
sandy beds. The Bragg resonance mechanism and the 1–to–2 wavelength ratio
will likely appear in only one of several stages of bar evolution, as suggested
by the experiments of Dulou et al. [32]. In addition, it is necessary to pursue
the effects of complex waves such as randomness and diffraction by large scale
bathymetric variations.

Finally the mechanics of sand bars depends of course on our understanding
of the sediment dynamics in waves. Thus far practical theories must all rely on
empirical formulas relating the bed shear to the sediment discharge. Heuristi-
cally, these relations are largely based on real or perceived similarity with steady
unidirectional flows. It is well-known in soil mechanics that persistent oscillations
due to earthquakes [42] or ocean waves [43,44] can cause monotonic increase of
the mean fluid pressure in the pores, hence reduce the contact between grains
and liquefy the wet soil. Understanding this highly nonlinear process requires the
collaboration between fluid and soil dynamicists. Also, as waves pass over a sat-
urated sand, hydrodynamic pressures of alternating signs exert on the mud-line.
For sufficiently steep waves, the passage of wave troughs can conceivably in-
duce large enough instantaneous pore pressure gradient in the upward direction
and cause periodic fluidization. Thus the transient vertical pressure gradient
can likely be as important as the horizontal bed shear stress in resuspending
sand particles. Subsequent transport of suspensions demands a transient anal-
ysis of two-phase flows involving turbulence. While these would involve more
complex theories, perhaps similar to gas-induced fluidization extensively studied
in chemical engineering, they may offer some chance for bringing the dynamics
of sediments in waves to a less empirical level.
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21.1 Introduction

Torrential floods are a major natural hazard, claiming thousands of lives and
millions of dollars in lost property each year in almost all mountain areas on
the Earth. After a catastrophic eruption of Mount St. Helen in the USA in
May 1980, water from melting snow, torrential rains from the eruption cloud,
and water displaced from Spirit Lake mixed with deposited ash and debris to
produce very large debris flows and cause extensive damage and loss of life [1].
During the 1985 eruption of Nevado del Ruiz in Colombia, more than 20,000
people perished when a large debris flow triggered by the rapid melting of snow
and ice at the volcano summit, swept through the town of Armero [2]. In 1991,
the eruption of Pinatubo volcano in the Philippines disperses more than 5 cubic
kilometres of volcanic ash into surrounding valleys. Much of that sediment has
subsequently been mobilised as debris flows by typhoon rains and has devas-
tated more than 300 square kilometres of agricultural land. Even, in European
countries, recent events that torrential floods may have very destructive effects
(Sarno and Quindici in southern Italy in May 1998, where approximately 200
people were killed).

The catastrophic character of these floods in mountainous watersheds is a
consequence of significant transport of materials associated with water flows.
Two limiting flow regimes can be distinguished. Bed load and suspension refer
to dilute transport of sediments within water. This means that water is the
main agent in the flow dynamics and that the particle concentration does not
exceed a few percent. Such flows are typically two-phase flows. In contrast, debris
flows are mass movements of concentrated slurries of water, fine solids, rocks
and boulders. As a first approximation, debris flows can be treated as one-phase
flows and their flow properties can be studied using classical rheological methods.
The study of debris flows is a very exciting albeit immature science, made up
of disparate elements borrowed from geomorphology, geology, hydrology, soil
mechanics, and fluid mechanics. The purpose of this chapter is to provide an
introduction to physical aspects of debris flows, with specific attention directed
to their rheological features. Despite attempts to provide a coherent view on the
topic, coverage is incomplete and the reader is referred to a series of papers and
books. Three books are particularly commendable [3,4,5]. Some review papers
provide interesting overviews, introducing the newcomers to the field to the main
concepts [6,7,8]. The background material in rheology can be found in Chaps. 2
and 3.

N.J. Balmforth and A. Provenzale (Eds.): LNP 582, pp. 528–547, 2001.
c© Springer-Verlag Berlin Heidelberg 2001
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21.2 A Typology of Torrential Flows

21.2.1 The Watershed as a Complex Physical System

The notion of torrent refers to a steep stream, typically in a mountainous context.
According to a few authors, a stream can be referred to as a torrent as soon as
its mean slope exceeds 6%. For bed slopes ranging from 1% to 6%, it is called a
torrential river. For bed slopes lower than 1%, it can be merely called a river.
In addition to the slope, the sediment supply is generally considered as another
key ingredient in torrential watersheds. Depending on the nature of the soil and
relief, slopes can provide a large quantity of poorly sorted solid materials to
torrents. Supplied materials have sizes ranging typically from 1 μm to 10 m. The
situation is very different from the one encountered for streams on a plain, where
bed material is much finer and sorted (typically 1 μm to 10 cm) since it generally
results from transport that occurred during previous floods. Finally, one of the
chief ingredients of torrential watersheds is water. Due to the small dimensions
of torrential watersheds (typically from 0.1 km2 to 100 km2) and the steep slopes,
floods are sudden, short, and violent. The flood regime differs significantly from
plain floods, which are characterised by slower kinetics and smoother variations
with time. Figure 21.1 depicts a typical watershed. The upper part is generally
degraded and submitted to erosion to a more or less large extent. It supplies
water and sediment to the floods. Below this basin, the torrent enters a gorge,
sometimes with very abrupt flanks depending on the nature of the soil. Then the
torrent discharges onto the alluvial fan. The slope transition between the gorge
and the alluvial provides interesting information on bed equilibrium. Generally,
a watershed with an abundant supply of sediment and intense bed load transport
in the past is characterised by a smooth transition from channel to fan.

For plain rivers, sediment transport results from the action of water: water
entrains materials either by pushing them along the bed (bed load transport)
or by keeping them in suspension as a result of turbulence (suspension). In a
torrential context, as soon as the bed inclination is sufficiently high, gravity has
a more pronounced role on sediment transport. Therefore, on the one hand, bed
load transport is more intense and on the other hand, a new mode of transport
arises: debris flow. We can define them as follows:

• Debris flows are highly concentrated mixtures of sediments and water, flowing
as a single-phase system. Debris flows look like mudslides and landslides except
that their velocity and the distances they travel are much larger. It is worth
noticing that in the literature there are many terms used to refer to slides
and/or debris flows, which is a source of confusion.

• Bed load transport involves transportation of sediment by water. Coarse par-
ticles (sand, gravel, and boulders) roll and slide in a thin layer near the bed
(called the bed layer). Generally fine particles (silts and clays) are brought
into suspension as a result of water turbulence. The system is typically made
up of two distinct phases: liquid phase (i.e. water) and dispersed (solid) phase.
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Fig. 21.1. A typical watershed (courtesy of Nicole Sardat)

21.2.2 Types of Transport

In the laboratory, it is possible to simulate torrential phenomena using an in-
clined channel with a mobile bed made up of sand and gravel. Figures 21.2 and
21.3 show two very different situations that can be observed when the channel
slope is increased by only a few percent. Figure 21.2 corresponds to a slope
of 17%. At high discharges, fine particles are in suspension while the coarsest
particles are pushed down to the bed. In this photograph the largest particles
are stationary and significantly affect water flow. The two phases (solid and liq-
uid) are well separated and water flows much faster than solid particles. When
the inclination exceeds a critical value (approximately 20%), significant sudden
changes can be observed: a transition from a two-phase flow to a single-phase
flow occurs very quickly. The mixture takes on the appearance of a “viscous”
homogeneous fluid flowing down the bed. Figure 21.3 (slope of 27%) illustrates
such a transition and the resulting mass movement. Most laboratory experiments
conducted with water flows on erodible beds have shown that the bed inclination
θ is a key factor in sediment transport dynamics [9,10,11,12,13]. On the whole
it has been observed that:

• θ < 20%: at sufficiently high water discharges, water flow induces intense bed
load transport near the bed. As a first approximation, the water and solid
discharges (respectively qw and qs) are linearly linked: qs ≈ 8.2 θ2qw (this
relationship is an overly simplified expression of discharge obtained by Smart
and Jaeggi [11] or Rickenmann [10]). Three layers can be distinguished: the
bed made up of stationary particles (that can be eroded), the (active) bed
layer in which sediment of all sizes is set in motion (rolling and sliding), and
the water layer, where fine particles are in suspension or in saltation. In two-
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phase flows of this type the solid concentration (ratio of solid volume to total
volume) does not exceed 30%.

• θ > 20%: at sufficiently high water discharges, bed load transport is unstable.
It changes into a dense single-phase flow. The solid concentration is very high,
ranging from 50% to 90% depending on the size distribution of particles. Such
flows simulated in the laboratory correspond to debris flows in the field.

Fig. 21.2. Small-scale simulation of bed load transport in the laboratory. The solid
and liquid phases are distinct (water was coloured with fluoresceine). The typical flow
depth in these experiments was 1 cm

Fig. 21.3. Small-scale simulation of a debris flow in the laboratory. The solid and
liquid phases are mixed
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In the laboratory, the transition from bed load transport to debris flow is
reflected by a discontinuity in the solid concentration. It is suspected that such
a discontinuity still exists in the field, at least in the Alps, but the underlying
mechanisms are unknown. It is worth noticing that in the field, debris flows
can also form from landslides [7]. In this case, the transformation mechanisms
are similar to soil liquefaction processes (rapid creep of saturated soils). In the
following, we will tackle the problem of debris flows, which are intrinsic to moun-
tain torrents and steep slopes. Other chapters in this book deal with bed load
transport.

21.3 Initiation, Motion, Effects of Debris Flow

21.3.1 Initiation

The torrential activity of a watershed depends on many parameters. Debris flows
are common in some areas and uncommon in others. In areas prone to debris flow
formation, their frequency also varies. In some watersheds, several debris flows
occur each year while for other torrents, they are rare. Conditions for initiation
of most debris flows usually include:

• Steep slopes. In the Alps, slopes in excess of 70% are liable to surface erosion
(sediment transport induced by runoff) and landslides (soil failure leading to
large masses of saturated materials coming loose).

• Abundant supply of unconsolidated materials. Debris flows originate either
from the simultaneous contributions of many material sources or from a single
source (landslides):

– Slow and continuous erosive processes on slopes in the drainage basin form
deposits of materials in the torrent bed. Such deposits can be subsequently
mobilised during intense floods and then transform into debris flows. In this
case, debris flow originate as a slurry, primarily of water and fine parti-
cles, which erodes its channel and grows in size. Presumably instabilities
in the bed load transport (such as those observed in the laboratory) arise
and enable debris flow initiation. Usually the volume produced every year
by erosion over the whole drainage basin is small and thus the amount of
sediments that can be involved by a single debris flow is limited (< 105 m3).
In the field, the absence of failure surfaces and the presence of rills in the
drainage basin are generally evidence that a debris flow has picked up coarse
materials from the bed.

– Old ill-consolidated deposits (moraines, massive rockfall deposit, etc.) can
mobilise into landslides to form debris flows. In this case, the volume of ma-
terials involved can be very large (> 105 m3) depending on the total volume
made available by the source. Likewise, certain soils (e.g. gypsum) are very
liable to landslides and can supply materials to debris flows. Presumably,
initiation is due to a combination of several mechanisms: rapid creep de-
formation, increase in pore pressure, increase in load, erosion at the foot of
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the landsliding mass, etc. In the field, the presence of a failure surface can
clearly serve to identify the source of material.

• Large source of moisture. Most of debris flows occur during or after heavy and
sustained rainfalls. In some cases, snowmelt can be sufficient to form debris
flows. (There are many other ways in which water can be provided for the
formation of debris flows: thawing soil, sudden drainage of lakes, dam break,
etc., but these are much less frequent.) A high liquid water content seems
to be a necessary condition for the soil to be saturated, which cause: intense
surface runoff, and an increase in the pore–water pressure (presumably leading
to Coulomb slope failure).

• Sparse vegetation. Vegetation plays a role by intercepting rainfall (limitation
of runoff) and increasing soil cohesion (root anchorage). Vegetation reduces
the initiation potential to a certain extent but does not completely inhibit
formation of debris flows. Many observations have shown that debris flows
also occur in forested areas.

21.3.2 Motion

On the whole, debris flows are typically characterised by three phases, that can
change with time (see Fig. 21.4):

• At the leading edge, a granular front or snout contains the largest concentra-
tion of big rocks. Boulders seem to be pushed and rolled by the body of the
debris flow. The front is usually higher than the rest of the flow. In some cases
no front is observed because either it has been overtaken by the body (very
frequent when the debris flow spreads onto the alluvial fan), or the materials
are well sorted and no significant variation in the bulk composition can be
detected.

• Behind the front, the body has the appearance of a more fluid flow of a rock
and mud mixture. Usually, the debris flow body is not in a steady state but
presents unsteady surges. It can transport blocks of any size. Many authors
have reported that boulders of relatively small size seem to float at the free
surface while blocks of a few meters in size move merely by being overturned
by the debris flow. The morphological characteristics of the debris flow are
diverse depending on debris characteristics (size distribution, concentration,
mineralogy) and channel geometry (slope, shape, sinuosity, width). Debris
flows velocity varies very widely but, on the whole, ranges from 1 m/s to 10 m/s
[14]. The fastest debris flows are reported to move at more than 20 m/s [14].
Flowing debris can resemble wet concrete, dirty water, or granular material but
whatever the debris characteristics and appearance, viscosity is much higher
than for water. Most of the time, debris flows move in a completely laminar
fashion, but they can also display minor turbulence (or be highly turbulent).

• In the tail, the solid concentration decreases significantly and the flow looks
like a turbulent muddy water flow.
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Fig. 21.4. Idealised representations of a debris flow (longitudinal profile and cross
section). The different sections correspond to the dashed lines of the upper panel.
Adapted from [15]

21.3.3 Deposition and Effects

The distance that a debris flow can travel depends a great deal on the mechanical
characteristics of the debris as well as the total volume, channel geometry and
bed inclination. For instance it is generally observed that a debris flow moving
over a flat tilted plane thins by spreading laterally and stops suddenly, seemingly
when the thickness reaches a critical value. In contrast, if the debris flow is
channelized, it may travel quite a long distance over gentle slopes. In European
alpine countries, debris flows (of sufficient volume) generally begin to decelerate
when the slope ranges from 10% to 25%. For some torrents, (e.g. Illgraben in
Switerland and Boscodon in France), debris flows can propagate over gentle
slopes (of less than 5%). In volcanic soil areas, it has been also demonstrated
that lahars (debris flows involving water–ash mixtures) can propagate over very
slight slopes (less than 1%) [14].

For some debris flows, constant deposition occurs all along the channel and
forms levees on the lateral boundaries of the torrent. Depending on the size
distribution of the materials involved in the debris flow, a levee can have various
shapes. In most cases, the cross section reveals a curved profile and, when the
deposit is dry, it is characterised by strong cohesion. In other cases, the cross
section has a straight free surface and even when it is dry, the deposit displays
minor cohesion and looks like a sand or gravel heap. Formation of levees is
not systematic. Many observers have noticed that, after a debris flow has passed
through a channel, the channel bottom and sides have been swept clean of debris.

The alluvial fan is the preferential area for debris-flow deposition owing to
the decrease in bed slope and widening of the channel. The slope decrease usually
leads to the sudden stopping of the granular front and increase in the flow depth
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for the body. In many cases, debris flows overflow the channel banks and spread
as broad lobes on the alluvial fan. As for levees, the morphological features of
lobes vary widely. For instance, the longitudinal profile of a lobe margin can be
curved (parabola-shaped), straight and tilted, or step-shaped. In the latter case,
the deposit looks like an alluvial deposit. Although they move at low velocities
on the alluvial fan, debris flows can impact or bury structures.

21.4 Debris Flow Classification

The diversity in the morphological features of debris flows provides evidence
of different families with specific bulk behaviour. Several classifications have
been proposed in the last few years. To date, there is no agreement on the chief
characteristics on which classification should rely. Therefore, some classifications
are based on the size distribution of materials involved, others only consider the
mode of release, etc. Here we are mainly interested in the manner in which a
debris flow propagates and therefore we suggest using a classification based on
bulk mechanical behaviour. We shall therefore consider three families:

• Muddy debris flow. The transported material is usually characterised by a wide
particle-size distribution. It is sufficiently rich in clay-like materials for the ma-
trix to have a muddy consistency and lubricate contact between coarse par-
ticles. Most of the time, bulk behaviour is typically viscoplastic. That means
that the material exhibits both plastic and viscous properties [3,16,17,18,19,20].
When the stress level is low, the material behaves as a solid body, but when
the stress level exceeds of a critical value (yield stress), it flows as a fluid does.
This yield stress confers specific properties to the material. For instance, when
a given volume of material is released and spreads down a tilted flat plane, the
flow depth decreases regularly. When the flow depth reaches a critical value
(depending on the yield stress and the plane inclination), the driving shear
stress is lower that the yield stress and the flow stops abruptly. In most cases,
the yield stress ranges from 0.5 kPa to 15 kPa. Muddy debris flows can usu-
ally propagate over slopes greater than 5%. The limits of deposits are sharp
and well delineated. Boulders and gravel are randomly distributed in a finer-
grained cohesive matrix. Muddy debris flows are very frequent in the Alps.

• Granular debris flow. Although the size distribution is wide, the material is
poor in fine (clay-like) particles. Bulk behaviour is expected to be frictional-
collisional [23,24,25,26]: it is mainly governed by collisions and friction between
coarse particles. Energy dissipation is usually much larger for granular debris
flows than for muddy debris flows and thus, granular debris flows require
steep slopes (> 15%) to flow. Presumably, as for very large rockfalls, a gran-
ular debris flow involving a very large amount of materials may travel large
distances over more gentle slopes. In the field, deposits are easily recognised
by the irregular chaotic surface. Deposits are generally graded, with coarser
debris forming mass deposits and finer debris transported downstream (due
to drainage).
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• Lahar-like debris flow. The particle-size distribution is narrow and the mate-
rial contains only a small proportion of clay-like materials. This type of debris
flow is typical of volcanic soil areas (soils made up of fine ash), but it can be
observed on other terrain (e.g. gypsum, loess) [21]. Bulk behaviour is expected
to be frictional/viscous: at low shear velocities, particles are in sustained fric-
tional contact and bulk behaviour may be described using a Coulomb frictional
equation. At high shear velocity, due to dilatancy and increased fluid inertia,
contacts between coarse grains are lubricated by the interstitial fluid [27]. In
the laboratory, such materials exhibit very surprising properties: at rest, they
look like fine soil (silts) but once they have been stirred up, they liquefy sud-
denly and can flow nearly as Newtonian fluids. Contrary to muddy debris
flows, the yield stress is low and therefore, lahars can move over gentle slopes
of less than 1%. Deposits are very thin and flat and look like alluvial deposits.

21.5 Modelling Debris Flows

There are many similarities between debris flows and flowing avalanches. Both
are rapid gravity-driven flows of dense materials down mountain slopes. Thus,
approaches similar to those developed for modelling avalanches have been pro-
posed (see Chap. 13).

21.5.1 Statistical Approach

A few authors have attempted to relate the runout distance (and other debris
flow characteristics) to the watershed features. Extensive work performed by
Swiss scientists and engineers has led to different equations [5,28,29]. For in-
stance, using regression analysis, Zimmermann and co-workers found that the
most significant variable in the runout distance was the surface of the watershed
S (in km2) [5]: α = 0.2S−0.26, where α is the angle between the line joining the
top of the starting zone to the stopping point with respect to the horizontal.
Such an equation differs from the ones inferred for avalanches. Indeed, in this
latter case, it has been found that the angle α mainly depends on the angle β
corresponding to a path characteristic (see Chap. 13). This might mean that,
contrary to avalanches, the runout distance of debris flows is less influenced by
channel geometry and probably depends a great deal on the sediment volume.
Indeed, in the above equation, the watershed-surface dependence does reflect a
debris-flow volume dependence since most of the time debris involved in debris
flows result from erosion of the drainage basin, thus it is expected to depend
on S. The correlation existing between the runout distance and the debris-flow
volume has been further demonstrated by Rickenmann [28]. Using data from 82
events, Rickenmann inferred the following statistical equation: L = 350V 0.25,
where L is the maximum distance (in m) that a debris flow of volume V (in m3)
can travel. Likewise, he found that for a muddy debris flow, the peak discharge
Qp (in m3/s) can be estimated at: Qp = 0.0225V 0.8, while Mizuyama found
that, for a granular debris flow, it can be estimated at: Qp = 0.135V 0.78. It
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should be noted that the peak discharge is much higher for granular debris flows
than for muddy debris flows.

21.5.2 Deterministic Approach

The distinctions in the spatial scale and model complexity that have been put
forward for avalanches, are still valid here. As for avalanches, Voellmy’s model
and depth-averaged mass and momentum equations have been proposed.

Empirical Model: The PCM Model Adapted to Debris Flow

Zimmermann has adapted the Perla–Cheng–McClung avalanche-dynamics model
to compute characteristics of debris flow [5]. He assumed that a debris flow can
be approximated by the motion of a solid block of massM , subject to a frictional
force including two contributions:

• a Coulombic frictional contribution (ground/debris flow): FC = μMg cos θ,
• a dynamic drag: FD = Dv2,

where μ and D are two parameters, θ is the bed slope. The momentum equation
in the downstream direction can then be expressed as follows:

1
2

dv
dx

= g(sin θ − μ cos θ)− D

M
v2 . (21.1)

Debris flow terrain is represented by a centreline profile stretching from the top
of the starting zone to the end of the runout zone. The profile must be subdivided
into several segments, which are sufficiently short for the slope to be considered
constant. The length of segment i is Li. At the end of the ith segment, the
velocity (vf

i ) depends on the initial velocity (vd
i ) at the top of this segment:

vf
i =

√
a
M

D
(1− eβ) + (vd

i )2eβ , (21.2)

where we have introduced a = g(sin θ − μ cos θ) and β = −2Li/(M/D). If the
debris flow stops within segment i, then the runout distance (from the beginning
of the ith segment) is given by:

xs =
1
2
M

D
ln
(

1− (vd
i )2

aM/D

)
. (21.3)

Velocity at the bottom of a segment, vf
i , is used to compute velocity, vd

i+1, at
the top of the next segment:

vd
i+1 = cos(θi − θi+1)v

f
i . (21.4)

This computation is repeated downslope until the block stops. The values of
the two parameters μ and D have been adjusted to 49 events that occurred in
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the Swiss Alps. Although this sample size may be considered too small to draw
reliable correlations, it can provide helpful trends: μ and D are independent of
the volume V and μ depends on the watershed surface. According to Zimmer-
mann and co-workers [5], this dependence might suggest that the runoff over the
drainage basin affects the solid concentration, and the frictional coefficient μ.
They proposed two correlations:

• Lower value: μ = 0.18S−0.30.
• Upper value: μ = 0.13S−0.35.
• The mass-to-drag ratio M/D depends a great deal on size distribution. They

found:

– fine material (clays, fewer blocks): 20 ≥M/D ≥ 60 (average: 40),
– fine-grained and coarse materials (clays, boulders): 80 ≥ M/D ≥ 180 (av-

erage: 130),
– granular materials (sand and gravel): 40 ≥M/D ≥ 100 (average: 70).

• No channelling effect was observed.
• No influence of the starting type (single or multiple sources) was detected

regarding the friction coefficients.

Depth-averaged Models

The principles of depth-averaged models have been specified in Chaps. 13 and 22.
The chief approximation is to consider the material involved in a debris flow as a
homogeneous fluid. Thereby its behaviour can be described using a constitutive
equation. Unlike snow, many experiments on debris have been conducted to gain
insight into the rheology of these materials [3,20]. In a steady state, the shear
stress may be written as follows:

τ = f(γ̇, ζ) , (21.5)

where τ denotes the shear stress, γ̇ is the shear rate, and ζ refers to a group
of mechanical parameters on which bulk behaviour depends (for instance, this
group can include the solid concentration φ or other parameters pertaining to
the microstructure). Depending on the kind of debris flows, several constitutive
equations have been proposed to describe debris flows (cf. also Chaps. 3, 4, 7
and 22):

• For lahar-like debris flows, bulk behaviour may be described using a Newtonian
constitutive equation as a first approximation: τ = μ(φ)γ̇. Viscosity is usually
very high, with typical values close to 103 Pa s [21].

• For muddy debris flows, bulk behaviour is usually best described using a Bing-
ham or Herschel–Bulkley model: τ = τc(φ) + K(φ)γ̇n, where τc is the yield
stress, K a parameter, n a shear-thinning index (n ≤ 1, n = 1 corresponding
to the Bingham model). For a flow to occur (γ̇ > 0), the shear stress must
exceed the yield stress τc. In the Alps, bulk yield stress values range from
0.5 kPa to 15 kPa and the ratio τc/K lies usually in the range 3–10 [22].
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• For granular debris flows, bulk behaviour is expected to be frictional and/or
collisional. To date there is no unanimity concerning the constitutive equation
suitable to describe frictional–collisional flows. Different models have been
proposed with very different stress generation mechanisms: collisional Bag-
nold models [23], collisional kinetic models [26], collisional–frictional consti-
tutive equations [24], models based on pore-pressure effects [7], etc. Further
developments on granular flows down steep slopes can be found in Chap. 4.

Once the constitutive equation has been determined, it is possible to compute
some characteristics, notably the ones related to a steady state flow. Indeed,
the stress distributions are known for steady uniform flows independently of the
constitutive equation (cf. Chap. 3). For instance, the shear stress distribution
is given by the following equation: τ = �g(h − y) sin θ, where � is the bulk
density and (h − y) is the depth with respect to the free surface. Comparing
this expression to (21.5) and after integration, we can deduce the velocity field.
Further integration leads to the discharge equation. For instance, in the case of
a Herschel–Bulkley fluid, we obtain:

y ≤ hc ⇒ u(y) =
1
p

n

√
�g sin θ
K

[hp
c − (hc − y)p] , (21.6)

y ≥ hc ⇒ u(y) =
1
p

n

√
�g sin θ
K

hp
c , (21.7)

where we introduce: p = 1/n + 1 and hc = h − τc/(�g sin θ). Near the free
surface, a non-sheared zone (“plug flow”), characterised by a constant velocity,
is observed. An expression of this sort is meaningful provided that the flow depth
exceeds a critical value: h > τc/(�g sin θ). Thus the existence of a yield stress
implies the existence of a critical flow depth, under which no steady uniform flow
is possible and the existence of critical slope sin θc = τc/(�gh). After integration,
the discharge is found to be:

q =
1
p

n

√
�g sin θ
K

hp
c

(
h− 1

p+ 1
hc

)
. (21.8)

The discharge is a strongly non-linear function of the flow depth. As n ≈ 0.3,
this means that small changes in the flow depth can cause large variations in
the flow rate. All these computations can be extended to gradually varying flows
(i.e. slightly non-uniform and unsteady). In the case of a Herschel–Bulkley fluid
flowing down an inclined infinite plane, the resulting motion equation set is (see
Chap. 22 for a more complete introduction):

∂h

∂t
+
∂hū

∂x
= 0 , (21.9)

∂hū

∂t
+
∂hū2

∂x
= g sin θ − τp

�
− gh cos θ

∂h

∂x
, (21.10)
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where τp is the bottom shear stress:

τp = K

(
1 + p
p

)n
ūn

hn+1
c [(1 + p)h− hc]

n . (21.11)

Generally the motion equation set must be solved numerically since there is
no analytical solution apart from the one shown for the steady-state regime.
For instance, this can be done using finite-volume numerical models developed
for solving hyperbolic differential equations [30,31]. They are now used in engi-
neering problems when accurate results on a complex topography are needed.
Approximate analytical or quasi-analytical solutions have also been proposed,
notably by Hunt [32,33] and more recently by Huang and Garcia [35,34]. But,
compared to experimental data (see Fig. 21.5), such approximations provide
correct results at large times (when the flow fairly achieves a steady uniform
regime) but fail to capture the flow features at any time. On explanation for
partial agreement is that these models neglect the influence of normal stresses
[36].

Fig. 21.5. Comparison of computed and measured position of the leading edge of a
mud flow. Experiments were carried out in a tank tilted at 11◦ with kaolinite suspen-
sions (solid concentration φk = 13.05%, released volume 24.7 cm2). Adapted from [34].
(Courtesy of M.H. Garcia)

In addition to providing the flow characteristics for gradually varied flows,
the motion equation set may be used to investigate other interesting properties.
For instance, Coussot used a depth-averaged model to demonstrate that free
surface flows of Herschel–Bulkley fluids are unstable when the Froude number
Fr = ū/

√
gh cos θ exceeds a critical value (approximately 0.1 in the present

context) [3]. When Fr > 0.1, roll waves propagate along the free surface (a
similar point of view is presented in Chap. 22). This phenomenon may explain the
presence of surges described by most observers for muddy debris flows. Another
problem of great interest is the shape of deposit. The longitudinal profile of lobes
and levees can be computed using a set of equations similar to (21.9)–(21.10)
(a more general set of equations of motion is required to take two-dimensional
or three-dimensional spreading into account). For instance in the case of a lobe
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stopped over a plane inclined at θ, it can be shown that the longitudinal profile
h(x) is given by:

�g sin2 θ

τc cos θ
x = −�g sin θ

τc
h− ln

(
1− �g sin θ

τc
h

)
. (21.12)

Equation (21.12) can be used to determine the yield stress in the field. If appro-
priate, the motion equation set can be cast in a dimensionless form, which yields
three dimensionless number. In addition to the Froude number, we introduce a
dimensionless shear stress and a generalized Reynolds number [3,34]:

G =
�gh sin θ
τc

, Re =
�ū2

K

(
h

ū

)n

, (21.13)

which characterise bulk behaviour for Herschel–Bulkley fluids. These three di-
mensionless numbers can be used to simulate debris flows with small-scale mod-
els.

The Rheological Behaviours of Natural Slurries

On the whole, we can consider as a first approximation that soil–water mixtures
involved in debris flows behave as homogeneous fluids. The solid concentration,
particle-size distribution and shear rate are the key ingredients in the behaviour
of natural suspensions:

• The solid volume concentration φ (ratio of solid volume to total volume) usu-
ally ranges from 50% to nearly 90%. The upper bound is imposed by geo-
metrical constraints on grains. Indeed, when the solid concentration comes
closer to the maximum solid concentration (0.635 for monosized suspensions,
much larger for polydisperse suspensions), grain motion is increasingly im-
peded. Close to the maximum concentration, the material can no longer be
sheared without fracturing. The lower bound reflects the minimal amount of
particles required for all the particles to be in suspension. If the concentration
is too low, the coarsest particles rapidly settle and the mixture can no longer
be considered as a homogeneous suspension.

• When the particle-size distribution is great, typically ranging from 0.1 μm to
1 cm, interaction between particles and the surrounding fluid takes various
forms [37]. For relatively small shear rates, the finest particles are generally
very sensitive to Brownian motion effects or colloidal forces while coarse par-
ticles experience frictional or collisional contacts or hydrodynamic forces. As
a result, bulk behaviour exhibits either plastic, frictional, or particle-inertia
properties.

Microstructural theories and dimensional analysis are useful in outlining the
different flow regimes and predicting flow behaviour. We begin the description
of natural slurries with suspensions consisting of fine particles, then we examine
how bulk behaviour is changed when the coarse-particle fraction is increased (i.e.
when the particle size range is widened).
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Natural suspensions of fine particles (of diameter d less than 1 μm) are usu-
ally colloidal suspensions, made-up of weakly-aggregated flocs in water. They
generally exhibit viscoplastic behaviour, with sometimes time-dependent prop-
erties (thixotropy) when the solid concentration in fine particles φk is sufficiently
high for particles to interact via surface forces (van der Waals attractive forces,
electrostatic repulsive forces, etc.). Usually for active clays such as bentonite in
pure water, concentrations as low as 0.1% are sufficient to cause the appearance
of a yield stress, but for natural clay suspensions, a concentration of a few per-
cent is required. In the opposite case, when the solid fraction is too low, the
behaviour is Newtonian. A basic explanation for the existence of yield stress in
polydisperse colloidal suspensions is provided by the mean-field theory of Zhou
et al. [38]. These authors proposed a model for particles governed by van der
Waals attractive forces. The input values of the model were Hamaker’s constant
A, the coordination number, the mean particle diameter d, and an interparticle
separation parameter h0, which must be fitted from experimental data. They
found that the maximum yield stress can be written as:

τk = K

(
φk

1− φk

)c 1
d2
, (21.14)

where K = 3.1Ab/(24πh0), and b and c are two parameters to be fitted from
experimental data. They proposed the following explanation for the variation in
yield stress with increasing solid concentration. A weakly flocculated dispersion
may be seen as a series of weakly interconnected aggregates (flocs) made up of
strongly interacting particles. At low solid concentrations, yielding results from
the breakdown of the weak links between flocs. At high solid concentrations,
yielding is a consequence of the rupture of interparticle bonds and resistance to
the deformation of networks. This means that a critical solid concentration φcrit
separating the two domains should exist. When φk < φcrit, structural effects
due to weak links between flocs prevails over those due to geometric resistance
and the yield stress varies with a solid concentration such as τk ≈ Kφc

k/d
2. This

effect is included in (21.14) since it can be derived from (21.14) by taking a series
expansion to the chief order at φk = 0. When φk > φcrit, the geometric resistance
becomes more pronounced, resulting in a much higher dependence on the solid
concentration τk ≈ Kφc′

k /d
2, with c′ > c. Zhou et al. [38] considered that from a

microstructural point of view, the geometric resistance enhancement is reflected
by the increase in particle contacts. Assuming that the coordination number is
given by Rumpf’s expression (CN = 3.1/(1−φk)), they arrived at the conclusion
that the yield stress may be scaled as a power function of φk/(1−φk). The series
expansion at φk = 0 implies that the exponent must be c. Moreover, their ex-
periments with alumina suspensions showed that the critical solid concentration
ranged from 0.26 to 0.44 and depended on the particle diameter. As a typical
application of Zhou et al.’s theory, we have reported experimental data obtained
with kaolin dispersions on Fig. 21.6. It can be seen that the curve provided by
(21.7) fits experimental data over a wide range of solid concentrations.

Various physical explanations for viscoplastic behaviour have been proposed.
Potanin et al. developed a phenomenological fractal model to determine bulk
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behaviour of weakly aggregated dispersions, assuming that particles form ag-
gregates which in turn are connected to form a network [42,43]. Thus they in-
terpreted bulk yield stress as a consequence of chain break-up due to thermal
fluctuations and rupture under compressive force. Another conceptual model in-
spired from glassy dynamics has been proposed by Sollich and co-workers [44,45].
They showed that the bulk mechanical properties can be related to the internal
structure (described in terms of the particle energy distribution). To date such
models are able to mimic bulk behaviour over a wide range of flow conditions but
cannot specify the effects of particle size, size distribution, or solid concentration
on the yield stress of a particulate fluid. Consequently, the flow behaviour of fine
colloidal particle suspensions is usually described using the empirical Bingham or
Herschel–Bulkley constitutive equation (see Chap. 2), whose rheological parame-
ters τk and K are functions of the solid fraction φk while n is almost independent
of the solid concentration (n = 1 for a Bingham fluid). The generic simple-shear
expression is τ = τk(φk) +K(φk)γ̇n. Other empirical relationships, such as the
Casson equation (

√
τ =

√
τk +

√
Kγ̇), are not usual. Another empirical approx-

imation for simple shear flows of colloidal particles involves considering Krieger
and Dougherty’s relationship for computing bulk viscosity ηeq (see Chap. 3):

ηeq =
τ

γ̇
= η

(
1− φ

φm

)−[η]φm

, (21.15)

where η is the water viscosity and [ηeq] = limφ→0(ηeq − η)/(ηφ) is called the
intrinsic viscosity. To reproduce the viscoplastic behaviour, it is assumed that
the maximum solid fraction ranges from a lower value φ0 to an upper bound φ∞
depending on the shear stress [39,40,41].
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100
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           in a 25%-kaolin dispersion
 Zhou et al. (Eq. 17)

τ c (
Pa

)

φ
t

Fig. 21.6. Variation of the yield stress with solid concentration for kaolin–water dis-
persion and suspensions of glass beads in a kaolin dispersion. On the abscissa axis, φt

denotes the total solid concentration (φt = φc + φk(1 − φc)). Adapted from [49]
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When the particle size distribution is widened, the coarsest particles can
no longer be considered as colloidal. As pointed out by Sengun and Probstein
in their investigations of the viscosity of coal slurries [46,47,48], a useful ap-
proximation is to consider such mixtures as suspensions of force-free particles
in a colloidal dispersion. As it is the interstitial phase, the dispersion resulting
from the mixing of fine particles and water imparts most of its rheological prop-
erties to the entire suspension (see Chap. 3). Secondly, the coarse fraction is
assumed to act independently from the fine fraction and enhance bulk viscosity.
Experiments on the viscosity of coal slurries performed by Sengun and Probstein
[46,47,48] confirmed the reliability of this concept. A typical example is provided
in Fig. 21.6: we added glass beads to a water–kaolin suspension; adding a small
amount of beads did not change the bulk stress significantly. Likewise, in their
investigations of the behaviour of sand particle suspensions in a natural mud
dispersion, Coussot and Piau also found that bulk behaviour was dictated by
the fine fraction [16]. The force-free particle assumption is reliable provided the
coarse particles are not too heavy (otherwise they settle), that is, they are borne
by the surrounding colloidal suspension. This can be expressed in terms of di-
mensionless numbers by the condition: N < 1 where N = �′ga/τk denotes the
ratio of the buoyant force to the yield stress τk(φk), a is the radius of coarse par-
ticles, �′ is the buoyant density (�′ = φc [�c − (φk�k + �0 − φk�0)], with �c the
coarse-particle density, �k the fine-particle density, and �0 the water density).

When more and more coarse particles are added to a colloidal suspension,
coarse particle motion is increasingly impeded and they begin to interact with
each other. For instance for solid concentrations in the coarse fraction φc exceed-
ing 0.35, Sengun and Probstein observed a significant change in bulk behaviour,
that they ascribed to non-uniformity in shear rate distribution within the bulk
due to squeezing effects between coarse particles [46,47,48]. Likewise, Coussot
and Piau’s tests [16] together with Ancey and Jorrot’s experiments [49] revealed
that adding coarse particles to a dispersion induced an increase in the bulk yield
stress. When the solid concentration in the coarse fraction approached its max-
imum value, the yield stress tended towards infinity (see Fig. 21.6). When the
coarse particle fraction φc comes closer to the maximum value, a network of
particles in close contact takes place throughout the bulk and stresses result-
ing from direct contacts between coarse particles prevail compared to colloidal
stresses within the dispersion. Thus, the bulk behaviour is chiefly governed by
interactions between coarse particles. Two main contact types can arise depend-
ing on the suspension composition and flow features: direct contact for which the
particle surfaces meet (i.e. the distance separating the particle surfaces is equal
to or less than the typical height of particle roughness) and indirect contact
for which there exists a fluid film between particle surfaces. In the former case,
contacts between particles are generally frictional (i.e. they can be described
using the Coulomb law) [50], giving rise to frictional (possibly collisional) bulk
behaviour. Granular debris flows belong to this category. For the latter case, con-
tacts are lubricated and the interstitial fluid still imparts most of its rheological
characteristics to the bulk:
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• If the interstitial fluid is Newtonian with viscosity η, the (squeezing) lubri-
cation force f between two particles of radius a separated by a distance εa
(with ε 	 1) is proportional to their relative velocity U : |f | = 3πηaU/(2ε).
To evaluate the strength of the squeezing effect, we can define a dimensionless
number Γ by dividing the squeezing force by the buoyant force experienced
by a test particle. In very concentrated suspensions, a network of particles in
direct contact occurs, the gravity force is transmitted through the different
layers such that at a depth h, a particle experiences an average “effective”
normal stress �′gh. In this case, the corresponding dimensionless number is:

Γ =
9
4
a

ε

ηγ̇

�′gh
. (21.16)

Several experiments have shown that Γ is the relevant dimensionless number
in the behaviour of concentrated suspensions when particles come in close
contact. For instance, Acrivos and co-workers [51] have demonstrated that
the viscous resuspension of an initially settled bed of particles is controlled by
Γ . Likewise Ancey and Coussot [27] have shown that Γ could scale the flow
curves for suspensions of heavy particles within a Newtonian fluid. Figure 21.7
shows such a scaling for a suspension of glass-beads within a Newtonian fluid
(water–glycerol solution). A transition in the bulk behaviour can be observed
at a critical value Γ ranging from 10−3 to 10−1 depending on the interstitial
fluid viscosity. When Γ 	 1, bulk behaviour is typically frictional, namely
the shear stress is independent of the shear rate and varies linearly with the
normal stress. Conversely when Γ � 1, bulk behaviour is typically Newtonian,
namely the shear stress is proportional to the shear rate. Such a transition may
explain the amazing behaviour and mobility of lahar-like debris flows.

• For non-Newtonian interstitial fluids, no analytical expression of the squeezing
force is available. However, under the condition N < 1, it is expected that bulk
behaviour is dictated by the interstitial fluid. This explains that, even loaded
with a large amount of boulders (giving the impression that the debris is
granular), a muddy debris flow behaves as a viscoplastic fluid.

Using microstructural arguments, we have shown that the different types of
debris flow behaviour reflect the microstructure properties. Dimensionless groups
can also be used to delimit the different flow regimes. The main difficulty in ex-
trapolating these dimensionless numbers to field data is that we have considered
truly bimodal suspensions. Natural suspensions are characterised by a continuous
gradation in particle size and the cut-off between colloidal and coarse particles,
ranging from 4 to 50 μm depending on the authors, is not a fixed value. It results
that, in practice, inferring the debris flow type from the material composition is
reserved to a limited number of cases, for which the role of different particle-size
classes can be determined with sufficient accuracy.
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Fig. 21.7. Variation of the dimensionless shear stress S = τ/(�gh) (with h the flow
depth) as a function of the dimensionless number Γ . The drawn line has a slope of 1
(S ∝ Γ ). Experiments performed with 1-mm glass beads in a water–glycerin solution.
Adapted from [27]
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(1999)

13. S. Lanzoni: Meccanica di miscugli solido–liquido in regime granulo inerziale. Ph.D.
Thesis, University of Padova, Padova (1993)



21 Debris Flows and Related Phenomena 547

14. J.J. Major: Experimental studies of deposition of debris flows: process, character-
istics of deposits, and effects of pore–fluid pressure. Ph.D. Thesis, University of
Washington, Washington (1996)

15. A.M. Johnson, J.R. Rodine: ‘Debris flow’. In: Slope Instability, ed. by D. Brundsen,
D.B. Prior (John Wiley & Sons, New York 1984) pp. 257–361

16. P. Coussot, J.-M. Piau: Can. Geotech. J. 32, 263 (1995)
17. P. Coussot, D. Laigle, M. Arratano, A. Deganutti, L. Marchi: J. Hydraul. Eng.

ASCE 124, 865 (1998)
18. P. Coussot, S. Proust, C. Ancey: J. Non-Newtonian Fluid Mech. 66, 55 (1996)
19. J.J. Major, T.C. Pierson: Water Resou. Res. 28, 841 (1992)
20. C. J. Phillips, T.R.H. Davies: Geomorphology 4, 101 (1991)
21. Z. Wan, Z. Wang: Hypercontrated flow (Balkema, Rotterdam 1994)
22. P. Coussot: Les laves torrentielles, connaissances pratiques à l’usage du praticien
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22.1 Introduction

Heavy and persistent rainfalls in mountainous areas can loosen the hillslope
and induce mud flows which can move stones, boulders and even trees, with
destructive power on their path. In China where 70% of the land surface is
covered by mountains, debris flows due to landslides or rainfalls affect over 18.6%
of the nation. Over 10,000 debris flow ravines have been identified; hundreds of
lives are lost every year [1]. While accurate assessment is still pending, mud flows
caused by Hurricane Mitch in 1998 have incurred devastating floods in Central
America. In Honduras alone more than 6000 people perished. Half of the nation’s
infrastructures were damaged.

Mud flows can also be the result of volcanic eruption. Near the volcano,
lava and pyroclastic flows dominate. Further downstream solid particles become
smaller and can mix with river or lake water, rainfall, melting snow or ice, or
eroded soil, resulting in hyperconcentrated mud mixed with rocks. The muddy
debris can travel at high speeds over tens of miles down the hill slopes and dev-
astate entire communities. In 1985 the catastrophic eruption of Nevado del Ruiz
in Colombia resulted in mud flows which took the life of 23,000 inhabitants in
the town of Amero [2]. During the eruption of Mt. Pinatubo in Phillipnes in
1991, one cubic mile of volcanic ash and rock fragments fell on the mountain
slopes. Seasonal rain in the following months washed down much of the loose de-
posits, causing damage to 100,000 villages. These catastrophes have been vividly
recorded in the film documentary by Lyons [3].

Rivers running through loessial land carry a large amount of clay suspensions.
In the Yellow River of China, the clay content can reach 50 percent by volume at
low waters, causing siltation and floods throughout the Chinese history. Taming
the Yellow River has been the challenge to Chinese river engineers for centuries.
When the suspended clay particles are carried to an estuary, they coagulate due
to increased salinity to form flocs and aggregates, and sink to the seabed as fluid
mud. Hence coastal geologists and hydraulic engineers in many countries have
also made extensive studies on the mechanical properties and behavior of fluid
mud [4,5,6,7,8,9,10,11,12]. From most of these studies it can be concluded that
for laminar mud flows the Bingham plastic model is a practical approximation.

N.J. Balmforth and A. Provenzale (Eds.): LNP 582, pp. 548–577, 2001.
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Specifically, the constitutive relation for the simple laminar shear flow reads

μ
∂u

∂z
=
{

0 , if τxz < τo
τxz − τo , if τ > τo .

(22.1)

See a more general discussion in Chap. 2. In muddy water, both the yield stress
τo and the Bingham viscosity μ depend not only on the clay concentration but
also on the chemical composition as well as the salinity in water. Sample data,
for typical shearing rates in the range from 50 to 500 1/sec, have been collected
by Mei & Liu [47] as shown in Fig. 22.1. While both the yield stress and the
Bingham viscosity increase with the clay concentration, the wide scatter of mea-
sured results reflect the complex dependency on other factors. In particular the
difference caused by salinity can be seen by comparing curves (6) and (7).

Fig. 22.1. Dependence of Bingham fluid properties on clay concentrations for various
mud samples. Cv: concentration by volume; Cw: concentration by weight. Fig. (a):
yield stress τo. Fig. (b): kinematic Bingham viscosity ν. Curve (1): Provins clay [6];
(2): powdered limestone [6]; (3): Kaolinite [6]; (4): Bentonite [7]; (5): Kaolinite [7]; (6):
White River clay in salt water [8]; (7): White River clay in tap water [8]. From [47]

Fluid mud at high enough concentration (Cv > 10%) has a viscosity μ hun-
dreds times that of pure water, and a yield stress as large as O(100) dynes/cm2.
As a consequence, the flow can remain laminar even if the flow velocity is as
high as a few meters per second [13,14]. In Chinese literature the accepted crite-
rion for transition from laminar to turbulent flow is that the effective Reynolds
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number Reeff exceeds the usual threshold of 2100, where

1
Reeff

=
1
Reτ

+
1
Reμ

, (22.2)

with Reτ = 8ρU2/τo and Reμ = 4ρUh/μ being the Reynolds numbers associated
with the yield stress and the viscosity respectively, in an open-channel of mud
depth h [7]. In one mud flood in Jiang Chia Ravine, Yunan Province, China, Li
et al. [15] found ρ = 2.13 g/cm3, μ/ρ = 15 cm2 sec, and τo = 2000 dynes/cm2.
The maximum flow speed and depth were U = 8 m/sec and h = 1 m. Equation
(22.2) then gives Reeff = 571 which falls well within the laminar domain.

Because of the yield stress, a variety of features unknown in Newtonian fluids,
appear even in the simplest situations. For example, a uniform layer of fluid mud
can remain stationary on an incline, if the depth or the slope is sufficiently small.
Indeed for a uniform mud layer on a plane inclined at the angle θ with respect
to the horizontal, flow is possible only if the down-slope component of the mud
weight per unit area exceed the yield stress, ρgh sin θ > τo. On a given incline
(θ) the depth must exceed the critical depth hc:

hc =
τo

ρg sin θ
. (22.3)

For a given depth the inclination must exceed the angle of repose:

θc = sin−1
(
τo
ρgh

)
. (22.4)

Even on a vertical wall, a mud layer can still be stationary if it is thinner than
τo/ρg. For variable depths, a pile of fluid mud need not flatten when released. A
transient external pressure can leave a permanent imprint.

Given the large varieties of mud in the world, other rheological models in-
volving more empirical parameters have been proposed. For a simple shearing
flow the power-law model is described by

μn

(
∂u

∂z

)n

= τxz , (22.5)

and the Herschel–Bulkley model by

μn

(
∂u

∂z

)n

=
{

0 , if τxz < τ
τxz − τo , if τxz > τo ,

(22.6)

which combines the features of Bingham and power-law models. For more com-
prehensive surveys, see [16,17], and Chap. 2.

All the non-Newtonian models are highly nonlinear and analytical studies
are difficult in general. Fortunately in most geomorphological flows the mud
depth is often much smaller than the length scale in the flow direction, h/L =
ε 	 1. Thus the long-wave approximation is possible. Specifically the pressure
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is nearly hydrostatic and convective inertia is of the order O(εReff). Further
approximation can be made if the flow is either very slow so that convective
inertia can be neglected, or so fast that the boundary layer approximation is
appropriate. In this review we restrict our discussions to approximate theories for
laminar flows characterized by either Reff = O(1) [18,19,20] or Reff = O(ε−1) �
1 [19,21,31]. Focus will be directed only to physical implications; mathematical
justification of the approximate equations can be found in [22,23] and in Chaps.
2 and 11.

22.2 One-Dimensional Slow Flows

In this section we describe theories for slow flows in a thin layer on an inclined
plane. Due either to the gentle slope of the initial profile, the small layer thick-
ness, or to very high viscosity, the longitudinal velocity is so small that the fluid
inertia is negligible and the lubrication approximation applies. The lateral ex-
tent is assumed to be so large that the flow is essentially two-dimensional. After
stating the approximate equations, we first discuss the threshold profiles where a
moving mud mass comes to rest. Stationary waves on an incline are then derived.
Finally a simple example of the transient collapse of a mud pile is described.

22.2.1 The Lubrication Approximation

Consider a single layer of fluid flowing down a plane (z = 0) inclined at the angle
θ with respect to the horizontal. Let the x axis coincide with the plane bed and
be directed downward. Under the long-wave approximation the fluid pressure is
hydrostatic,

p = ρg(h− z) cos θ , (22.7)

where h(x, t) is the mud depth. The fluid velocity is essentially in the x direction,
i.e. u� w. For slow enough flows Reff = O(1), convective inertia is of the order
εReff 	 1, so that the lubrication approximation applies,

0 = ρg sin θ − ∂p

∂x
+
∂τ

∂z
, 0 ≤ z ≤ h . (22.8)

Consequently the shear stress increases linearly with depth,

τ = (h− z)
[
ρg cos θ

(
tan θ − ∂h

∂x

)]
. (22.9)

The shear stress at the bed z = 0 is

τb = ρgh cos θ
(

tan θ − ∂h
∂x

)
. (22.10)

Clearly if |τb| > τo > 0, i.e.

τo
h
<

∣∣∣∣ρgμ cos θ
(

tan θ − ∂h
∂x

)∣∣∣∣ , (22.11)
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the fluid moves. The flow direction is downward if τb > 0 and upward if τb < 0.
If however |τb| < τo, or

τo
h
>

∣∣∣∣ρgμ cos θ
(

tan θ − ∂h
∂x

)∣∣∣∣ , (22.12)

the mud does not move at all. When τb = τo (or −τo), the mud is at the threshold
of downward (or upward) flow.

Because the magnitude of the shear stress decreases from |τb| at the bottom
to zero on the free surface, there is a yield surface at some intermediate depth
z = ho ≤ h where |τ | = τo, if (22.11) is satisfied, i.e. if |τb| > τo. Below the
yield surface, 0 < z < ho, there is shearing. The longitudinal velocity varies
parabolically as

u =
ρg

μ
cos θ

(
tan θ − ∂h

∂x

)(
1
2
z2 − hoz

)
, 0 < z < ho . (22.13)

Above the yield surface there is a layer of plug flow within which u = up is
independent of z,

up =
h2

o

2μ

[
ρg cos θ

(
tan θ − ∂h

∂x

)]
, ho < z < h . (22.14)

On the yield surface, τ = ±τo so that

±τo = (h− ho)
[
ρg cos θ

(
tan θ − ∂h

∂x

)]
, (22.15)

where the upper (lower) sign corresponds to downward (upward) flow. The total
volume flux at any station is

q =
∫ ho

0
u dz + up(h− ho) = − 1

6μ

[
ρg

(
tan θ − ∂h

∂x

)]
h2

o(3h− ho) . (22.16)

Conservation of mass in the entire fluid layer requires

∂h

∂t
+
∂q

∂x
= 0 . (22.17)

Equations (22.14), (22.15) and (22.16) are the governing equations for the three
unknowns h(x, t), ho(x, t) and q(x, t).

Let us introduce the following set of scales:

[z] , [h] , [ho] = h , [x] = h cot θ , [t] =
μ cot θ
ρgh sin θ

, (22.18)

[u] =
ρgh sin θ

μ
h , [q] =

ρgh sin θ
μ

h
2
,
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where h is some characteristic depth. In this section we shall select h = hc. In
dimensionless variables (without changing symbols), (22.14), (22.15) and (22.16)
become

up =
h2

o

2

(
1− ∂h

∂x

)
, (22.19)

1− ∂h
∂x

= ± 1
h− ho

, (22.20)

and

q =
1
6
h2

o(3h− ho)
(

1− ∂h
∂x

)
. (22.21)

Flow exists only if ho > 0, or

h

(
1− ∂h

∂x

)
> 1 , downward flow ; h

(
1− ∂h

∂x

)
< −1, upward flow .

(22.22)
A single equation can be written for the depth h(x, t) of the moving mud,

∂h

∂t
=

1
3

[
h3 ±

(
1− ∂h

∂x

)−3
](

∂2h

∂x2

)
+ h

∂h

∂x

[
h
∂h

∂x
∓ 1
]
. (22.23)

With an initial condition on h(x, 0), computations can be carried out by a Crank–
Nicolson scheme.

If, on the other hand,

−1 < h
(

1− ∂h
∂x

)
< 1 , (22.24)

mud remains stationary. At the threshold,

h

(
1− ∂h

∂x

)
= ±1 , (22.25)

mud stops from downward (upward) motion along the inclined plane.

22.2.2 Profiles of Final Deposit

Because of the finite yield stress, an initial pile of mud released on an infinite
plane does not ultimately collapse to zero thickness. A nonuniform profile can
exist as the final state of static equilibrium where the mud bottom is the yield
surface (ho = 0).

In the special case of a horizontal bottom, the threshold profile satisfies the
differential equation (22.15) with ho = θ = 0. Upon integration, the dimension-
less surface height is

h− h∗ = [∓2(x− x∗)]
1/2

, (22.26)
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where h = h∗ at x = x∗. The upper (or lower) sign corresponds to a parabolic
head facing the right (or left). For any finite bed slope, we integrate the dimen-
sionless equation (22.25) with the equality sign. A downward threshold profile
is given by

h− h∗ + log
h− 1
h∗ − 1

= x− x∗ . (22.27)

Three cases can be distinguished: h∗ = 1, h∗ < 1, and h∗ > 1. The first case,
h∗ = 1, corresponds to the trivial limit of uniform critical depth h = 1 (curve
(a) in Fig. 22.2). For 0 < h∗ < 1, the depth is everywhere less than the critical
uniform depth and approaches unity as x → −∞. Curve (b) in Fig. 22.2 is an
example for h∗ = 0 at x = x∗ = 0, corresponding to the downward front of a mud
layer on a dry bed, i.e. a perfectly rigid and nonerodible bed. Though the slope is
infinite at the front, this mathematical shortcoming is only of local significance.
If h∗ > 1, then the depth increases from h(−∞) = 1 to h(∞)→∞. At x→ +∞
the mud surface is horizontal. A typical profile for h∗ = 2 at x = x∗ = 0 is plotted
in Fig. 22.2 as curve (c), which corresponds to the mud surface connecting a
uniform stationary layer on the left bank and a mud reservoir, when the draining
has completely stopped.

Similarly, the upward threshold profile is given by

h− h∗ − log
1 + h
1 + h∗

= x− x∗ , (22.28)

corresponding to the upper sign in (22.25). The depth increases monotonically
from 0 at x = x∗ − h∗ + log(1 + h∗) to ∞ at x → ∞, as shown by curve (d)
for h∗ = 0 at x∗ = 0 in Fig. 22.2. This corresponds to a mud reservoir at the
threshold of rising along a sloping bank.

Consider next the spreading of a two-dimensional mud pile of finite volume
V per unit length, released on a wet bed, i.e. a stagnant mud layer of uniform
depth h∞ < 1. After a transient stage of flowing, the mud pile must settle to
final equilibrium. Let x+ and x− denote the upstream and downstream edges of
the pile respectively. The final profile is given on the front (downward) side by

h− h∞ + log
h− 1
h∞ − 1

= x− x+ , (22.29)

and on the back (upward) side by

h− h∞ − log
1 + h

1 + h∞
= x− x− . (22.30)

Let the maximum height hm be at the point xm. Substituting h = hm and
x = xm in the two equations above and taking the difference, we get a relation
between hm and the final length L ≡ x+ − x−,

−(x+ − x−) = −L = log
1− hm

2

1− h∞2 , (22.31)
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which can be inverted to give

hm =
[
1− (1− h2

∞)e−L
]1/2

. (22.32)

In particular, if the mud pile is released on a dry bed, h∞ = 0, we then have

hm =
(
1− e−L

)1/2
. (22.33)

From (22.27) and (22.28), the final volume above z = h∞ can be easily calculated
equated to the initial volume V , yielding

V = −2hm + log
1 + hm

1− hm
. (22.34)

With the help of (22.32) in general, or (22.33) for a dry bed, the final length of
the pile L is related uniquely to the initial volume V , with h∞ as a parameter.

Fig. 22.2. Final profiles when mud no longer flows, V = ∞. Curve (a): a uniform layer
of infinite length, (b): head of a uniform layer, (c): a mud sea that stops draining from
a slope, (d): a mud sea that stops rising along a slope. From [18]

22.2.3 Stationary Waves

A wave is called stationary if the profile appears steady in the coordinate ad-
vancing at a constant speed C. The mathematical task is to find

h = h(X) , ho = ho(X) , and q = q(X) , (22.35)

as functions of
X ≡ x− Ct , (22.36)
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where C is to be found as a part of the solution. Assuming (22.35), we get by
integrating the mass conservation law

q = C(h− he) , (22.37)

where q is the flux measured in the fixed coordinate system, and he ≥ 0 is an
integration constant. Equation (22.21) becomes

C(h− he) =
1
6
h2

o(3h− ho)
(

1− dh
dX

)
. (22.38)

For given C and he in (22.38) and (22.25), ho can be eliminated to give a first-
order nonlinear ordinary differential equation for h. The fixed points correspond
to the uniform state far upstream or far downstream, whose depths hmax or hmin
can be algebraically related to C and he.

A variety of waves has been discussed by Liu & Mei [18]. It can be shown
that for waves propagating down the incline, C > 0, each he > 1 corresponds
to a profile which connects hmax far upstream (X → −∞) to hmin far down-
stream (X →∞). Sample profiles are shown in Fig. (22.3). Curves B̄B and C̄C
are typical profiles whose upstream and downstream depths are both finite. In
particular we have for C̄C: (hmin = 1.60, hmax = 2.66). Curve ĀA′ is the limiting
case of a wave front moving down a dry bed and is often called a gravity cur-
rent. Despite the large slope at the front, the predicted profile is confirmed by
laboratory experiments [18]. Curve ĀA corresponds to he = 0 < 1 and the depth
increases monotonically from hmin = 3.566 at X → −∞ to infinity at X → ∞
where the free surface is horizontal dh/dX → 0. Therefore ĀA represents the
surface of a mud layer of uniform depth draining steadily along the plane slope
into a mud sea.

Fig. 22.3. Profiles of stationary waves at downward speed C = 2.5. From [18]

22.2.4 Transient Collapse of a Finite Mass

The fate of a mud pile released on a slope depends on the state of the slope,
which can be a layer of mud either stagnant or flowing. Let us compare in
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Fig. 22.4 the numerical results for three different starting states with uniform
depths h∞ = 1.5, 1 and 0.5. In physical dimensions, these depths are respectively
1.5hc, hc and 0.5hc, corresponding to layers that are flowing, at the threshold
of motion, and stagnant, for t < 0.

Before its release, the initial profile of the mud pile is assumed to be a right
triangle with the upstream face against a frictionless vertical wall. Over the
deep layer of flowing mud (h∞ = 1.5) the front of the fresh mud pile extends
downward indefinitely until the entire profile flattens out eventually. Over the
stagnant layer at the critical depth, the fresh pile also flattens to zero thickness,
though at a slower rate. Over the thin and stagnant layer (h∞ = 0.5), the pile
comes to rest after a finite time. The final profile is shown by the dashed curve,
the front of which matches (22.27).

Fig. 22.4. Collapse of a mud pile on an otherwise uniform mud layer. (a): Supercritical
initial depth with h∞ = 1.5. (b): Critical initial depth with h∞ = 1.0. (c): Subcritical
depth with h∞ = 0.5. In order of peak heights, the snapshots in each figure are for
t = 0, 0.2, 1, 4, and 8. In (c) the dashed curve corresponds to t = ∞. From [48]

22.3 Two-Dimensional Slow Flows in a Wide Channel

To extend the theories of the previous section to mountain streams, it is necessary
to include at least two additional facets of nature: finite channel width and high
speed of flow. In this section we limit our attention to the first. If the channel
width is comparable to the depth, the two-dimensional variation in the cross-
section must be fully accounted for. This is not an easy task even for the problem
of uniform flows in an open-channel of semi circular cross section, as errors have
been made in earlier literature [13]. Mei & Yuhi [20] have recently studied a
simpler problem for slow flows of Bingham mud in a wide and shallow channel
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along a constant slope. The scales in the lateral (y) direction and the longitudinal
(x) directions are assumed to be comparable, while both of which are much
greater than the depth (z). The lubrication approximation can be extended to
facilitate the analysis.

22.3.1 The Lubrication Approximation

Let the channel axis coincide with the x axis and the bed be rigid and prescribed
by z = H(y) which is symmetric about the x − z plane. The two-dimensional
extension of the lubrication approximation of Sect. 22.2.1 can be integrated with
respect to z to give the shear stresses

τxz = ρg

(
sin θ − cos θ

∂h

∂x

)
(h− z) , (22.39)

τyz = −ρg cos θ
∂h

∂y
(h− z) . (22.40)

The dominant part of the total shear stress is

τ =
√
τ2
xz + τ2

yz . (22.41)

The yield surface ho(x, y, t) is defined by

τ(x, y, ho(x, y, t), t) = τo , (22.42)

which relates ho to h and its gradient:(
sin θ − cos θ

∂h

∂x

)2

+
(

cos θ
∂h

∂y

)2

=
τo
ρg

(h− ho) . (22.43)

In the shear layer below the yield surface, τ > τo and the velocity components
are

u(x, y, t) =
ρg

μ

(
sin θ − cos θ

∂h

∂x

)[
hoz −

z2

2
− hoH +

H2

2

]
, (22.44)

v(x, y, t) =
ρg

μ

(
− cos θ

∂h

∂y

)[
hoz −

z2

2
− hoH +

H2

2

]
. (22.45)

Above the yield surface, ho < z < h, τ < τo; the plug flow1 velocities are

up(x, y, t) =
ρg

μ

(
sin θ − cos θ

∂h

∂x

)[
h2

o

2
− hoH +

H2

2

]
, (22.46)

1 The term plug flow is used here in an approximate sense and emphasizes the depth-
wise uniformity of u and v. The velocities in the plug flow region are not strictly
constant but varies with y slowly because of the relatively large channel width.
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vp(x, y, t) =
ρg

μ

(
− cos θ

∂h

∂y

)[
h2

o

2
− hoH +

H2

2

]
. (22.47)

If however, τ < τo at the bed z = H(y), then ho = H and there is no flow at all.
We restrict our discussion to downward flows only and use the dimensionless

variables defined in (22.19), where the characteristic depth h is chosen to be
the upstream maximum depth D. In normalized form, (22.43) provides the first
relation between the yield surface h0 and h:

(h− h0)

[(
1− ∂h

∂x

)2

+
(
∂h

∂y

)2
]1/2

=
hc

D
≡ α , (22.48)

where hc is the threshold depth defined in (22.3). The parameter α is the Bing-
ham number; it is the ratio of the (dimensional) critical depth hc defined in
(22.3) to the characteristic depth D, and represents the ratio of the yield stress
to the bottom shear stress of a uniform flow of depth D. For a uniform flow to
exist, it is necessary that h > α. The second relation between h and ho follows
from the depth-integrated law of mass conservation,

∂h

∂t
+
∂

∂x

[(
1− ∂h

∂x

)
F

]
+
∂

∂y

(
−∂h
∂y
F

)
= 0 , (22.49)

where
F (h, ho, H) =

1
6
(3h− ho − 2H)(ho −H)2 . (22.50)

With proper initial data, h(x, t) can be solved as a free boundary problem nu-
merically. We discuss below uniform flows and transient evolution of a finite
mass released from a reservoir. Discussions on stationary waves can be found in
[20].

22.3.2 Steady Uniform Flow

Analytical solutions are possible for steady uniform flows with ∂/∂t = ∂/∂x = 0.
It follows from (22.49) that h and h0 are independent of y, and that h = hS

and ho = hoS are constants everywhere in the flow region. The flow is then
confined in an effective width 2B whose value can be determined from (22.48)
by requiring that

hoS = HB ≡ H(±B) = hS − α . (22.51)

For a given bed profile H(y) and α, the half flow width B is less than the
maximum half width BM of the channel; the bed stress is too weak for |y| >
B where the mud depth is too small. We shall assume for simplicity that the
transverse uniformity extends to the channel banks so that h = hS up to |y| =
BM where hS = H(BM ).

For any H(y), the longitudinal velocities in the shear flow and plug flow zones
are given by (22.44) and (22.46) respectively with ∂h/∂x = 0 and h → hS and
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h0 → h0S . The transverse velocity v = vp = 0 vanishes everywhere. The flux per
unit width at any y is

q(y) =
1
6
(3hS−hoS−2H)(hoS−H)2 =

1
6
(2hS +α−2H)(hS−α−H)2 . (22.52)

For a prescribed total discharge Q, conservation of mass requires

Q =
1
3

∫ B

0
(2hS + α− 2H)(hS − α−H)2dy . (22.53)

Explicit results have been worked out for two types of channel cross section.
In the first, case the cross section is of the power-law class

H = m|y|n . (22.54)

The parameter m is a measure of the bank steepness, with m = 0 corresponding
to a flat bed of infinite width. The power n represents the channel smoothness
at the center line, with n = 1 being the limiting case of a triangular cross
section. We plot in Fig. 22.5 the typical velocity profiles for n = 1 and 2. The
plug and shear flow regions are clearly seen above and beneath the yield surface
respectively. The longitudinal velocity is the greatest along the center plane.
Note that the horizontal shear rate ∂u/∂y = O(D/L) 	 1 and the corresponding
shear stress is very small, τxy = O(D/L)2. The component τxz dominates the
total stress in (22.41) and defines approximately the plug zone. The half width
of the flow region, B, is determined from (22.51),

B =
(
hS − α
m

)1/n

. (22.55)

It can also be shown that

Q =
4n3m3

(n+ 1)(2n+ 1)(3n+ 1)
B3n+1 +

2n2m2α

(n+ 1)(2n+ 1)
B2n+1

=
[

4n3(hS − α)3

(n+ 1)(2n+ 1)(3n+ 1)
+

2n2(hS − α)2α
(n+ 1)(2n+ 1)

](
hS − α
m

)1/n

,(22.56)

which is a function of n, α and m. The results for a semi-elliptic cross-section
are given in [20].

22.3.3 Transient Spreading After Dam Collapse

Consider a parabolic channel (n = 2) with a mud reservoir to the left (x < 0) of
a dam at x = 0. Initially the mud in the reservoir is at rest and occupies a finite
length of the channel so that the horizontal free surface height is described by

h(x, t) = 1 + x , my2 − 1 ≤ x ≤ 0 , t < 0 . (22.57)
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Fig. 22.5. Velocity distribution in channel of polynomial cross-section given by H =
m|y|n. Results shown are for m = 1, α = 0.5, hS = 1. Panel (a): n=1 (triangular
channel); (b): n=2 (parabolic channel). From [20]

Elsewhere (x > 0 and x < my2−1), the bed is initially dry. Note that the initial
normalized slope of the free surface in the reservoir is unity (∂h/∂x = 1) in the
present coordinate system; in physical coordinates the corresponding free surface
is horizontal. At t = 0 the dam disappears and the reservoir mud is released
suddenly, and moves downstream until the final state of static equilibrium.

Calculations have been reported in [20] for three parabolic channels with
different bank steepnesses m = 0.5, 1, 2, and different mud plasticities α = 0.2
to 0.9. On the centreplane (y = 0), symmetry is assumed.

Typical evolution of the free surface is displayed in Fig. 22.6 for α = 0.3 and
m = 1. Just after the dam break, the movement of the fluid is significant. The
front spreads downstream and forms a fan. The free surface is convex upward in
the front part and concave upward in the rear. Thus fluid is emptied from the
rear to fill the advancing front. The central part of the front elongates gradually
and forms a tongue. For sufficiently large t, the fluid pile comes to rest. In [20]
the final extent is shown to increase as the yield stress measure α decreases.
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Fig. 22.6. Evolution of the mud surface after dam-break, for α = 0.3, n = 2, m = 1.
(a) t=0, (b) t=5, (c) t=50, (d) t=10,000 (final deposit). From [20]

22.4 Surges in High-Speed Flows

Highly concentrated mud flowing at moderately high speeds often develops in-
termittent surges [7,25,26]. Each surge has a sharp front which can be locally
turbulent, but the main body is mostly laminar and tapers off to a narrow tail,
to be followed by the next surge. A sample surge from Southwest China is shown
in Fig. 22.7.

The number of surges in one mud flood ranges from tens to hundreds; the
longest such event occured in Jiang Jia ravine, Yunan Province, China, and
lasted 82 hours [1]. A sample record of the river surface at a station on Black
River (a tributary of Yellow River) is shown in Fig. 22.8 [25,27]. The highest
concentration of solid at t = 0.5 hr was 1,000 kg/m3.

In turbulent flows of clear water, periodic surges are known as roll waves
which have been modeled theoretically as one-dimensional periodic shocks (hy-
draulic jumps) [32]. So far two rheological models have been applied to periodic
surges in flowing mud. Ng & Mei [31] examined the power-law fluid, and found
from the linearized instability theory that wavy disturbances of all wavelengths
are unstable, but the growth rate increases monotonically with the wave number.
Hence there is no mode of finite wavelength which is the most unstable. An ad
hoc criterion similar to Dressler’s has to be introduced in order to determine the
period of shocks. Based on the Bingham-plastic model, Liu & Mei [21] showed
that for a sufficiently high yield stress, the most unstable wave length exists for
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Fig. 22.7. Typical laminar surges in Southwest China. From [1]

Fig. 22.8. Intermittent surges recorded at Lanshi Po, Black River, China. From [27]

a finite wavenumber and leads to periodic shocks in the nonlinear stage. This
gives more evidence that the yield stress is the most important feature for proper
modelling of the non-Newtonian behavior of mud. The following is a synopsis of
their theory. Other related references are [33] and [34].

22.4.1 Boundary Layer Approximation and Depth-averaging

The long-wave approximation is again applied here, but with additional account
of convective inertia.

Assume in general that the bottom stress is sufficiently great, so that there
is a shear flow region below the yield surface at z = ho(x, t) with 0 < ho < h.
Above this yield surface, ho < z < h, the dominant strain rate must be zero
and the velocity profile uniform in depth. Since the longitudinal velocity up is
not a function of z, the shear stress in the plug flow layer is linear in z, the



564 C.C. Mei, K.-F. Liu, and M. Yuhi

corresponding momentum equation is therefore

∂up

∂t
+ up

∂up

∂x
= g

(
sin θ − cos θ

∂h

∂x

)
− τosgn(up)
ρ(h− ho)

. (22.58)

Below the yield surface, 0 < z < ho, there is velocity shear, and the longitudinal
momentum equation is

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
= g

(
sin θ − ∂h

∂x
cos θ

)
+ ν

∂2u

∂z2
, (22.59)

where ν = μ/ρ. Mass conservation in the shear flow requires

∂u

∂x
+
∂w

∂z
= 0 . (22.60)

Aside from the usual kinematic and dynamic boundary conditions on the free
surface z = h and the bottom z = 0, we must require that on the yield surface,
z = ho, the velocities must be continuous, as are the shear stresses, implying in
turn

∂u

∂z
= 0 . (22.61)

The depth-integrated law of mass conservation is

∂h

∂t
+
∂q

∂x
=
∂h

∂t
+
∂

∂x

(∫ ho

0
u dz +

∫ h

ho

up dz

)
= 0 , (22.62)

where q(x, t) denotes the volume discharge at the station x.
Following the momentum integral method of Kárman, we shall assume a

velocity profile and integrate the momentum equations. For the shear layer, we
assume the velocity profile to satisfy conditions on the yield surface and the bed,

u = up

(
2z
ho
− z2

h2
o

)
, 0 ≤ z ≤ ho . (22.63)

The total flow rate can now be expressed as

q = up

(
h− 1

3
ho

)
. (22.64)

Substituting (22.63) into (22.59) and integrating over the shear layer, we obtain:

2
3
ho
∂up

∂t
− 1

3
up
∂ho

∂t
+

2
5
houp

∂up

∂x
− 2

15
u2

p

∂ho

∂x

= gho

(
sin θ − ∂h

∂x
cos θ

)
− μ2up

ρho
. (22.65)

Use has been made of the fact that for any monotonic profile

sgn(up) = sgn
(

lim
z→ho

∂u

∂z

)
.
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With (22.64), (22.62), (22.58) and (22.65) give a hyperbolic system of three
partial differential equations for the three unknowns up, h, and ho.

At the threshold of motion, the bottom stress equals the yield stress τo. Thus
fluid moves only if gravity force and pressure gradient together exceed the yield
stress, i.e. ∣∣∣∣ρgh(sin θ − ∂h

∂x
cos θ

)∣∣∣∣ > τo . (22.66)

In this section we use h to denote the mean depth and define the Bingham
number as

α =
hc

h
=

τ0

ρgh sin θ
. (22.67)

This is also the ratio of the yield stress to the bottom stress of a uniform flow
of depth h. For such a flow to exist, it is necessary that α < 1. The Newtonian
limit corresponds to α = 0.

Using dimensionless variables normalized by the scales shown in (22.19), the
normalized velocity profile is still of the form (22.63). The normalized law of
mass conservation is

∂h

∂t
+
∂

∂x

[
up

(
h− ho

3

)]
= 0 . (22.68)

The normalized momentum equations are

β

(
∂up

∂t
+ up

∂up

∂x

)
= 1− ∂h

∂x
− α sgn(up)

h− ho
(22.69)

for the upper plug layer, and

β

(
2
3
ho
∂up

∂t
− 1

3
up
∂ho

∂t
+

2
5
houp

up

∂x
− 2

15
u2

p

∂ho

∂x

)
=
(

1− ∂h
∂x

)
ho − 2

up

ho
sgn(up) (22.70)

for the lower shear layer, where the dimensionless parameter β is defined by

β =
uh

ν
tan θ =

ρ2gh
3
sin θ tan θ
μ2 , (22.71)

which depends only on material properties and the bottom slope. To fix ideas,
estimates of β for Provins Bay mud are listed in the following table.

In subsequent analysis, up is always positive so that sgnup = 1.

22.4.2 Linearized Instability of a Uniform Flow

Consider a steady uniform flow with constant depth. The corresponding shear
layer depth ho and velocity up are readily obtained from (22.69) and (22.70),

h = 1 , ho = 1− α , up =
1
2
(1− α)2 . (22.72)
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Table 22.1. Estimated β for Provins Bay and various bottom slopes

C τo ν β β β Reff

(dyne/ cm2) (cm2/s) (θ = 1◦) (θ = 0.5◦) (θ = 0.1◦)

5% 0.11 3.41 3213 802 32 5818

10% 7.85 26.4 54 13.4 0.54 706

15% 55.2 87.2 4.9 1.22 0.05 198

20% 219 204 0.9 0.23 0.009 77

Whenever the shear layer exists, α < 1 from (22.72) so that ho is positive. We
now introduce an infinitesimal disturbance, distinguished by primes,

h = 1 + εh′ , ho = (1− α) + εh′
o , up =

1
2
(1− α)2 + εu′

p , (22.73)

where ε	 1, and periodic waves for the disturbances,{
h′, h′

o, u
′
p

}
= (ĥ, ĥo, ûp)ei(kx−ωt) . (22.74)

The corresponding perturbations in the depth of the yield surface and the plug-
flow velocity ĥo and ûp are, in terms of ĥ:

ĥo =
3β[(1− α)2k − 2ω]2 − 4(2 + α)k2 − 4i(2 + α)k

(1− α)2βk[(1− α)2k − 2ω]− 4i(2 + α)k
ĥ, (22.75)

ûp =
−(1− α)2k2 + 2i[(1− α)2k − 3ω]

(1− α)2βk[(1− α)2k/2− ω]− 2i(2 + α)k
ĥ . (22.76)

These will be used later.
From the linearized equations, we find the dispersion (eigenvalue) relation

between ω and k:

β2

6
(1− α)ω3 +

[
−β

2

5
(1− α)3k + i

2
3

1 + 2α
α(1− α)

β

]
ω2

+
{
βk2

120
(1− α)

[
9β(1− α)4 − 20

]
− 2
α(1− α)2

− iβk
30

(
1− α
α

)
(16 + 49α)

}
ω

+
{

2
α(1− α)

k − β

360
k3(1− α)3

[
3(1− α)4β − 2(13− 7α)

]
+ik2

[
4
45
β

α
(1− α)3(1 + 5α) −2

3
α2 + α+ 1
α(1− α)

]}
= 0 . (22.77)

This condition is a complex polynomial equation of the third degree for ω.
In [21] the numerical solution for the eigenvalue conditions as well as various

analytical limits are studied. In particular, it is shown that, for relatively small
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α, there is a minimum unstable wave number kc below which all longer waves
are stable, and above which the growth rate increases monotonically with the
wavenumber. The second feature is common to Newtonian and power-law fluids,
see Fig. 22.9 for α = 1/10. However, if α is sufficiently large (more Bingham-
plastic) and β sufficiently high (high speed), there is a maximum unstable wave
number kc above which all shorter waves are stable. The growth rate is the
greatest for certain intermediate k between 0 and kc, as shown in Fig. 22.10 for
α = 1/2. These results are qualitatively consistent with the field observations
[27]. In Fig. 22.11 the stability boundaries are shown in the parametric plane of
α vs. β. To the right of curve BIC, the longest wave k = 0 is unstable. To the
left of AID, the shortest wave k →∞ is unstable. Thus waves of all lengths are
stable to the left of AIC and unstable to the right of BID. In the wedge CID,
long waves with 0 < k < kc are unstable. In the wedge AIB, short waves with
kc < k <∞ are unstable.

Fig. 22.9. Imaginary part of ω as a function of the wavenumber k and β, for low
yield-stress fluid with α = 1/10. From [21]

In the study of roll waves in turbulent flows in an open channel, the hy-
draulic approximation leads to a set of depth-averaged equations very similar to
the limit of (22.62) and (22.58) at ho = 0. By a linearized instability analysis
it is known that all waves are unstable as long as the Froude number exceeds
certain threshold, and that the growth rate increases monotonically with the
wavenumber or frequency. Thus the linearized theory does not give any infor-
mation on the prefered wave length in the nonlinear stage, similar to the case
of small Bingham number α here. Chang et al. [28]2 have recently applied a
mathematical model due to Needam & Merkin [29] by adding a diffusion term in
the longitudinal momentum equation. With this fictitious term a prefered wave
frequency exists. In numerical simulations of the experiments by Brock [30], they
2 We thank Prof. Neil Balmforth for this reference.
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Fig. 22.10. Imaginary part of ω as a function of the wavenumber k and β, for high
yield-stress fluid with α = 1/2. From [21]

Fig. 22.11. Stability boundaries in the plane of α and β. To the right of curve (a), the
longest wave (k = 0) is unstable. To the right of curve (b), the shortest waves (k → ∞)
are unstable. From [21]

adjusted the diffusivity to fit the data upstream where waves began to grow, and
found encouraging agreement on the development and coarsening of roll waves
downstream, i.e. the linear increase of shock amplitudes and wavelength with
the distance away from the inlet. Mathematically speaking, fitting by choosing
an artificial diffusivity differs little from choosing an initial wavelength. For the
mud problem we discuss below several examples based on the numerical solu-
tions of (22.68)-(22.70) for the nonlinear stage of surge development, including
roll waves due to upstream disturbances.
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22.4.3 Roll Waves by Numerical Computation

(i) Spatially Periodic Roll Waves

It is natural to expect that from initially small disturbances of different wave-
lengths, the one with the fastest growth will dominate the wavelength of the
nonlinear roll wave at the end. As was shown before, such prefered wavenumber
exists for sufficiently large α and β. With an initial perturbation corresponding
to the most unstable mode, the three hyperbolic equations (22.68-22.70) govern-
ing the three unknown h, ho and up are solved in [19] and [21] by the upwind
method of finite differences. The amplitude of the initial disturbance is chosen to
be 1% of the initial depth. The initially perturbed shear layer depth and initial
velocity are determined by (22.75) and (22.76) respectively. Periodic boundary
conditions are imposed.

Figure 22.12 gives the surface profile within one wavelength for β = 27,
α = 0.3 which corresponds to either large Reynolds number or highly non-
Newtonian fluid. The most unstable mode occurs at k = 1.2, according to the
linearized instability theory. As the amplitude grows in time, the wave front
also steepens. At approximately t = 48, a shock is formed at the front. The
shock amplitude gradually increases to its maximum and approaches a steady
amplitude after t = 64.

Fig. 22.12. Nonlinear development of the unstable disturbance for α = 0.3, β = 27
within one wave length. An infinitesimal and periodic disturbance of the most unstable
wave number k = 1.2 is chosen at t = 0. A steady shock is reached at t > 64. From [21]

The dimensionless propagation speed of the initial disturbance (0.25 here)
has been confirmed with the linear instability theory. As the shock amplitude
increases, the shock speed increases. At the steady state, the shock propagates
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at a higher speed Cs (= 0.34). As the shock grows, mass accumulates just behind
the shock and is lost ahead of the next shock. Therefore, the mud depth and mud
velocity up decrease, but the shear layer depth increases across the shock. Figure
22.13 gives the snapshots of h, up, ho and the bottom stress τb at t=90 which
is in the steady state. Since both h and up decrease and ho increases across the
shock.

Fig. 22.13. Spatial variations of the free surface, yield surface, plug flow velocity and
bottom shear in a period of steady shock, for α = 0.3, β = 27. From [21]

The small ho and large u just behind the shock implies very large bed shear
there. Physically a small shear zone ho means that essentially locally the whole
mud layer is a plug flow. If the bottom is rigid, mud sliding is implied. If the
bottom is erodible, scouring should occur. Since the shear layer depth ho is found
to decrease as k decreases, longer waves must have stronger scouring capacity.

When the shear layer depth ho approaches zero, (22.70) becomes singular
through the last term representing bottom friction, and computation cannot
proceed towards the steady state. This numerical difficulty was avoided by ap-
plying the biviscous model of Bingham fluid with a large but finite viscosity in
the plug zone. This removes the singularity and allows computation to proceed
for all time, as explained in [21].
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(ii) Roll Waves due to Periodic Inflow

Field studies by Davies [14] suggest that roll waves in a river nearly always
occur at a distance downstream of a junction with a tributary. To simulate
this phenomenon, Liu [19] introduced a small periodic source qin to the right of
(22.62) along a prescribed stretch upstream. The source strength (flux rate) is

qin =
{
Qin [1 + sin (2πt/T − π/2)] , |x− xo| < W
0 , |x− xo| > W ,

(22.78)

where Qin denotes the maximum discharge and T the period. Figure 22.14 shows
a sample result for β = 27, α = 0.33 so that a progressive wave of any wavenum-
ber would be unstable from the linearized theory. Here the maximum source
strength is Qin = 2.7 and period T = 3π/4. The source length is taken to be
W = 0.03 and the center of the influx is at xo = 5/3. At first, small disturbances
grow as they are convected downstream. After sufficiently long time shocks form
at the front. As time increases, the leading shocks grow higher, while more shocks
emerge from behind. The region between two successive shocks is a depression
which lengthens with time. The growth and lengthening are approximately linear
both in space and time. These features are qualitatively similar to the observa-
tions of Brock [30] in turbulent channel flows of clear water, and numerically
simulated by Chang et al. [28] with a fictitious diffusion. Liu [19] also studied
other values of β, Qin and T . Generally shocks develop sooner for larger β and
influx rates. Large T leads to large separation between shocks and greater shock
amplitudes.

(iii) Roll Waves due to Sudden Addition of Mud

As a contrast to Sect. 22.2.4 and Sect. 22.3.3, let us examine the effects of a
sudden mud addition to a fast uniform flow. Liu & Mei [21] gave some computed
results for a case of high Bingham number α = 0.3. In a uniform flow with
β = 27, a triangular pile of fresh mud is added at initially

h(x, 0) =
{

1 +A (1 + |x− xo|/W ) , |x− xo| < W
1 , |x− xo| < W .

(22.79)

The resulting free surface is seen in Fig. 22.15. The initial crest first grows in
height, leading to a steep front. The shock amplitude increases in time. Since the
velocity increases downstream from the uniform-flow value towards the shock,
mud accumulates at the front. To conserve mass a depression is formed at the
rear. When the depression is sufficiently low, the local flow ceases (at about
t = 50). The first shock is then separated from the rear and reaches a steady
state. At the rear a new front is pushed down the slope by the original uniform
flow from behind. Instability induces the growth of a new hump which turns into
a new shock. Again a depression is formed in the rear. The process is repeated
so that a few more shocks are generated, each of which diminishes in size.

For the same α = 0.3 but smaller β, there is no unstable mode from the
linearized theory. Inertia is no longer large enough; numerical computations show
that the additional mud pile flattens out slowly. For more details see [19].
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Fig. 22.14. Nonlinear development of the mud surface due to time-periodic influx
upstream. The mud parameters are α = 0.3, β = 27 so that waves of all lengths are
linearly unstable. Reproduced from [19] with x, t renormalized according to the scales
of this article.

22.5 Other Related Works

In a recent work, Huang & Garcia [35] found an analytical approximation for
the one-dimensional initial value problem of the collapse of a mud pile released
from a finite area, also for moderate Reynolds numbers so that inertia is inef-
fective. The Herschel–Bulkley model was assumed. It was shown that over the
main body of the mud pile, the gentle surface slope permits the omission of the
highest derivative. The resulting approximation is a hyperbolic equation of the
kinematic wave type, which can be treated by the method of characteristics. A
discontinuous front evolves at the front, near which the stationary wave solution
serves as a local remedy and rounds up the front. This method is an efficient
alternative to numerical computations.

If mud is released on a plane slope from a narrow outlet, the spreading is two
dimensional (x, y). Numerical and laboratory modelling of the transient mud
flow from the narrow opening of a reservoir have been reported by Coussot et
al. [16,36] for Herschel–Bulkley fluids in slow flows. Extensions to fast flows
has been reported by Laigle [37]. A part of the study in [36] is to predict the



22 Mud Flow – Slow and Fast 573

Fig. 22.15. Nonlinear development of the mud surface due to the addition of a mud
pile upstream. The mud parameters are α = 0.3, β = 27 so that waves of all lengths
are linearly unstable. From [21]

shape and the extent of the final deposit, when flow comes to a halt. Similar to
Sect. 22.2.2, they attempted to solve for the static mud depth h(x, y) from the
threshold condition (22.43) with ho = 0 for a prescribed mud volume V , and
found it necessary to add an ad hoc condition. Denoting the curve representing
the outer rim of the mud pile by R(x, y) = 0, they impose the condition that at
every point along the rim,

∂R

∂y
= tanφ

∂R

∂x
, (22.80)

where φ is the polar angle of the point. This additional constraint reduces the
partial differential equation (of eikonal type) for h to an ordinary differential
equation which can be solved. However, the assumption (22.80) has so far eluded
convincing justification. The mathematical problem appears to be ill-posed3.
Physically, if two elongated piles are released on a slope, the initial orientations
of their axes must affect the final shape at static equilibrium. Thus the final pile
shape cannot be uniquely determined by prescribing the initial volume alone.
The proper answer must be found by the solution of an initial value problem as
in Sect. 22.3.3.

The lubrication approximation and Bingham–plastic and Herschel–Bulkley
models have been used to model the slow spreading of lava domes on a horizon-
tal plane, as discussed in [38], and in Chap. 7. With the assumption of radial

3 It can be shown for a pile symmetrical about the x axis, that one cannot solve (22.43)
for h(x, y) as an initial value problem with the initial data h(0, y), because the initial
line x = 0 is a characteristic curve.
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symmetry, the mathematical problem is also one-dimensional. Earlier literature
on the use of viscous and visco-plastic models has been surveyed by Griffiths
[39]. When thermal effects are not considered, the mathematical problems for
slow flows of mud and lava are practically the same.

Motivated by coastal interests, there have been some studies on fluid mud
beneath a layer of seawater. Under the action of currents or tides, characterized
by long time scales, estuarine mud on the seabed can be resuspended by interfa-
cial friction. On the other hand, under short-period wind waves, fluid mud may
be moved in bulk, by the pressure gradient in the water above. In either case,
mud transport plays an important role in reshaping the coastline by forming
shoals, mudbanks, deltas, [4,40,41,42]. It is also of engineering importance for
the effective maintenance and operation of harbors and waterways.

Along a muddy coast, wind waves are known to be easily damped out within
a relative short distance of a few wavelengths [43]. Field measurements by Wells
[41] near Surinam, South America, show that the wave amplitude diminishes
roughly in proportion to the water depth. Breaking, which is common along a
sandy shore, is not dominant. A few controlled laboratory experiments on wave
damping by mud have been reported in [6,44,45,46]. Because the same fluid-mud
may respond very differently under forcings of significantly different magnitudes,
dynamic similarity between the laboratory and nature is not easy to achieve.

In a series of papers Liu & Mei have examined the effects of muddy seabed on
infinitesimal long waves shoaling in a shallow sea. In the simplest case the mud
layer is supposed to be very thin compared to the depth of clear water above [47].
A consequence is that the vertical motion of the water/mud interface is quite
small. When interfacial friction is also ignored, the local effect of mud motion
on waves is then negligible. On the other hand the surface wave gives rise to a
horizontal pressure gradient which drives the mud flow below. For sufficiently
short wave periods (high frequency) the shear layer at the bottom of mud is
very thin. Most of the mud then moves as a plug flow, subject to a Coulomb
friction on the bottom which is also the yield surface. Energy for overcoming this
Coulomb friction is supplied by the wave which is then attenuated over many
wavelengths. In [48] the interfacial friction modelled as a quadratic function of
the velocity jump was included. Finally in [49] the mud layer is allowed to be
as deep as the overlying water. Interfacial wave can therefore exist. Both the
surface wave and the interfacial wave are assumed to be of finite amplitudes and
treated by the Airy approximation. The resulting long wave equations coupling
water above and the plug flow below form a fourth-order hyperbolic system.
Again the shear layer is negligibly thin and affects the plug flow as a Coulomb
friction. When mud moves, waves are attenuated slowly by supplying energy to
overcome friction. The spatial attenuation is found to be spatially linear instead
of exponential, consistent with the report by Wells from field observations. A
stage can be reached when waves becomes so weak that mud ceases to move.
Waves can then resume propagation and steepening by nonlinearity (convective
inertia) without attenuation. Once the surface wave front becomes sufficiently
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steep, mud moves again and damping returns. Therefore the dynamical coupling
between water and mud is an intermittent process.

22.6 Future Challenges

To simulate nature more closely, a few immediate extensions of theories summa-
rized in this article should be made. Fast flows in shallow open channels of fine
width can be treated by modifying Sect. 22.3 for Bingham and other rheological
models. Channels with width comparable to depth present more difficulty, as
the problem is fully two dimensional in the cross section.

In order to enable quantitative modelling of the entire phenomenon of mud
induced catastrophies, it is necessary to include the initiation of mud flow. The
relevant scientific issues can of course be dauntingly complex and varied, and
future progress demands the cooperation of several disciplines beyond the usual
realm of fluid mechanics. There are areas where joint effort with other branches of
applied mechanics (e.g. hydrology, soil mechanics, chemical engineering, granular
mechanics) can be fruitful.

Take for example mud slides and flows due to rainfalls. There are then two
main stages: (i) infiltration of rainwater into the dry top soil on a hill slope,
leading to the loss of static equilibrium hence mud-slide; (ii) mud flows down a
hillslope along channels.

In Stage (i), persistent and heavy rainfall causes the spatial distribution of
soil moisture to change with time. The prediction of vertical infiltration is a well-
known problem in the hydrology of unsaturated seepage flow (see e.g. [50,51]).
Accompanying the seepage process, the geostatic stresses in soil on a hillslope
change with time. In soil plasticity theory, there are ways of predicting soil
slope instability according to the failure criterion of Coulomb which depends
on the cohesive strength and friction angle [52]. However, these two parameters
depends strongly on the soil moisture; empirical knowledge on their dependence
is very meager at present. Further progress would likely require progresses in soil
chemistry.

As for Stage (ii), once the mud moves, its dynamics depends on the land
surface down the hill slope. If the land is dry, mud moves down as moist debris
where granular collision is a central feature. If mud slides into a body of water,
one needs reliable rheological models for the mixtures of water, cohesive fine
particles and stones of different sizes. The erosion of channel banks and resus-
pension of soil particles by flowing mud must be an even more difficult problem
than the erosion of river beds by flowing water. Mechanisms of soil fluidization by
transient shear and pressure gradient in the muddy water must be understood.

Our mechanistic understanding of the most common material on earth has
only begun.
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